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KAHLERIAN SUBMANIFOLDS IN A COMPLEX PROJECTIVE
SPACE WITH SECOND FUNDAMENTAL FORM
OF POLYNOMIAL TYPE

RYOICHI TAKAGI

Let P, be an N-dimensional complex projective space with Fubini-
Study metric of constant holomorphic sectional curvature, and M be a
Kahlerian submanifold in P,. Let H be the second fundamental tensor

of M, and I;' be the covariant derivative of type (1,0) on M. We proved
in [5] that, if M is locally symmetric, then

+
(1) F"H =0 for some positive integer m .

So it will be a natural question to ask what Kéahlerian submanifolds
satisfy the above condition (1). In this paper we give some partial solu-
tions to it. First we show that the condition (1) is equivalent to

(2) I; ‘R=0 for some positive integer d ,

where R denotes the curvature tensor of M. On the other hand, the
curvature tensor R of every Kihlerian C-space satisfies the condition (2)
([4D). Thus every Ké&hlerian C-space holomorphically embedded in P
satisfies the condition (1) too. Next we prove that, if M is a Kéahlerian
hypersurface with condition (1) in Py, then M is totally geodesic or a
complex quadric. Finally we give some examples of Kihlerian submani-

fold in P, satisfying F*H = 0 but VH = 0.

§1. Preliminaries

In this section we survey briefly the notion of Kihlerian submani-
fold in P, (for the detail, see e.g. [2]). Let M be an n-dimensional
Kahlerian submanifold in P,,,. We use the following convention on the

range of indices unless otherwise stated: A, B, --- =1,.--,n,n+ 1, ---,
n+Q; i’jy e —“:1’ °°'9'_'n; aap‘B9 s =n-+ 17 "',n"r‘Q- Let {91, "'pen+q}
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be a local field of unitary frames in P,., such that, restricted to M,
e, ---,e, are tangent to M. Denote its dual frame field by o', - - -, 0**2
The connection forms wi with respect to w, and the connection V “on P,.,
are related by

(1.1) V,es = }_‘; wilee, .

Restrict the forms under consideration to M. Then, since w* = 0, the
forms o? can be written as

1.2 Z hio', hi; = hj; .
J

The quadratic form >3; ; hfj0*-¢’ is called the second fundamental form
of M in the direction of e,. The curvature form 2% of M is defined by

(1.3) 2% = do’ + Zk:w}; N of .
It can be expressed as
1.4) i =3 TRz 08 N\ @ .
ks,
The equation of Gauss is given by
(1-5) R?’ké = C(5§5kz + 5@;5) - Z h;kﬁgl ’

where 2c¢ denotes the constant holomorphic sectional curvature of P,,,.
The value c itself is not important in this paper. The Ricci tensor S =
(8;;) of M is defined by

(1.6) ZR“C, (n + 1)ed,; — Z hzhs; .

We define the higher covariant derivatives Af...., and Af..,.; of A¥ in-
ductively as follows.

Zhu ww"l‘z e 1m.fw

(1.7 — dhe..

i1-e+tm

Ms

J
Z 110 br1fir+ 100 vim Dip
J

r=1

+ Z hbl 1m

Then the component of the tensor 17 "™H used in the introduction is nothing
but Af

i1oesimt2®

LemMA 1.1 ([2]). The following relation holds.
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m—2 2
fortad = 0 2 Rt

K31 1 5 76
a
"*"‘4"%'" - '"" Z hlia(l)"'ia(r)h’fu(r+l>"‘5a<m)h4]' ’
=1 ri(m —r)! «5te

where the summation on ¢ is taken over all permutations of {1, ---, m}.
In particular, h;,...;, is symmetric with respect to i,, - - -, i,, and h{;; = 0.

§2. Results and proofs

In this section we denote by M a Kéihlerian submanifold in P,,, and
keep the notation in Section 1.

DerFiNITION. Denote the tangent space of a manifold N at a point p
by T,(N). For a point p of M we denote by NN, the normal space of
T,(M) in T,(P,.,), and by N the complexification of N,. Let m(= 2) be
an integer. To each point p of M we assign the complexification of the
subspace of N, spanned by the vectors >, Af.....(p)(e,), over C, which we
denote by H,(p).

Remark that Lemma 1.1 implies
(2.1) Z hfl...imjea € Hz + -+ Hm—l .

LEmMMA 2.1. Assume there exist two integers r and ¢ such that r > ¢
=>2and H, | (H,+ --- + H). Then (1) H, | (H,+ --- + H,) for any
integer s with s=>r, and (2) H,,_, | (H, + --- 4+ H,,)).

Proof. Let a be any integer such that 2 < a < 4. Then the assump-
tion can be rewritten as

(2.2) Z h?y-'ir’_l.‘;l“‘fa = 0 *

In order to show (1) it suffices to show H,,, | (H,+ --- + H,). Taking
the covariant derivative of (2.2) with respect to e,, we have

2 B + 20 R G = 0
a a

The second term of the left hand side of this equation vanishes by (2.1)
and (2.2), which shows (1). Now by (1) we have

(2.3) Z h?l---izr—z_;l'“ia =0.

Taking the covariant derivative of (2.3) with respect to &,, we have
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Z h§1~~-izr-2h;1"~jak + Z hg,...i2,_2;;h;1...ja = 0 .
a a

It follows from Lemma 1.1 that the second term of the left hand side of
this equation is equal to

27r—2 —
2(7’ - 2)C bZ:l h{-’l...gb...izr_ﬁibkhjfl...ja
2r—4 1

_ Z Z & hfa(b+1)...ia(2r_2,hlﬁkh;1“'ja *

£ 5% b @r — 4 — b)! Hortom

But the first term vanishes by (1), and the second also vanishes by (1)
since b+1=ror2r—2—>5b=>r. g.e.d.

DEerFINITION. Let d be an integer with d > 3. Define a sequence
{d.}i-1,,... of integers inductively as follows. First put d, =2 and d, = d.
Assume d, was defined for 2 =1, ---,i. Let {c,} be a sequence of integers
defined by ¢, = d,; and ¢,.; = 2¢, — 2. Then put d,,, = c,, where m = d,
— d;_;. The sequence {d;} shall be said to be associated with an integer d.

LEMMA 2.2. Assume there exists an integer d = 3 such that H, | H,.
Let {d;} be the sequence of integers associated with d. Then the vector
spaces H;, H,, --- are mutually orthogonal.

Proof. Since H, | H,, applying Lemma 2.1(2) d, — d, times, we find
H, | (H;, + --- + H,,). Repeat this argument to obtain

Hdi _L (Hdl + ot + Hdz + ot + Hdi_l)
for each positive integer i. q.e.d.
The following Theorem gives our problem a geometric meaning.

THEOREM 2.3. Let M be an n-dimensional Kdihlerian submanifold in
P,.,. Let R be the curvature tensor of M, H be the second fundamental

tensor of M, and V be the covariant derivative of type (1,0) on M. Then
the following two conditions are equivalent.

(A) There exists a positive integer d such that 4 ‘R =0.
(B) There exists a positive integer m such that V'™H = 0.

Proof. By (1.5) the condition (A) is equivalent to
©) H,.,|H,.
Thus clearly (B) implies (A). Now assume (C). If H,, # {0} for all integers
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m (= 2), then Lemma 2.2 implies that for each point p of M there exists a

sequence H, (p), H;,(p), - - - of infinitely many mutually orthogonal nonzero
vector subspaces of N, which is a contradiction. g.ed.

Now we state a relation between two integers d and m in Theorem
2.3.

Tueorem 2.4. Let M, P,.,, R, H and l; be as in Theorem 2.3. Assume
that M is neither flat nor totally geodesic, and that there exists a positive

integer d such that I; ‘R =0 and l; 1R + 0. Let m be the positive integer

determined by PrH =0 and V"-'H # 0. Let {d,} be the sequence of integers
associated with d + 2. Then m < d,,, — 2.

Proof. By Lemma 2.2 we see that there exist a positive integer i
and a point p of M such that the subspaces H,,(p), H,(p), - - -, H,(p) of
N¢ are mutually orthogonal and H,(p) # {0} and H,,, (p) = {0}. Since
dim; NY = q, we have i < q. This and the definition of m give m + 2 <
div £ d,. q.e.d.

Here we consider our problem in the case of codimension 1.

THEOREM 2.5. Let M be a Kdhlerian hypersurface in P,.,. Let H be
the second fundamental tensor of M and l; be the covariant derivative of
type (1,0) on M. Assume there exists a positive integer m such that l+7 mH
= 0. Then M is totally geodesic or a part of a complex quadric.

Proof. Since ¢ = 1, we may omit the index «. In the case where
m = 1, our theorem has been already proved by B. Smyth [3]. So assume
m = 2. Let an index a (resp. r) stand for any index ¢ such that h?:: *#0
(resp. h:f‘t: = 0). The set of such indices a’s is not empty. In fact, if
empty, we have hjill =0 for each i, which implies H,,; = 0. In this

proof, let the index ¢ run from 1 to m — 1, and the index u run from 0
to 4 — 1. By Lemma 1.1, we can rewrite

w
ha-nami =0

m+2+8

as follows.

g ... Zu: m1 (m +24+4—u )(u) ;hm...a;.’lﬁ‘rha-.-aﬁﬁii =0.
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Then E,_,, is given by

m m+1 __

Z hjmhmhji = 0 ,

J

which yields

2.1 2 hiash =0,

J

m+1

since h;5 # 0.
Moreover E, _,, is given by

<2m>zhj2.1n..7hf.%hn+< 2m )Zhjmhmﬁﬁo,
m 7 m—1/ 7

which, together with (2.1), implies

% By = 0.
Repeat this argument m — 3 more times to obtain
2.2) 2 hmwh, =0 fore=2.

Next E, _,, is given by

m m+1l _ m m+
(2’") S By + ( 2m ) S hyme hemhy = 0,
m J m — 1 J

which, together with (2.1), yields

)3 ho=hy =0.
Just as we obtained (2.2), we have from E,_,,, ---, E,; and (2.2)
(2.3) ; hj(;.‘.f?;ri_zﬁ =0 for £>2.

Similarly, from E,_,,, ---, E,,, (2.2) and (2.3) we have

m

(2.4) Shimmh; =0 for £=2.

J

In particular, from (2.2), (2.3) and (2.4) we have
Z hjkg}_lji = 0 .
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This and (1.6) mean that the Ricci tensor of M is parallel. Now our
theorem is reduced to Takahashi’s one [6]. q.e.d.

§3. Examples of I;ZH =0 but l;H;& 0
In this section we give three examples of a Kédhlerian submanifold in

P, satisfying l; H =0 but v H +0. They are given as orbits in P, under
certain Lie subgroups of the special unitary group SU® + 1). We fix a
flat Hermitian metric on C**!. Let S be a hypersphere in C**' centered
at the origin. Let n be the canonical projection of S onto P,. For a
point p of S we denote by H, the linear subspace of T,(S) orthogonal
to the 1-dimensional linear subspace RI(p), where I denotes the complex
structure of C"*'. The restriction 7z, ,, of the differential map =, of = at
p to H, is an isometric isomorphism of H, onto T, ,(P,). For ve T,(C"+")
(resp. ve T,(S)) we denote by vs (resp. v,) the orthogonal projection of v
to T,(S) (resp. H,). Let X be any element of the Lie algebra su(n + 1)
of SU(n 4+ 1). Then the 1-parameter subgroup exp tX of SU(n + 1) induces
Killing vector fields both on C**' and P,, which are denoted by X* and
X* respectively. The restriction X*|; is a Killing vector field of S, which
is also denoted by X* for simplicity. Clearly 7, X* = X,. Let V' (resp.
/) denote the connection on S (resp. P,). Then we have

3.1) 7, Y* = (YX(p))s for X, Yesu(n+ 1),
where we put x = X¥. In fact, if we denote by V the flat connection on
C™*!  then
PY* = (.Y = (2| Yeuo)
x x dt lo § D s
— (2] Yexp 1X)(2)
dt lo s
= (2] Yeexprx)on)
dt lo s
= (YX(p))s -
Moreover the following formula is fundamental.
(3.2) Voo V¥ = (7, Y%),)  for X, Yesu(n +1).

Let G be a Lie subgroup of SU(n + 1). We consider an orbit M=
G(p) = n(G(p)), where p = n(p). Denote the normal space of T;(M) (resp.
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T,(S)) in Ty(P,) (resp. T,(M)) by N (resp. N). Let % ye Ty(M), and Y
be any element of the Lie algebra g of G such that y = Y¥. Then the
N-component of a vector / .Y * is not independent of a choice of Y, which
is denoted by a(%, ). « is just the second fundamental form of M at p.
The image of « is called the first normal space of M at 5. Similarly we
can define the first normal space of M in S at p. From (38.1) and (3.2)
we have

LeEmMA 3.1. Let the notation be as above. If the vectors (XY(p))y
where X, Yeg span the normal space N, then the first normal space of M
at p coincides with the normal space N.

In the following we shall give a Lie subalgebra g of 3u(n 4+ 1) and
a point p satisfying the assumption of Lemma 3.1. Let 4(= 3) be an
integer, and let the indices A, B, --- stand for 2¢ 4 1 values 1, -- -, Z, 0,
1, ---, £&. Denote by E,; the matrix (§,,0,5). Define the elements H;, X,;
of the Lie algebra 3l(n + 1) of the special linear group by

33) {H =E,—E; (=10

X, =E,; — Ezz, where A=A.

Let § be the complex vector space generated by the vectors H,, ---, H,,
and 4, ---, A, be the dual forms of H,, ---, H, Then the vectors H; and
X, generate a complex simple Lie algebra g, of type B, in the sence of
E. Cartan in such a way that % is a Cartan subalgebra of g, and a vector
X,z 1s a root vector belonging to a root 1, + 2z with respect to Y, where

A=0and ;=—2, i=1,---,4) (cf. [1]). It is easily seen that, with
respect to an ordering 2, > --- > 2,, the set {4, — 2,, -+, 4., — 2, 4,} is a
fundamental root system. Let {4, ---, 4} be the corresponding funda-

mental weight system. Then the above description (3.3) of g, is nothing
but the one of the irreducible representation p, of g, with the highest

2
weight 4, = 2,. Define a representation p, of g, on / C¥*' by
(3.4) o X) ey N eg) = Xe, N\ ey + e, N\ Xey Xeg, .

Then p, is irreducible and the highest weight is equal to 4, = A, + 2.
Let g, be a compact real form of g, such that g, C 3((24 + 1), and G, be
the Lie subgroup of SU(2¢ + 1) with the Lie algebra g,. We want to show
that g = g, and p = e, A ¢, satisfy the assumption of Lemma 3.1. For this
it suffices to show that the vectors
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(3.5) e X)oY)p), X, Yeg

span the complexification N of the normal space of an orbit G,(p) in
T,(S) over C. Hereafter we abbreviate e, A\ e; to A A B. Let the indices
i,j run from 3 to 4. Since E,x(e;) = 0524, it follows from (3.3) and (3.4)
that the complexification g,(p) of T,(G.(p)) is spanned by the 44 — 5
vectors
Hl(p)':l/\2, Hz(p)=1/\2,
Xip)=(Epy—E)IN2=2AN0, X(p)=(Ex—E)IN2=—1A0,
Xii(p) = (En - Eii)]- N2=—2Ni ’ Xii(p) = (Eiz - Eii)]- N2=1AN1 P
Xa(p) = By — E)IN2=2Ni, Xap)=En—E)IAN2=—1A7],
Xa(p)=1NT1T+2A2.

Therefore the space N is spanned by the vectors
IANT—2A2 1A2 2AT1,iN0, iANT, iN2, iNj,OANT, ONZ,
ONG, TAZ, TN 2ALIN] IN].
On the other hand, the following vectors are of the form (3.5)
XiXip)=2AN1, X:Xi(p)=2A2 XaXi(p)=iN0, XuaXi(p)=—0A1,
XpXi(p)=—-0NT1, XX(p)=—-1AN2 XsXi(p)=-0A2,
XpXa@)=iNj, X3Xa@)=iANj+5,2N2 XpXa(@)=iAT1,
XuXa(p) = —i A2, X35 Xu:(p) = iNJ, XuXu(p) = iNT,
XsXu(p) = —2N1, XaXu(@)=IN2+TIAZ2.

Thus we have proved that G = G, and p = e, A e, satisfy the assumption
of Lemma 3.1.

Now we assert that the second fundamental tensor H of our orbit
M = G.(x(p)) in Py, where N = 2¢* + ¢, satisfies P*H =0 but I;H;t 0.
Indeed, let R be the curvature tensor of M. Then we proved in [4] that
7R = 0 but PR + 0. This and (1.5) imply

Z h?jkzrl;w =0 ’ Z hfjk}—l?m :,'5 O .

Hence every normal vector h;;,, = (h{;;) is orthogonal to the complexi-
fication of the first normal space of M at every point. Thus, owing to
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Lemma 3.1, we have Af,(p) =0. By homogeneity of M we find e =0,
¢x 7 0, which proves our assertion.
We have two more examples of Kahlerian submanifold in P, such

that I;ZH =0 but l; H + 0. But we omit to descrive them since their con-
structions are essentially the same as above. We only mention that they
are given as C-spaces M, = M(A,, a,, «,) and M, = M(D,, «,) holomorphically
embedded in P, (see [4] for the notation). Under the same notation, the
previous example is a C-space M(B,, a;). We remark that dim, M = 2/
-1 (=2, dmcM,=44 — T (4 = 4), codim; M, = £* and codim; M, =
20 + 34 + 6.
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