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ABSTRACT

While many of the prevalent stochastic mortality models provide adequate
short- to medium-term forecasts, only few provide biologically plausible
descriptions of mortality on longer horizons and are sufficiently stable to
be of practical use in smaller populations. Among the very first to address
the issue of modelling adult mortality in small populations was the SAINT
model, which has been used for pricing, reserving and longevity risk manage-
ment by the Danish Labour Market Supplementary Pension Fund (ATP) for
more than a decade. The lessons learned have broadened our understanding
of desirable model properties from the practitioner’s point of view and have
led to a revision of model components to address accuracy, stability, flexibil-
ity, explainability and credibility concerns. This paper serves as an update to
the original version published 10 years ago and presents the SAINT model
with its modifications and the rationale behind them. The main improvement
is the generalization of frailty models from deterministic structures to a flexible
class of stochastic models. We show by example how the SAINT framework is
used for modelling mortality at ATP and make comparisons to the Lee-Carter
model.
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1. INTRODUCTION

Since the beginning of the 21st century, life annuity providers have faced an
upsurge of pensioners to provide for and the need for reliable, long-term mor-
tality projections is perhaps greater than ever. Indeed, the world-wide increases
in life expectancy show no signs of slowing down, and populations where
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mortality rates are already low still experience rates of improvements of the
same, or even higher, magnitude than historically. The situation accentuates
the importance of powerful predictive models to handle the consequences of
an ever older population.

From a practical point of view, there are two partly conflicting aims: (1)
producing accurate forecasts and (2) producing forecasts stable under (annual)
updates. Accurate forecasting has been the long-standing objective in actuarial
and demographic literature and is, broadly speaking, the goal of the academic,
while stability is a more recent requirement pertaining to the needs of the
practitioner. When applied in practice, the prevailing market value accounting
regime dictates that a mortality model should be updated annually to reflect
the latest trends in the data. However, many mortality modelling paradigms
are very sensitive to the data period used for calibration, and forecasts can
therefore vary substantially from year to year. For an annuity provider, large
fluctuations or systematic underperformance of a mortality model can lead
to significant shifts in liabilities and capital requirements, resulting in huge
costs for either the company or the risk collective. Moreover, throughout
Europe, mortality models have become an integral part of policy-making as
statutory retirement ages are directly linked to gains in life expectancy. For
these decisions, stable short-, medium- and long-term forecasts are not just a
requirement, but a necessity.

Stability requirements are particularly difficult to meet when forecast-
ing concerns small populations, including, in fact, many countries. Because
improvement patterns in these populations exhibit a great deal of variability,
simple extrapolations of past trends tend to have poor predictive power over
long horizons and projections are prone to dramatic changes following data
updates. This holds true for many of the popular projection methodologies
such as the model of Lee and Carter (1992). In view of these accuracy and
stability concerns, Jarner and Kryger (2011) developed the SAINT model that
has been used by the Danish, nationwide pension fund ATP, since 2008.

The SAINT model was designed with the purpose of producing stable, bio-
logically plausible long-term projections for adult mortality. More precisely,
projections with smooth, increasing age-profiles and gradually changing rates
of improvement over time. With the main application of pricing and reserving
for long-term pension liabilities in mind, capturing long-term trends reliably
were deemedmore important than, for example, short-term fit. However, more
than a decade’s worth of experience with the SAINT model in use has broad-
ened our understanding of model requirements from the practitioner’s point
of view. Even though the overarching structure of the SAINT model has not
changed, its components have been revised over the years to address not only
accuracy and stability concerns but also the model’s flexibility, explainability
and credibility. In this paper, we describe how the SAINT model has evolved
since Jarner and Kryger (2011) in response to changing demands arising from
practical use and user feedback.
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In the years following the introduction of the first version of the SAINT
model, quantification of longevity risk became a regulatory requirement. As
the deterministic trend component used in Jarner and Kryger (2011) was not
able to adequately assess this risk, a version of the SAINT model with a
stochastic trend was developed. Eventually, this work led to a generally appli-
cable class of stochastic frailty models, which we present in this paper. This
methodology constitutes the main theoretical contribution of the paper.

The rest of the paper is organized as follows. Section 2 contains a survey of
the evolution of the SAINTmodel over the last decade. In Section 3 we discuss
how changing rates of improvements can be modelled using frailty. Section 4
formalizes the notion of a stochastic frailty model and develops estimation
and forecasting procedures. This is followed by Section 5 presenting a com-
prehensive application of the SAINT model to international and Danish data.
The findings are discussed in light of comparable results from the Lee-Carter
model. Finally, Section 6 offers some concluding remarks.

2. THE EVOLUTION OF THE SAINT MODEL

ATP is a funded supplement to the Danish state pension, guaranteeing most
of the population a whole-life annuity. In 2008, ATP introduced a new market
value (whole-life) annuity. The main characteristic of this annuity is that con-
tributions are converted to pension entitlements on a tariff based on prevailing
market rates and an annually updated, best estimate, cohort-specific mortal-
ity forecast. Once acquired, pension entitlements are guaranteed for life. The
structure gives a high degree of certainty for the members, but it leaves ATP
with a substantial longevity risk.

The SAINT model was developed as part of the market value annuity, with
the specific aim of producing accurate and stable forecasts in order to man-
age the longevity risk of ATP. Clearly, accuracy is desirable to avoid long-run
deficits due to life expectancy increasing faster than expected (or, in the case
of life expectancy increasing slower than expected, pension entitlements being
too small). However, stability of forecasts is of equal importance. Each update
of the model causes a change in the size of technical provisions, which in turn
affects the risk capital allocated to cover longevity risk. Effectively, a stable
mortality model is “cheaper” than a volatile model, because the former frees
up risk capital to be used more efficiently elsewhere, for example, to cover a
higher market exposure.

Over the course of the last decade, the SAINT model has undergone a num-
ber of changes due to changing demands and feedback from its users. Below,
we give a brief presentation of the original SAINTmodel, followed by a survey
of the subsequent major changes and their rationale.
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2.1. The original SAINT model

The original SAINT model, as described in Jarner and Kryger (2011), has two
core model components:

• A reference population consisting of a large, pooled, international data
set, and;

• A frailty model for modelling increasing rates of improvements over
time.

The rationale for using a reference population, in addition to the target pop-
ulation, is that it is easier to extract a long-term trend from a large dataset, than
a small dataset, since idiosyncratic features are typically more pronounced in
the latter. The mortality of the target population is subsequently linked to
the long-term trend. A similar idea, although differently implemented, was
introduced by Li and Lee (2005) in their multi-population extension of the
Lee-Carter model. Since Jarner and Kryger (2011), the concept of a reference
population has appeared in a number of models and applications, for exam-
ple Cairns et al. (2011), Dowd et al. (2011), Börger et al. (2014), Villegas and
Haberman (2014), Wan and Bertschi (2015), Hunt and Blake (2017b), Villegas
et al. (2017), Menzietti et al., 2019), Li and Liu (2019), Li et al. (2019).

In the notation of the present paper, the SAINT model is of the form:

μtarget(t, x)=μref(t, x) exp
(
y�
t rx

)
, (2.1)

μref(t, x)=E[Z|t, x]μ0(t, x)+μb(t), (2.2)

where μtarget(t, x) and μref(t, x) are the force of mortality at age x and time t of
the target and reference population, respectively. The target mortality is linked
to the reference mortality by a set of age-dependent regressors, rx, with time-
dependent coefficients, yt, termed spread parameters. Further, the reference
mortality is modelled by the sum of a multiplicative frailty model with base-
line mortality μ0, and age-independent background mortality, μb. The term
E[Z|t, x] denotes the (conditional) mean frailty of the given cohort, and we
will discuss this in detail later. All mortality rates are gender-specific, although
this is not shown explicitly in the notation.

Formally, the SAINT model in use today is still of form (2.1)–(2.2), but
with a different interpretation of the frailty term, and different specifications
of time-series dynamics, regressors, and baseline and background mortality.
From a methodological point of view, the new frailty model represents by far
the greatest of these changes.

2.2. From deterministic to stochastic frailty

The SAINT model uses frailty to forecast increasing rates of improvement in
age-specific mortality, thereby reducing the risk of underestimating future life
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expectancy gains. Loosely speaking, changes in baseline mortality affect selec-
tion and therebymean frailty,E[Z|t, x], which in turnmodifies the way baseline
mortality affect population-level mortality.

In the original SAINT model, μ0 and μb were assumed to be of a form
equivalent to

μ0(t, x)= exp
(
θ1 + θ2t+ θ3x+ θ4tx+ θ5x2

)
, μb(t)= exp (θ6 + θ7t) . (2.3)

This allowed an explicit calculation of E[Z|t, x] and thereby of μref, assum-
ing gamma-distributed frailties, see (14)–(18) in Jarner and Kryger (2011) for
details. The resulting model for μref had 8 parameters (θ1 − θ7 and a frailty
parameter) for each sex, which were estimated by maximizing a standard
Poisson likelihood. When forecasting, the parametric form was used to extrap-
olate μref to form a deterministic trend around which μtarget would vary. We
refer to this as a deterministic frailty model.

Despite its parsimonious structure, the estimated μref-surface provided a
remarkable fit to the international dataset. However, it soon became clear that
the model was not able to fit other datasets equally well. More importantly,
assessment of longevity risk was becoming a regulatory requirement, and for
this purpose, a deterministic trend model was insufficient.

The current version of the SAINT model features a stochastic frailty model,
in which μ0 and μb are stochastic processes. This implies that the frailty
term, E[Z|t, x], also becomes stochastic, and explicit expressions are no longer
available. In order to disentangle the dependence between μ0 and E[Z|t, x], a
pseudo-likelihood approach, reinterpreting the frailty term in terms of observ-
able quantities, had to be devised. This, in turn, led to a generally applicable
“fragilization” method by which essentially any frailty distribution can be
combined with any baseline and background mortality to form a model, cf.
Section 4.

2.3. Cointegrating gender dynamics

In the original SAINT model, male and female mortality were modelled sep-
arately, which resulted in a sex differential of just over 10 years in forecasted
cohort life expectancies at birth. When the first version of the stochastic frailty
model was implemented, it was therefore decided to model the new stochastic
processes via cointegration to ensure better aligned forecasts. At the time, the
baseline and background mortality were modelled as

μ0(t, x)= exp
(
αt + βtx+ 2x2/104

)
, μb(t)= exp (ζt), (2.4)

with the processes {αt, βt} governing μ0 being modelled as in Equation (5.5),
but with an unrestricted A-matrix. Cointegration reduced the life expectancy
difference at birth to about 5 years, and subsequent model development
brought it further down to 3.6 years.

https://doi.org/10.1017/asb.2021.37 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.37


488 THE SAINTMODEL: A DECADE LATER

FIGURE 1. Age 60 actual (dots) and forecasted (lines) period life expectancy using the SAINT model with
and without restrictions on the A-matrix from Equation (5.5).

In Equation (5.5), the B-matrix controls the cointegrating relations, while
the A-matrix controls the adjustments to these over time. It later became
apparent that an unrestrictedA-matrix could lead to complex transitory effects
when reestablishing equilibrium relations, as seen on the dashed lines in
Figure 1. The resulting projections were hard to justify and communicate, and
eventually structural zeros were introduced in A to generate more linear pro-
jections. Allowing only pairwise dependence between parameters also offered
a greater degree of explainability as the forecasting distribution simplified.

The cointegrating relations and the restrictions placed on the A-matrix were
imposed, rather than formally tested. Even though formal testing could be
done using the comprehensive statistical framework developed by Johansen
(1995), it was deemed problematic that the underlying time dynamics could
change annually following data updates as this would destabilize projections
and potentially damage the model’s credibility. Cointegration is therefore used
merely as a modelling tool to achieve reasonable projections, rather than to
gain insights into the joint behaviour of the time-varying mortality indices, see
also Jarner and Jallbjørn (2020) for further discussion on this point.

2.4. Improving the fit

The specification of μ0 in (2.4) was the result of an extensive model search
among “simple” models. At the time, it provided a reasonable fit, but eventu-
ally failed to adequately capture old-age mortality. Generalizations of linear
mortality models typically involve adding a quadratic term to the age effect or
introducing cohort components, see for example Cairns et al. (2009). The nat-
ural candidate to replace (2.4) was therefore the log-quadratic model μ0(t, x)=
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FIGURE 2. Observed (dots) female death rates for select ages with SAINT fits (solid lines) superimposed.
The left panel shows the previous version of SAINT with μ0 as in (2.4), estimated on a dataset with the US
included and the window of calibration starting in 1950. The right panel shows the current version of SAINT
with μ0 as in (2.5), estimated on a dataset with the US excluded and the window of calibration starting in

1970.

exp (αt + βtx+ κtx2). But despite a clearly superior fit, its parameter estimates
turned out exceedingly difficult to forecast.

After further research into the shape of the mortality age profile, the lack
of fit was found to be caused by an inflexibility of (2.4) at the younger ages,
a typical problem when fitting parsimonious models over a large age span. By
replacing the fixed quadratic term in (2.4) with an excess slope parameter, the
low mortality rates of the young were prevented from influencing the trend of
the old. The baseline model therefore became

μ0(t, x)= exp
(̃
αt + β̃tx+ κ̃t(x− 75)1{x≥75}

)
. (2.5)

The model’s parameters are linearized for forecasting purposes through
reparametrization, achieved by setting αt = α̃t + 75β̃t, βt = β̃t + κ̃t, and
κt = −κ̃t whereby

μ0(t, x)= exp
(
αt + βt(x− 75)+ κt(x− 75)1{x<75}

)
. (2.6)

Figure 2 shows the clear improvement in the model’s fit. The fit is particularly
impressive at the higher ages and also matches the logistic type behaviour seen
in the data for the oldest-old as the frailty component comes into play.

2.4.1. Revisiting the reference population and data window
In the original paper, Jarner and Kryger (2011) used an aggregate of interna-
tional data over the years 1933–2005, including, notably, data from the US.
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FIGURE 3. Age 60 actual (dots) and forecasted (lines) period life expectancy using a Lee-Carter model
based on a rolling estimation window.

Following the first version of the stochastic frailty model, the left cut point of
the data window was updated to 1950, while the right cut point was updated
annually to match the most recent available data.

Over the years, it became apparent that the slowdown of the improve-
ment rates in the US had begun to manifest itself in the long-term trend. At
the time, the US constituted more than 40% of the reference population. In
response, an extensive review of the demographic transitions in the Western
world was conducted country for country. This work led to a new paradigm
for putting together a more homogeneous and balanced data pool, neces-
sitating an exclusion of the US. In the new dataset, two mortality regimes
emerged, and, accordingly, the left cut point of the data window was updated
to 1970. We note that other countries have also shown recent stagnating rates
of improvement, for example the UK, but overall there has been a continued
improvement throughout the period, see Figure 3.

3. MODELLING CHANGING RATES OF IMPROVEMENTS

The mortality experience of several countries has shown increasing rates of
improvements for older age groups while rates for younger groups have been
decelerating, see for example Kannisto et al. (1994), Lee and Miller (2001),
Booth et al. (2002), Bongaarts (2005), Li et al. (2013), Vékás (2019). For long-
term projections, in particular, it is important to model these changes to reduce
the risk of underestimating future life expectancy gains.
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3.1. Motivating example

Although a plethora of models for modelling and forecasting mortality have
been proposed in recent years, see for example Booth (2008) and Janssen (2018)
for an overview, the model of Lee and Carter (1992) is still by far the most
widely used. Lee and Carter (1992) model the (observed) death rate, m, at time
t for age x in a log-bilinear fashion

logm(t, x)= ax + bxkt + εt,x, (3.1)

where a and b are age-specific parameters and k is a time-varying index in
which all temporal trends leading to improvements in mortality are encap-
sulated. The k-index is typically modelled as a random walk with drift,
extrapolating the index linearly from the first to the last data point, resulting
in constant rates of improvement in forecasted age-specific mortality.

Figure 3 illustrates the problem with assuming constant rates of improve-
ments in forecasts. The figure shows actual and Lee-Carter forecasted period
remaining life expectancies at age 60 for Western Europe and Denmark.
Except for Western European females, the forecasts vary substantially with
the estimation period due to changing rates of improvement. Moreover, the
forecasts generally underestimate the future gains in life expectancy because
rates of improvement for older age groups tend to increase over time.

This phenomenon is not specific to the Lee-Carter model, but pertains to all
models with constant rates of improvements. Fitting these models to shorter,
more recent periods of data alleviates the downward bias to some extent, but
it does not address the fundamental issue of changing rates. Coherent, multi-
population mortality models, for example the model of Li and Lee (2005), can
in principle produce changing rates of improvement while the individual pop-
ulations “lock on” to common rates of improvement. However, the common
rates are typically constant over time. Thus, coherence in itself does not guar-
antee the type of ongoing change in improvement rates that we advocate. For
a more detailed discussion of coherent models and their pros and cons, see
Jarner and Jallbjørn (2020) and the references therein.

3.2. Frailty theory

Frailty theory rests on the assumption that cohorts are heterogeneous and that
some people are more susceptible to death (frail) than others. The difference in
frailty causes selection effects in the population and leads to old cohorts being
dominated by low mortality individuals.

Frailty theory is well-established in biostatistics and survival analysis, and
several monographs are devoted to the topic, for example Duchateau and
Janssen (2008), Wienke (2010), Hougaard (2012). In demographic and actuar-
ial science, frailty models are also known as heterogeneity models. They have
been used in mortality modelling to fit the logistic form of old-age mortality,
see for exampleWang and Brown (1998), Thatcher (1999), Butt andHaberman
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(2004), Olivieri (2006), Cairns et al. (2006), Spreeuw et al. (2013), Li and Liu
(2019), and to allow for overdispersion in mortality data, cf. Li et al. (2009).
The SAINT model, however, employs frailty theory with the dual purpose of
fitting old-age mortality and generating changing rates of improvement.

Below, we present a flexible class of continuous time models spanning mul-
tiple birth cohorts, with additive frailty and non-frailty components. With
additive models, we can distinguish between “selective” mortality influenced
by frailty and “background” mortality not affected by frailty, for example
accidents. Following Vaupel et al. (1979), individual frailty is a non-negative
stochastic quantity Z that acts multiplicatively on an underlying baseline mor-
tality rate. We assume that frailty is assigned at birth (according to some
distribution) and remains constant throughout an individual’s life span. In this
context, we can interpret frailty as individual (congenital) genetic differences.
Conditionally on frailty being Z, mortality at age x at time t takes the form

μ(t, x|Z)=Zμ0(t, x)+μb(t, x), (3.2)

where μ0 is the baseline rate describing age-period effects influenced by indi-
vidual frailty and μb is background mortality common to all individuals
regardless of their respective frailties.

Equation (3.2) describes the mortality rate of an individual, but this quantity
is not observable in population-level data. In fact, we only observe an aggre-
gate of the death rates. We can derive an explicit expression for this aggregate,
namely the population-level rate, by writing up the survival function

S(t, x)= e−
∫ x
0 μ(t−x+u,u) du =E

[
e−

∫ x
0 μ(t−x+u,u|Z) du

]
(3.3)

and differentiating − log S(t, x) to get

μ(t, x)=E[Z|t, x]μ0(t, x)+μb(t, x). (3.4)

Here, E[Z|t, x] is the mean frailty among the survivors of the cohort born at
time t− x. As a matter of convention, we assume without loss of generality
that mean frailty is one at birth. It is useful to introduce the Laplace transform
L(s)=E[ exp (−sZ)] of the common frailty distribution in which case

E[Z|t, x]= −L′(M0(t, x))
L(M0(t, x))

, (3.5)

whereM0(t, x)=
∫ x
0 μ0(t− x+ u, u) du is the cumulated baseline rate.

So far, the expressions above relating mean frailty to the baseline rate are
standard in survival analysis. For later use, we establish an additional rela-
tionship between mean frailty and the cumulated cohort rate adjusted for
background mortality, namely

M(t, x)=
∫ x

0
(μ(t− x+ u, u)−μb(t− x+ u, u)) du, (3.6)

via its survival function

exp (−M(t, x))= S(t, x)e
∫ x
0 μb(t−x+u,u) du =L(M0(t, x)). (3.7)
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Introducing the function ν( · )= − logL( · ), we have M(t, x)= ν(M0(t, x))
andM0(t, x)= ν−1(M(t, x)) which gives us

E[Z|t, x]= ν′(M0(t, x))= ν′(ν−1(M(t, x))), (3.8)

upon insertion into (3.5).
The relation between mean frailty andmortality described by Equation (3.8)

will be central to our estimation approach. Whereas M0 is given solely in
terms of the baseline rate, M can be estimated using empirical death rates.
Substituting M by such an estimate disentangles the frailty distribution from
the baseline rate which greatly simplifies the estimation procedure whenever
parametric structures have been imposed on μ0 and μb. We return to the
specifics in Section 4.

To apply frailty theory in practice, we must identify suitable choices of
frailty distributions. A brief account of appropriate distributions is given in
Appendix A. Essentially, useful distributions are the ones with an explicit
Laplace transform. The most commonly used distribution is the Gamma dis-
tribution which has a tractable Laplace transform, see Example 4.1, along with
other desirable properties.

3.3. Frailty leads to changing rates of improvements

To clarify how the inclusion of frailty leads to changing rates of improvements,
we define the rate of improvement in selective mortality as

ρs(t, x)= − ∂

∂t
logE[Z|t, x]− ∂

∂t
logμ0(t, x), (3.9)

where ρ0(t, x)= − ∂
∂t logμ0(t, x) is the rate of improvement in baseline

mortality.
Suppose that we model the period effect so that baseline mortality is

decreasing over time, that is, μ0(t, x)→ 0 as t→ ∞ for fixed age x. Then, the
cumulated baseline will also be decreasing over time, that is M0(t, x)→ 0 as
t→ ∞, while the mean frailty in successive cohorts will be increasing over time
due to less and less selection of frail individuals, so E[Z|t, x]→ 1 as t→ ∞.
From (3.9), we see that improvements in cohort mortality are smaller than,
but gradually increasing to, the rate of improvement at the individual level.

This line of thinking offers an explanation to the small improvement rates
observed in old-age mortality, and it suggests that we might expect to see
higher rates of improvements in the future. At old ages where death rates – and
thereby selection – are high, the change in mean frailty over time can substan-
tially offset improvements in baseline mortality. This makes improvements in
observed mortality close to zero, cf. Equation (3.9), a behaviour illustrated in
Figure 4. As improvements in baseline mortality continue to occur at the indi-
vidual level, the selection mechanism gradually weakens and improvements in
observed mortality get closer to the underlying improvement rates. The pattern
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FIGURE 4. Illustration of population-level mortality at age 100 over time. When selection is high, observed
mortality rates do not improve much even though rates are assumed to be decreasing at the individual level.
This is due to improvements in baseline mortality being (partially) offset by increases in mean frailty. As
mean frailty eventually approaches one, observed improvements and improvements in the underlying

mortality are approximately equal.

of gradually changing improvement rates of old-age mortality resembles what
is seen in the data. We will return to this point in Section 5.

3.3.1. The difference between frailty and the traditional cohort perspective
While conditional mean frailty E[Z|t, x] may be regarded as a cohort compo-
nent in the sense that it focuses on the evolution of a cohort through time,
the notion is qualitatively different from the traditional cohort perspective in
mortality modelling. As an illustrative example, consider the cohort extended
Lee-Carter model of Renshaw and Haberman (2006), that is

logμ(t, x)= ax + bxkt + ct−x. (3.10)

The cohort component exp (ct−x) assumes the role of a dummy variable and
offsets mortality by the same factor throughout the life span of individuals
born at time t− x. Although the multiple E[Z|t, x]μ0(t, x) does in principle
contain the structure (3.10) withμ0(t, x)= exp (ax + bxkt) being the Lee-Carter
model, E[Z|t, x] is not constant over time except in degenerate cases. Indeed,
E[Z|t, x] progressively decreases for a given cohort as selection intensifies and
should therefore not be regarded as a cohort component in the traditional
sense.

3.4. Alternative ways of addressing changing improvement rates

With a growing body of empirical evidence against the assumption of con-
stant age-specific rates of improvements, several other approaches have been
developed to address the issue. One suggestion involves finding an “optimal”
calibration period for which model assumptions are not violated. This usually
involves fitting (Lee-Carter) models to shorter and more recent periods of data,
see for example Lee and Miller (2001), Tuljapurkar et al. (2000), Booth et al.
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(2002), Li and Li (2017). For projections over longer horizons, the problem
persists; future increases in especially old-age mortality beyond what has been
seen historically cannot be captured by making an informed decision about the
period of calibration.

Within the Lee-Carter framework, another solution is to extend the orig-
inal model by replacing the time-invariant age-response with a time-varying
version, so instead of Equation (3.1) we would have

logm(t, x)= ax +Bt,xkt + εt,x. (3.11)

A freely varying Bt,x introduces far too many parameters, and some restric-
tions have to be imposed. Li et al. (2013) suggest that Bt,x describe the
“rotating” pattern of mortality improvements, namely that improvement rates
are declining for the young but increasing for the old. Consequently, Equation
(3.11) is sometimes referred to as the rotated Lee-Carter model. Li et al.
(2013) achieve rotation by letting the bx’s from the original model converge
(smoothly) to some assumed long-term target Bx. The approach has since been
adopted and adapted by a number of authors, for example Vékás (2019) and
Gao and Shi (2021).

Another idea is to model and project improvement rates directly as opposed
to projecting death rates, see for example Haberman and Renshaw (2012).
Various forms of projections built from age-specific improvement rates applied
to reference mortality tables are also becoming popular among actuarial prac-
titioners, see for example Jarner andMøller (2015) for a detailed account of the
longevity benchmark employed by the Danish financial supervisory authority
or the model used by the Continuous Mortality Investigation (2016).

The alternative approaches mentioned above each have their own merits as
ways of addressing changing rates of improvements. Frailty, however, has the
unique advantage that it can be introduced into any existing mortality model
to forecast improvement rates higher than those observed historically, while
preserving both the original model structure and the underlying driver of the
system.

4. STOCHASTIC FRAILTY MODELS

In the following, we detail how frailty can be used with any stochastic mortality
model and we show how to estimate and forecast these models. The exten-
sion from deterministic to stochastic frailty is a fundamental point in practical
applications where the ability to describe uncertainty of forecasts is essential
for managing longevity risk.

4.1. Data and terminology

Data are assumed to be on the form of death counts, D(t,x), and corre-
sponding exposures, E(t,x), over time-age cells of the form [t, t+ 1)× [x, x+ 1)
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for a range of calendar years t ∈ {tmin, . . . , tmax} = T ⊆N and ages
x ∈ {xmin, . . . , xmax} =X ⊆N0. From the death counts and risk exposures, we
define the observed (empirical) death rate as the ratio

m(t, x)=D(t, x)/E(t, x). (4.1)

The empirical death rate is a nonparametric estimate of the underlying cohort
rate, μ(t, x), which for modelling purposes is also assumed constant over
[t, t+ 1)× [x, x+ 1).

4.2. Modelling framework

For ease of presentation, we will consider stochastic models for baseline and
background mortality of the form

μ0(t, x)= F(θt, ηx), (4.2)

μb(t, x)=G(ζt, ξx), (4.3)

where F and G are functional forms taking parameters in the age-period
dimension as input. All quantities may be multidimensional, and further gen-
eralizations to include cohort effects and general dependence structures are
possible if so desired. We assume that parameters are to be estimated from
data, but they can also be fixed or empty.

We define a (generalized) stochastic frailty model as a model of the form

D(t, x)∼ Poisson(μ(t, x)E(t, x)), (4.4)

μ(t, x)=E[Z|t, x]μ0(t, x)+μb(t, x), (4.5)

with μ0 and μb given by (4.2)–(4.3) while E[Z|t, x] denotes conditional mean
frailty as in Section 3.2. Note that E[Z|t, x] is now a stochastic quantity since it
depends on μ0. The frailty distribution at birth is the same for all cohorts, and
it is assumed to belong to a family indexed by ψ with Laplace transform Lψ
available in explicit form. The parameters of the model are thus (ψ , θ , η, ζ , ξ )
where all components can be vectors.

Based on (3.8), we can write

μ(t, x)= ν′
ψ (M0(t, x)) F (θt, ηx)+G (ζt, ξx) (4.6)

with νψ ( · )= − logLψ ( · ) and M0(t, x)=∑x−1
u=0 F(θu+t−x, ηx). Inserting the

above into (4.4), all parameters can be estimated jointly from the resulting
likelihood. This likelihood is, however, rather intractable with frailty and
remaining parameters occurring in a complex mix. Consequently, estimation
has to be handled on a case-by-case basis depending on the choice of frailty
distribution and mortality model. Below we propose an alternative, generally
applicable pseudo-likelihood approach which greatly simplifies the estimation
task.
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FIGURE 5. Data are available for years between tmin and tmax and for ages between xmin and xmax. The grey
area below and to the left of the data window illustrates the part of the trajectories needed for calculation of
M̃ that falls outside the data window. The cross-hatched area to the right illustrates the years and ages for

which we wish to forecast mortality.

4.3. Pseudo-likelihood function

We seek to replace the problematic term E[Z|t, x] with an estimate that does
not depend on baseline parameters. From (3.8), we have that E[Z|t, x]=
νψ

′(ν−1
ψ (M(t, x))), where M is the cumulated frailty-dependent part of mor-

tality. At first sight, this does not seem to help much since M is even more
complicated thanM0. However, in contrast toM0 we can obtain an estimate
of M which does not involve the baseline parameters. With a slight abuse
of notation, suppressing the dependency on the background parameters, we
estimateM by

M̃(t, x)=
x−1∑
u=0

m̃(t− x+ u, u), (4.7)

where

m̃(t, x)=

⎧⎪⎪⎨⎪⎪⎩
m(tmin, x)−G(ζtmin , ξx) for xmin ≤ x≤ xmax and t< tmin,

m(t, x)−G(ζt, ξx) for xmin ≤ x≤ xmax and tmin ≤ t≤ tmax,

0 otherwise.
(4.8)

is an extension of the empirical death rates (with background mortality sub-
tracted). The extension is required because the summation in (4.7) falls partly
outside the data window; we need to know the death rates from birth to the
present or maximum age for all cohorts entering the estimation. The gray
area of Figure 5 illustrates the “missing” death rates. The extension implies
that selection prior to tmin has happened according to initial rates (rather than
actual rates) and that all cohorts have mean frailty one at age xmin (rather than
at birth).
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We propose to base estimation of (4.4)–(4.5) on a likelihood function
in which the term E[Z|t, x] is replaced by νψ ′(ν−1

ψ (M̃(t, x))). The resulting
approximate likelihood function is referred to as a pseudo-likelihood function,
cf. Besag (1975), and corresponds to estimating the modified model

D(t, x)∼ Poisson(μ(t, x)E(t, x)), (4.9)

μ(t, x)= ν′
ψ (ν

−1
ψ (M̃(t, x)))F(θt, ηx)+G(ζt, ξx). (4.10)

Importantly, the cohort rate μ is separable in frailty and baseline parameters.
The model is therefore considerably easier to handle than (4.4)–(4.5) in the
sense that joint estimation can be based on marginal estimation procedures for
the baseline and background intensities, μ0 and μb. Equation (4.10) might still
look daunting, but it simplifies in specific cases.

Example 4.1 When Z follows a Gamma distribution with mean one and
variance σ 2, the Laplace transform and conditional mean frailty are
given by

L(s)=
(
1+ σ 2s

)−1/σ 2

, (4.11)

E[Z|t, x]=
(
1+ σ 2M0(t, x)

)−1 = exp
(
−σ 2M(t, x)

)
, (4.12)

whereby Equation (4.10) reads

μ(t, x)= exp
(
−σ 2M̃(t, x)

)
F(θt, ηx)+G(ζt, ξx). (4.13)

4.4. Maximum likelihood estimation

Maximum likelihood estimates of the model (4.9)–(4.10) can be obtained by
optimizing the profile (pseudo) log-likelihood function,

�(ψ)= logL
(
ψ , θ̂ (ψ), η̂(ψ), ζ̂ (ψ), ξ̂ (ψ)

)
, (4.14)

where L is the likelihood resulting from (4.9)–(4.10) and θ̂ (ψ), η̂(ψ), ζ̂ (ψ) and
ξ̂ (ψ) denote the maximum likelihood estimates for fixed value of ψ . Since the
frailty family is typically of low dimension, the profile log-likelihood function
can usually be optimized reliably by general purpose optimization routines.
This is particularly simple when μb(t, x)= 0 for all t ∈ T and x ∈X .

In the general setting with non-zero background mortality, the model
describes a situation of competing risks. The interpretation is that individu-
als of age x at time t are susceptible to death from two different, mutually
exclusive sources with intensities μs and μb. This structure is natural to con-
sider in many contexts, but the likelihood function is complicated and direct
estimation of the parameters may prove difficult even for fixed ψ .
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Assuming that we have separate routines available for estimating the base-
line and background mortality models, we can exploit the additive structure of
(4.9)–(4.10) using the EM algorithm of Dempster et al. (1977). It can be shown
that the likelihood is increased in each step of the EM algorithm and thus con-
verges to a local maximum, although it may do so rather slowly. It is, however,
a great advantage that we can use the same top-level procedure to estimate
virtually any combination of mortality models, especially when estimation rou-
tines for the underlying models are readily available. It is also straightforward
to extend the EM algorithm to more than two competing risks.

Alternatively, if computational efficiency is essential, we can carry out
estimation by Newton-Raphson sweeps over frailty and mortality model
parameters, but this requires a substantial amount of tailor-made code. We
find that optimizing the log-likelihood using the EM algorithm is both flexible,
easy to implement and in our experience sufficiently fast and robust to be of
practical use. The algorithm is detailed in Appendix B.

4.5. Forecasting

Suppose that we have estimates (ψ̂ , θ̂ , η̂, ζ̂ , ξ̂ ) available. Following the usual
approach in stochastic mortality modelling, death rates are to be projected
using a time-series model for the time-varying parameters {θt, ζt}t∈T . Typically,
a (multidimensional) random walk with drift is used, see for example Lee and
Carter (1992) or Cairns et al. (2006), but models with more complex struc-
ture can also be applied. Let an overbar denote projected parameters and
assume that these are available for t ∈ {tmax + 1, . . . , tmax + h} given a forecast-
ing horizon h ∈N+. The forecast region is illustrated as the cross-hatched box
in Figure 5.

Baseline and background mortality rates are readily projected by inserting
θ̄t and η̂x into (4.2) and ζ̄t and ξ̂x into (4.3). Forecasting mean frailty is slightly
more involved.We notice that while it was convenient to specify mean frailty in
terms ofM for estimation purposes, it is practical to express it in terms ofM0
when forecasting, because M0 can be computed directly from F throughout
the forecast region. Mortality is thus projected via

μ(t, x)= ν′
ψ̂

(
M̃0(t, x)

)
F
(
θ̄t, η̂x

)+G
(
ζ̄t, ξ̂x

)
, (4.15)

where M̃0(t, x) in the forecast region is given by the recursion

M̃0(t, x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M̃0 (tmax, x− 1)+ F

(
θ̂tmax , η̂x−1

)
for xmin < x and tmax + 1= t,

M̃0(t− 1, x− 1)+ F
(
θ̄tmax , η̂x−1

)
for xmin < x and tmax + 1< t,

0 for xmin = x.
(4.16)
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We underline that G does not enter M̃0 in the forecast, whereas in the
data window M̃0 is defined by the transformation M̃0(t, x)= ν−1

ψ̂
(M̃(t, x)) to

ensure consistency with the estimated model.

Example 4.2 Continuing Example 4.1 where frailty is Gamma distributed with
mean one and estimated variance σ̂ 2, we get using (4.12) in conjunction with
(4.15) that mortality should be forecasted via

μ(t, x)=
(
1+ σ̂ 2M̃0(t, x)

)−1
F(θ̄ , η̂x)+G(ζ̄t, ξ̂x), (4.17)

with M̃0 given by (4.16) in the forecast region. In the data window, M̃0(t, x)
can be expressed as M̃0(t, x)= [ exp (σ̂ 2M̃(t, x))− 1]/σ̂ 2 using (4.12).

5. AN APPLICATION TO INTERNATIONAL MORTALITY

We consider the implementation of the stochastic frailty model currently used
at ATP and make comparisons to the usual Lee-Carter methodology. The
application is based on mortality data retrieved from the Human Mortality
Database (2021). To allow the reader to reproduce the results, we use Danish
data to model the spread, rather than proprietary ATP data. Sections 5.1–5.3
cover reference population mortality, while Section 5.4 discusses spread mod-
elling for target population mortality.

5.1. An international reference trend

The reference mortality trend, denoted μref, belongs to the class of stochas-
tic frailty models (4.2)–(4.3) and is gender-specific although this is not shown
explicitly in the notation. The model assumes Gamma distributed frailty with
mean one and variance σ 2 and takes the functional form

μref(t, x)= exp
(
−σ 2M̃(t, x)

)
μ0(t, x)+μb(t), (5.1)

μ0(t, x)= exp
(
αt + βt(x− 75)+ κt(x− 75)1{x<75}

)
, (5.2)

μb(t)= exp (ζt) . (5.3)

In (5.1), the variance of the frailty distribution expresses the amount of hetero-
geneity in the population, but since any estimate depends on the choice of μ0,
the quantity can only be interpreted in a model-specific context. On the other
hand, its influence on the mortality curve is clear. If death rates increase with
age, the function x �→ exp (−σ 2M̃(t, x)) decreases from one towards zero and
describes how μ0 is “dragged” down by the frailty component. If σ 2 is close
to zero, then mean frailty is close to one for all ages. As the variance grows,
the decline in mean frailty steepens. This drags down the old-age part of the
mortality curve and eventually so much that the rates fall into a decline.
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5.1.1. A Lee-Carter baseline?
Instead of the Gompertzian model applied in (5.2), one could use a Lee-Carter
model for μ0, see Jarner (2014) for such an application. However, we find that
the parametric structure in (5.2) is favourable in terms of stability and preserv-
ing the overall structure of the data and, in particular, smooth and increasing
age-profiles, which is not guaranteed in long-term Lee-Carter forecasts.

Moreover, the parameters of the Lee-Carter model are not identifiable
without additional constraints which precludes the use of more flexible time
dynamics such as error-correction models, a limitation the parametric (identi-
fiable) structure does not have, see for example Hunt and Blake (2017a) and
Jarner and Jallbjørn (2020) for a detailed discussion.

Lastly, unlike the parametric form (5.2) that readily expands in the age
dimension, that is the model extends to ages not part of the estimation, the
Lee-Carter model applies only to the age span used in the calibration. This is a
pronounced problem at the highest ages where data are often sparse. To obtain
reliable and stable rates in both model and forecasts, one typically employs a
Kannisto extension (Kannisto et al., 1994), or a similar procedure, for example
the methods discussed in Pitacco et al. (2009), for the oldest-old. Irrespective
of the extrapolation procedure, the coupling of two separate models adds an
additional layer of complexity and defeats part of the purpose for introducing
frailty, namely to capture the logistic type old-age mortality behaviour seen in
the data.

5.1.2. Selecting a suitable reference population
To establish an international reference population, we have to decide on a
suitable list of countries to use. While all countries appear to follow the same
long-term trend, mortality improvements occur at different times for individ-
ual countries and variation in improvement rates differ as well. Ideally, the
reference trend should consist of countries that reflect the prevalent mortal-
ity regime, but their historical development ought to be comparable as well.
That is, the countries chosen ought to have undergone the same stages of
demographic transition at roughly the same time.

It proves quite difficult to find a set of rules for selecting countries satisfying
these broad criteria. Kjærgaard et al. (2016) propose an out-of-sample selec-
tion criterion as a way of constructing an “optimal” set of countries. Others
have established hard inclusion criteria based on various socio-demographic-
indicators, for example the Dutch actuarial society who base their official
projections on a peer group of all European countries with a per capita GDP
above the European average (Antonio et al. 2017).

We remain agnostic with regard to specific rules. Having populations enter-
ing or leaving the data pool following (annual) data updates is almost certainly
bound to cause problems in terms of model stability. Our advice is to choose
a wide range of countries with the intention of sticking with them in the long
term. With an outset in the countries available from the Human Mortality
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Database and excluding countries only if they clearly violate the criteria above,
we are left with primarily the western part of Europe. In particular, the SAINT
model is currently based on pooled data from the following 18 countries:
Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany
(West), Iceland, Italy, Luxembourg, Netherlands, Norway, Scotland, Spain,
Sweden, Switzerland and UK (England and Wales).

5.2. Time dynamics

The SAINT model (5.2)–(5.3) has four time-varying parameters that need to
be forecasted (for each sex). The Makeham component ζ and the excess slope
κ are nuisance parameters included in the model to add sufficient flexibility
to fit the historical data and to enhance interpretability of the level α and the
slope β. Even though {ζt}t∈T and {κt}t∈T appear non-stationary, see Figure 6,
modelling their trending behaviour has little effect on mortality projections.
Striking a compromise between model complexity and performance, we fore-
cast these parameters using a random walk without drift, so for any horizon
h ∈N0 we have

κtmax+h|κtmax ∼N
(
κtmax , hσ

2
κ

)
and ζtmax+h|ζtmax ∼N

(
ζtmax , hσ

2
ζ

)
, (5.4)

where σκ , σζ ∈R+.
Projecting {αt, βt} is a more delicate task. In particular, some thought

should go into the joint behaviour of the gender-specific forecasts. It is a well-
established fact that women live longer than men and while this gender gap
varies over time it is believed to persist. Since forecasting even closely related
populations independently will lead to diverging forecasts, cf. Tuljapurkar
et al. (2000), we must deal with the problem through joint modelling in order
not to have undesirable scenarios such as projecting men to live longer than
women.

5.2.1. An error-correction model
To ensure that female and male parameters “stay together,” not just in a
median forecast but also for every stochastic realization, we need parameters
to cointegrate, that is a given linear combination of them should be stationary.
This is achieved by forecasting from the error-correction model

�Yt =AB�Yt−1 +C +ωt, (5.5)
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where ωt
iid∼ N4(0,�), �Yt =Yt −Yt−1 and

Yt =

⎛⎜⎜⎜⎜⎝
α
f
t

αmt

β
f
t

βmt

⎞⎟⎟⎟⎟⎠ , A=

⎛⎜⎜⎜⎝
a11 0

a21 0

0 a32
0 a42

⎞⎟⎟⎟⎠ , B=

⎛⎜⎜⎜⎝
1 0

−1 0

0 1

0 −1

⎞⎟⎟⎟⎠ , C =

⎛⎜⎜⎜⎝
c1
c2
c3
c4

⎞⎟⎟⎟⎠ , (5.6)

with superscript f and m denoting female and male parameter values, respec-
tively. Equation (5.6) contains two critical assumptions:

1. Structural zero’s have been placed in the A-matrix making parameter
pairs weakly exogenous, so that the relation between the α’s will not
affect the relation between the β’s and vice versa.

2. The B-matrix imposes two cointegrating relations, one between each
parameter pair, with coefficients of unity so that the model corrects any
disequilibrium that may arise in the difference between the parameters.

The error-correction behaviour of (5.5) can be made more precise by decom-
posing the drift term. For a p× q matrix X of full rank, we say that another
matrix X⊥ of full rank and dimension p× (p− q) such that X�X⊥ = 0 is
its orthogonal complement. With M =A(B�A)−1B�, it can be shown that
I −M =B⊥(A�⊥B⊥)−1A�⊥, cf. Chapter 3 of Johansen (1995). Using this iden-
tity, we can rewrite (5.5) so that

�Yt =A
(
B�Yt−1 −CD

)
+C� +ωt, (5.7)

where CD = −(B�A)−1B�C = (CDα ,CDβ )� is the parameter difference in
stationarity with CDα = c1−c2

a21−a11 and CDβ = c3−c4
a42−a32 , while C� = (I −M)C =

(C�α ,C�α ,C�β ,C�β )
� is the common drift with C�α = a21c1−a11c2

a21−a11 and C�β =
a42c3−a32c4
a42−a32 . From Equation (5.7), it is clear Yt is updated in response to the dis-

equilibrium error B�Yt−1 −CD with a force depending on the magnitude of
the a’s.

An explicit representation of the (median) forecast for a horizon h ∈N0 can
be discerned via the Granger representation theorem, see for example Jarner
and Jallbjørn (2020). We have

E
[
Ytmax+h|Ytmax

]=Ytmax +C�h

−A
(
B�A

)−1
(
1− λhα 0

0 1− λhβ

) (
B�Ytmax −CD

)
,

(5.8)

where λα = 1+ a11 − a21 and λβ = 1+ a32 − a42 are eigenvalues of I +AB�.
Equation (5.8) highlights the asymptotic random walk behaviour, with the
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initial disequilibrium error decaying exponentially to zero provided that
λα, λβ < 1.

Writing out the error-correction behaviour helps us identify means of ensur-
ing stable and robust forecasts. With this aim in mind, adjusting CD and C� to
equal desired long-term values might be preferable compared to unconstrained
estimation. Equation (5.8) details how the target equilibrium may severely
affect projections. It shows that the error-correction model can bring about a
number of undesirable features in the median forecast, like short- to medium-
term increases in mortality for one of the genders during the restoration of
the equilibrium. It is difficult to justify such behaviours in best estimate pro-
jections. To avoid them, we assume that B�Yt is distributed according to its
stationary distribution by equating CD to the difference between jump-off val-
ues, namely ĈDθ = θ̂

f
tmax

− θ̂mtmax
where θ is either α or β. This makes the median

forecast of the error-correction model coincide with the median forecast of
a random walk model, since the ultimate term in (5.8) vanishes. The error-
correction interpretation still applies, however, when considering a stochastic
realization of the process. Moreover, looking at the evolution of mortality
through the years, for example Figure 3, it is clear that female mortality has
developed more steadily than mortality for the males. We therefore use the
empirical average of the female parameters to model the common slope, that
is Ĉ�θ = 1

tmax−tmin+1

∑
t �θ̂

f
t where θ is either α or β.

5.3. Model fit and forecast

Since international mortality develops more steadily than country-specific
mortality, we are able to use a relatively wide window of data for model
calibration. The endpoints should be chosen such that we do not introduce
structural breaks if data for some countries are missing. Balancing these con-
cerns, we apply the model to international mortality data, ages 20–100 and
calendar years 1970–2017 with 2017 being the last year where data exist for
all the countries considered at the time of writing. The model is estimated
separately for females and males, and follows the EM algorithm described in
Appendix B.

The estimated parameters of the SAINT model (5.2)–(5.3) are shown in
Figure 6. To justify the use of the error-correction model (5.5), the series
{αt}t∈T and {βt}t∈T must be integrated of order 1 for both genders, that is the
stochastic part of these processes must be non-stationary. We conclude from
unit root tests (test results not shown) that this is indeed the case. Further, we
take the observed stable difference between parameters as (weak) evidence that
they engage in an equilibrium correcting relationship.

In mortality forecasting applications, the choice of jump-off point is a key
consideration to match the start of the projection with recently observed data
(Lee and Miller 2001). Because the SAINT model fits the empirical death
rates very well, cf. Figure 2, no jump-off correction is needed and we use the
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FIGURE 6. Estimated parameters for baseline (5.2) and background (5.3) mortality in the SAINT model.

model values in the jump-off year to determine the jump-off rates. Moreover,
the Poisson assumption (4.4) ensures that the model approximates the total
number of deaths in the data, see also the discussion in Brouhns et al. (2002).

5.3.1. Comparing SAINT and Lee-Carter forecasts
To put forecasting into perspective, the SAINT projections are compared to
projections generated by a Lee-Carter model. The Lee-Carter model is, in the
spirit of this paper, estimated under the Poisson assumption as in Brouhns
et al. (2002), and we use a random walk with drift for forecasting as is cus-
tomary. Extrapolating the time-varying index linearly implies that age-specific
death rates decay exponentially at a constant rate. We shall see that this
assumption causes forecasts based on the Lee-Carter methodology to have a
tendency of underestimating the actual gains in old-age mortality. The purpose
of the comparison is not to show superiority of SAINT over other models, but
to illustrate the beneficial effects of cointegration and frailty.

Forecasts are compared by considering period life expectancies. While
cohort life expectancies taking future improvements of mortality into account
are generally of more interest, the period life expectancy summarizes the level
of mortality at a given time and is better suited for illustrative purposes as it
can be compared with the actual experience. Recently, Arnold et al. (2019)
added perspective on the stability of period versus cohort tables, arguing that
the former might be preferable for practitioners looking to minimize capital
adjustments following life tables updates.

Historical and forecasted life expectancies of a 60-year-old are shown in
Figure 7. The figure shows that both models produce highly similar median
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FIGURE 7. The panels show actual (dots) and forecasted (lines) remaining life expectancies for age 60
females and males with pointwise 95% confidence bands based on expanding estimation windows. Even
though a rolling fixed-length data window is a more common back test approach in the literature, an

expanding data window corresponds to how a mortality model is typically updated in practice.

forecasts for female life expectancy and that predictions are quite robust to the
choice of the data window used to calibrate the model. This similarity can be
attributed to the stable rates of improvements observed since the 1970s. For the
males, however, the improvement rates considered during the period of estima-
tion are considerably lower than the actual rates in the periods that follow. The
Lee-Carter model fails to capture this development, and the median forecasts
are a good way from agreeing with the actual experience. Since improvement
rates are increasing over time, predictions from the Lee-Carter model grow
increasingly optimistic as we include more recent data.

The SAINT model lends its strength in the stable female improvement rates
by the coupling of the genders described in Section 5.2. This leads to the fore-
casts being decidedly more robust to the choice of estimation period, and
the resulting almost linear median life expectancy projections resemble the
actual experience better than the scattered Lee-Carter forecasts. In fact, it is
quite remarkable how well even the first SAINT forecast based on 1970-1989
predicts present day male life expectancy.

To contrast the forecasting uncertainty of the two methods, Table 1 reports
summary statistics for the projected life time distributions based on 10,000 sim-
ulations. Both the table and the figure reveal that there is a major difference
in the forecasting uncertainty between the two methods, even when point esti-
mates are similar. It is evident that the uncertainty is greatest in the SAINT
model, while it is, at least with hindsight, worryingly low for the Lee-Carter
model. Specifically for the males using the two earliest calibrations, we get no
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TABLE 1.

EMPIRICAL MEAN (AND STANDARD DEVIATION IN PARENTHESES) OF PROJECTED PERIOD LIFE
EXPECTANCIES FOR A 60-YEAR-OLD BASED ON 10,000 SIMULATIONS FOR SELECT YEARS.

Female Male

Model 2020 2040 2060 2020 2040 2060

Calibration period: 1970–1989
Lee-Carter 27.01 (0.54) 29.50 (0.62) 31.74 (0.65) 21.63 (0.38) 23.73 (0.46) 25.71 (0.51)
SAINT 27.06 (0.81) 29.38 (1.15) 31.40 (1.47) 23.46 (0.76) 26.35 (1.14) 28.88 (1.51)

Calibration period: 1970–1999
Lee-Carter 26.73 (0.41) 29.04 (0.49) 31.04 (0.52) 22.18 (0.31) 24.39 (0.40) 26.36 (0.43)
SAINT 26.86 (0.53) 29.22 (0.78) 31.26 (1.07) 23.12 (0.53) 26.04 (0.90) 28.65 (1.49)

Calibration period: 1970–2017
Lee-Carter 26.72 (0.22) 29.02 (0.52) 31.01 (0.61) 23.28 (0.16) 25.83 (0.40) 28.04 (0.47)
SAINT 26.75 (0.25) 29.31 (0.71) 31.51 (1.00) 23.39 (0.25) 26.44 (0.71) 29.09 (1.04)

warning that the projections might be well off target; the models do not cap-
ture the final years of observed data, let alone the 1970–2017 model’s median
projection, within their 95%-confidence bands.

Figure 8 compares the average improvement rates over a long horizon for
select high ages. For the females, improvement rates are similar in both mod-
els over the short term; the height of the light-red bars align with the dashed
lines. On longer horizons, however, the SAINT model gives rise to increasing
rates of improvements endogenously within the model as the frailty compo-
sition changes over time. The Lee-Carter model and many of its descendants
cannot predict rates of improvements higher than those observed historically
and are therefore likely to be understating future increases in old-age mortality,
even for large and stable datasets. In fact, the likeness between forecasts seen in
Figure 7 is deceptive; the cohort life expectancy for a newborn female in 2017 is
94.81 years in the SAINT model, but nearly 2 years less in the Lee-Carter pre-
diction at 92.96 years. For the males, the overall level of the improvement rates
is higher in the SAINT forecast as a result of the genders being tied together
compared to the Lee-Carter predictions where this is not so.

5.4. Spread modelling

Given an underlying model for reference population mortality, we model mor-
tality in the target population as deviations from the trend. As the name
suggests, the trend should capture the main features of the mortality evolution
and the spread should therefore be a model flexible enough to adequately fit
observed mortality in the target population but introduce as little complexity
as possible.
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FIGURE 8. The panels show predicted average rates of improvement for select ages using the SAINT model
estimated on the full data period 1970–2017. Female rates are shown in the left panel and male rates in the
right. The corresponding improvement rates for the Lee-Carter model are superimposed as the dashed lines.

Since Plat (2009), common practice is to take a regression approach using a
linear structure

Dtarget(t, x)∼ Poisson
(
μtarget(t, x)Etarget(t, x)

)
, (5.9)

μtarget(t, x)=μref(t, x) exp
(
y�
t rx

)
, (5.10)

with parameters yt = (y1,t, . . . , yp,t)� ∈R
p describing the evolution of the

spread over time and age-dependent regressors rx = (r1,x, . . . , rp,x)� ∈R
p. Any

standard GLM-routine can be used to fit the model by specifying a Poisson
family with a log-link.

The original version of SAINT used a parsimonious model for the spread
describing just its level, slope and curvature. While this model performed
respectably, it became clear from a practical point of view that the fit of tar-
get population mortality was simply unconvincing when plotted on log-scale
against empirical data, a plot frequently reported to the FSA and the Board
of Representatives. To improve the fit, the three regressor model was replaced
with a five regressor model

ri,x =min (1, max (0, xi − x)/20), i ∈ {1, . . . , 5}, (5.11)

where (x1, x2, x3, x4, x5)= (40, 60, 80, 100, 120), so that regressors are one until
a given breakpoint after which they decrease linearly to zero over the course of
20 years. Even though a model with evenly spaced knots has obvious practical
advantages, there are now methods available to explore the optimal choice
of the number and location of the knots in spline models, see Kaishev et al.
(2016). The chief reason for choosing the regressors above is that r2,x, r3,x, and
r4,x are equivalent to the three regressor model specified by the Danish FSA
for their longevity benchmark, cf. Jarner andMøller (2015), giving credence to
the credibility of (5.11) in the eyes of the regulator.
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FIGURE 9. Actual and forecasted remaining period life expectancy for a 60-year-old.

5.4.1. Spread forecast
Since it is the trend that governs long-term mortality behaviour, the time
dynamics used for forecasting should ensure that the spread remains bounded
in probability. We use a (stable) vector autoregressive model,

yt =Ayt−1 + υt, (5.12)

with A being a p× p matrix and υt mean-zero Gaussian errors. We note that
even if data appear stationary, for example Figure 9, maximum likelihood esti-
mation of the VAR-model (5.12) does not necessarily yield stationarity and
more sophisticated models, for example including additional lags, may have to
be used. Alternatively, stationarity can be imposed by putting a curb on the
eigenvalues of A such that they lie within the unit circle.

In practice, restricting A to be a diagonal matrix with diagonal elements
0≤Aii < 1, works well in terms of stability and is easy to communicate to
non-specialists as deviation half-life. For instance, the Danish mortality curve
moves more or less in unison with the international trend and there are no
signs of an impending catch-up. Simply imposing A= 0.99I , with I being the
identity matrix of size p, corresponds to a deviation half-life of about 69 years
and results in the forecast depicted in Figure 9.

The figure epitomizes the advantage of the SAINT projection methodology.
In a typical country-specific projection, exemplified by the Lee-Carter forecast,
the recent stagnation in Danish life expectancy makes the data window a criti-
cal component of the analysis. The Lee-Carter model extrapolates past trends,
and even if based on very recent data periods, it is likely to understate future
improvements in especially old-age mortality. Using the SAINTmethodology,
the long-term trend is determined by a large pooled set of countries which
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serves as a stable reference for small populations that exhibit substantial vari-
ability. Rather than basing long-term projections on irregular national rates of
improvements, we can frame the development as short- to medium-term devi-
ations from the trend. Having a point of reference also makes it possible – even
for non-specialists – to visually gauge if the projection is reasonable.

Although only the Danish data are modelled here, the SAINT framework is
easily adapted to other populations of interest. All that is required is a sep-
arate VAR model for the spread between the (new) target population and
the trend. The assumed stationarity of the spread will ensure that deviations
from the trend are bounded. Multi-population analyses will therefore not
exaggerate short-term differences or lead to diverging projections. All in all
the SAINT methodology opens for a unified, flexible and robust forecasting
approach, which is applicable to a wide range of populations despite their
possibly unsteady development.

6. CONCLUDING REMARKS

A large and growing body of literature focuses on theoretical properties of
mortality models and achieving accurate mortality forecasts. However, there
are a number of desirable model properties besides theoretical ones that deter-
mine the success and applicability of a mortality model in practice. In this
paper, we reviewed the lessons learned from more than a decade of experi-
ence with the SAINT model in use at ATP and the model modifications that
have followed.

The main improvement over the original SAINT model was the general-
ization of frailty models from deterministic structures to a flexible class of
stochastic mortality models, offering a general way of combining essentially
any mortality model with frailty. This sets the work apart from the typi-
cal use of frailty which rely on matching parametric forms with closed-form
expressions. We demonstrated how frailty extended mortality models dra-
matically improve the historical fit of even simple age-period structures and
provide more realistic projections of improvement patterns on longer horizons.
Obviously, frailty on its own is not enough to explain the complex dynamics of
mortality, but helps capture essential features observed in the data otherwise
addressed by ad hoc methods.

Although the original SAINT model was explicitly designed with stability
in mind, we underestimated the effect that annual data updates could have on
best estimate projections. This lack of robustness was primarily rooted in the
model’s time dynamics whose parameters were estimated freely. In the trend,
the long-run equilibrium relation between male and female mortality was
overly sensitive to small changes in observed patterns, while the autoregres-
sive model used to forecast the spread between reference and target population
mortality did not guarantee stationarity. The issues were resolved by imposing
sensible structural restrictions on the time dynamics of the model.
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Even with well-behaved time dynamics, model stability is still challenged
by outliers. In light of the COVID-19 crisis, it may not come as a surprise
that a reference population – even when built from a large and geographi-
cally dispersed group of countries – will not guarantee stability under annual
data updates. Nevertheless, we were taken by surprise by how deeply events
like severe flu seasons impact reference mortality levels. Because of our glob-
ally connected world, infectious disease outbreaks cannot be diversified away
by simply adding more countries to the data pool. We expect these types of
fluctuations to be temporary rather than part of a lasting trend and measures
to dampen their effect are indispensable in practical applications. This is an
important issue for future research.

While accuracy, stability and flexibility requirements all pertain to model
performance, there are certain properties in practical applications that do not.
Governance rules entail an obligation on the part of the modeller to report,
explain and justify outputs, some of which might not even have any direct
practical implication, for example, in a pension fund context, how fitted death
rates among the very young compare to actual rates. A poor fit in this age
group will not affect the calculation of technical provisions in any way but
may seriously detract from the model’s credibility in the eyes of non-specialists.
As modellers, we should be aware of this, partly external, desire for model
explainability.

ACKNOWLEDGEMENTS

The authors are indebted to Esben Masotti Kryger for numerous stimulating
discussions. The authors wish to thank two anonymous referees for their valu-
able input which helped improve the manuscript. The work was partly funded
by Innovation Fund Denmark (IFD) under File No. 9065-00135B.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit https://doi.org/
10.1017/asb.2021.37.

REFERENCES

ABBRING, J. and VAN DEN BERG, G. (2007) The unobserved heterogeneity distribution in
duration analysis. Biometrika, 94(1), 87–99.

ANTONIO, K., DEVRIENDT, S., BOER, W., VRIES, R., WAEGENAERE, A., KAN, H.-K.,
KROMME, E., OUBURG, W., SCHULTEIS, T., SLAGTER, E., WINDEN, M., IERSEL, C. and
VELLEKOOP, M. (2017) Producing the Dutch and Belgian mortality projections: A stochastic
multi-population standard. European Actuarial Journal, 7(2), 297–336.

ARNOLD, S., JIJIIE, A., JONDEAU, E. and ROCKINGER, M. (2019) Periodic or generational
actuarial tables: Which one to choose? European Actuarial Journal, 9(2), 519–554.

https://doi.org/10.1017/asb.2021.37 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.37
https://doi.org/10.1017/asb.2021.37
https://doi.org/10.1017/asb.2021.37


512 THE SAINTMODEL: A DECADE LATER

BESAG, J. (1975) Statistical analysis of non-lattice data. Journal of the Royal Statistical Society:
Series D (The Statistician), 24(3), 179–195.

BONGAARTS, J. (2005) Long-range trends in adult mortality: Models and projection methods.
Demography, 42(1), 23–49.

BOOTH, H. (2008)Mortality modelling and forecasting: A review of methods.Annals of Actuarial
Science, 3(1–2), 3–43.

BOOTH, H., MAINDONALD, J. and SMITH, L. (2002) Applying Lee-Carter under conditions of
variable mortality decline. Population Studies, 56(3), 325–336.

BÖRGER, M., FLEISCHER, D. and KUKSIN, N. (2014) Modeling the mortality trend under
modern solvency regimes. ASTIN Bulletin, 44(1), 1–38.

BROUHNS, N., DENUIT, M. and VERMUNT, J.K. (2002) A Poisson log-bilinear regression
approach to the construction of projected lifetables. Insurance Mathematics and Economics,
31(3), 373–393.

BUTT, Z. and HABERMAN, S. (2004) Application of frailty-based mortality models using
generalized linear models. ASTIN Bulletin, 34(1), 175–197.

CAIRNS, A., BLAKE, D., DOWD, K., COUGHLAN, G., EPSTEIN, D., ONG, A. and BALEVICH,
I. (2009) A quantitative comparison of stochastic mortality models using data from England
& Wales and the United States. North American Actuarial Journal, 13, 1–35.

CAIRNS, A.J., BLAKE, D., DOWD, K., COUGHLAN, G.D. and KHALAF-ALLAH, M. (2011)
Bayesian stochastic mortality modelling for two populations. ASTIN Bulletin, 41(1), 29–59.

CAIRNS, A.J.G., BLAKE, D. and DOWD, K. (2006) A two-factor model for stochastic mortal-
ity with parameter uncertainty: Theory and calibration. Journal of Risk and Insurance, 73(4),
687–718.

Continuous Mortality Investigation (2016) CMI Mortality Projections Model-Working
Paper 90. Technical report, Institute and Faculty of Actuaries. https://www.actuaries.org.uk/
system/files/field/document/CMI%20WP090%20v03%202016-08-31%20-%20CMI%20Model%
20consultation.pdf.

DEMPSTER, A.P., LAIRD, N.M. and RUBIN, D.B. (1977) Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological),
39(1), 1–22.

DOWD, K., CAIRNS, A.J.G., BLAKE, D., COUGHLAN, G.D. and KHALAF-ALLAH, M. (2011)
A gravity model of mortality rates for two related populations. North American Actuarial
Journal, 15(2), 334–356.

DUCHATEAU, L. and JANSSEN, P. (2008) The Frailty Model, 1st ed. Statistics for Biology and
Health. New York, NY: Springer.

GAO, G. and SHI, Y. (2021) Age-Coherent extensions of the Lee–Carter model. Scandinavian
Actuarial Journal, 2021(10), 1–19.

HABERMAN, S. and RENSHAW, A. (2012) Parametric mortality improvement rate modelling
and projecting. Insurance: Mathematics and Economics, 50(3), 309–333.

HOUGAARD, P. (1984) Life table methods for heterogeneous populations: Distributions describ-
ing the heterogeneity. Biometrika, 71(1), 75–83.

HOUGAARD, P. (1986) Survival models for heterogeneous populations derived from stable
distributions. Biometrika, 73(2), 387–396.

HOUGAARD, P. (2012) Analysis of Multivariate Survival Data. Berlin: Springer Science &
Business Media.

Human Mortality Database (2021) http://www.mortality.org. University of California, Berkeley
(USA), and Max Planck Institute for Demographic Research (Germany). Data downloaded
May 2021.

HUNT, A. and BLAKE, D. (2017a) Identifiability, cointegration and the gravity model. Insurance:
Mathematics and Economics, 78, 360–368.

HUNT, A. and BLAKE, D. (2017b) Modelling mortality for pension schemes. ASTIN Bulletin,
47(2), 601–629.

JANSSEN, F. (2018) Advances in mortality forecasting: Introduction. Genus, 74(1), 1–12.
JARNER, S.F. (2014) Stochastic frailty models for modeling and forecasting mortality. arXiv

preprint arXiv:2109.02584, pp. 1–37.

https://doi.org/10.1017/asb.2021.37 Published online by Cambridge University Press

https://www.actuaries.org.uk/system/files/field/document/CMI%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20WP090%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20v03%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}202016-08-31%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20-%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20CMI%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20Model%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20consultation.pdf
https://www.actuaries.org.uk/system/files/field/document/CMI%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20WP090%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20v03%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}202016-08-31%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20-%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20CMI%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20Model%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20consultation.pdf
https://www.actuaries.org.uk/system/files/field/document/CMI%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20WP090%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20v03%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}202016-08-31%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20-%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20CMI%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20Model%\gdef  \ignorespaces {%}\gdef no{no}\gdef yes{yes}20consultation.pdf
http://www.mortality.org
https://doi.org/10.1017/asb.2021.37


S. F. JARNER AND S. JALLBJØRN 513

JARNER, S.F. and JALLBJØRN, S. (2020) Pitfalls and merits of cointegration-based mortality
models. Insurance: Mathematics and Economics, 90, 80–93.

JARNER, S.F. and KRYGER, E. (2011) Modelling adult mortality in small populations: The
SAINT model. ASTIN Bulletin, 41, 377–418.

JARNER, S.F. and MØLLER, T. (2015) A partial internal model for longevity risk. Scandinavian
Actuarial Journal, 2015(4), 352–382.

JOHANSEN, S. (1995) Likelihood-Based Inference in Cointegrated Vector Autoregressive Models.
Oxford University Press.

KAISHEV, V., DIMITROVA, D., HABERMAN, S. and VERRALL, R. (2016) Geometrically
designed, variable knot regression splines. Computational Statistics, 31(3), 1079–1105.

KANNISTO, V., LAURITSEN, J., THATCHER, A.R. and VAUPEL, J.W. (1994) Reductions in
mortality at advanced ages: Several decades of evidence from 27 countries. Population and
Development Review, 20(4), 793–810.

KJÆRGAARD, S., CANUDAS-ROMO, V. and VAUPEL, J. (2016) The importance of the reference
populations for coherent mortality forecasting models. European Population Conference;
Conference date: 31-08-2016 Through 03-09-2016.

LEE, R. and MILLER, T. (2001) Evaluating the performance of the Lee-Carter method for
forecasting mortality. Demography, 38(4), 537–549.

LEE, R.D. and CARTER, L.R. (1992) Modeling and forecasting U.S. mortality. Journal of the
American Statistical Association, 87(419), 659–671.

LI, H. and LI, J. (2017) Optimizing the Lee-Carter approach in the presence of structural changes
in time and age patterns of mortality improvements. Demography, 54(3), 1073–1095.

LI, J., LI, J.S.-H., TAN, C.I. and TICKLE, L. (2019) Assessing basis risk in index-based longevity
swap transactions. Annals of Actuarial Science, 13(1), 166–197.

LI, J. and LIU, J. (2019) A logistic two-population mortality projection model for modelling
mortality at advanced ages for both sexes. Scandinavian Actuarial Journal, 2019(2), 97–112.

LI, J.S.-H., HARDY, M.R. and TAN, K.S. (2009) Uncertainty in mortality forecasting: An
extension to the classical Lee-Carter approach. ASTIN Bulletin, 39(1), 137–164.

LI, N. and LEE, R. (2005) Coherent mortality forecasts for a group of populations: An extension
of the Lee-Carter method. Demography, 42(3), 575–594.

LI, N., LEE, R. andGERLAND, P. (2013) Extending the Lee-Carter method tomodel the rotation
of age patterns of mortality decline for long-term projections. Demography, 50(6), 2037–2051.

MENZIETTI, M., MORABITO, M.F. and STRANGES, M. (2019) Mortality projections for small
populations: An application to the Maltese elderly. Risks, 7(2), 35.

Olivieri, A. (2006) Heterogeneity in survival models - Applications to pensions and life annuities.
Belgian Actuarial Bulletin, 6, 23–39.

PITACCO, E., DENUIT, M., HABERMAN, S. and OLIVIERI, A. (2009) Modelling Longevity
Dynamics for Pensions and Annuity Business. London: Oxford University Press.

PLAT, R. (2009) Stochastic portfolio specific mortality and the quantification of mortality basis
risk. Insurance Mathematics and Economics, 45(1), 123–132.

RENSHAW, A. and HABERMAN, S. (2006) A cohort-based extension to the Lee-Carter model
for mortality reduction factors. Insurance: Mathematics and Economics, 38, 556–570.

SPREEUW, J., NIELSEN, J. and JARNER, S.F. (2013) A nonparametric visual test of mixed
hazard models. Statistics and Operations Research Transactions, 37, 149–170.

THATCHER, A.R. (1999) The long-term pattern of adult mortality and the highest attained age.
Journal of the Royal Statistical Society: Series A, (Statistics in Society), 162(1), 5–43.

TULJAPURKAR, S., LI, N. and BOE, C. (2000) A universal pattern of mortality decline in the G7
countries. Nature, 405(6788), 789–792.

VAUPEL, J.W., MANTON, K.G. and STALLARD, E. (1979) The impact of heterogeneity in
individual frailty on the dynamics of mortality. Demography, 16(3), 439–454.

VILLEGAS, A.M. and HABERMAN, S. (2014) On the modeling and forecasting of socioeco-
nomic mortality differentials: An application to deprivation and mortality in England. North
American Actuarial Journal, 18(1), 168–193.

VILLEGAS, A.M., HABERMAN, S., KAISHEV, V.K. and MILLOSSOVICH, P. (2017) A compar-
ative study of two-population models for the assessment of basis risk in longevity hedges.
ASTIN Bulletin, 47(3), 631–679.

https://doi.org/10.1017/asb.2021.37 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.37


514 THE SAINTMODEL: A DECADE LATER

VÉKÁS, P. (2019) Rotation of the age pattern of mortality improvements in the European Union.
Central European Journal of Operations Research, 28(3), 1–18.

WAN, C. and BERTSCHI, L. (2015) Swiss coherent mortality model as a basis for develop-
ing longevity de-risking solutions for Swiss pension funds: A practical approach. Insurance:
Mathematics and Economics, 63, 66–75.

WANG, S. and BROWN, R. (1998) A frailty model for projection of human mortality improve-
ments. Journal of Actuarial Practice, 6, 221–241.

WIENKE, A. (2010) Frailty models in Survival Analysis. Chapman & Hall/CRC Biostatistics
Series. Boca, Raton: Taylor & Francis.

SØREN F. JARNER
Department of Mathematical Science, University of Copenhagen,
Copenhagen, Denmark
E-Mail: soren@jarner.dk

SNORRE JALLBJØRN (Corresponding author)
Danish Labour Market Supplementary Pension Fund (ATP),
Kongens Vænge 8, 3400 Hillerød, Denmark
E-Mail: sjb@atp.dk

A. POSITIVE STABLE FRAILTY

Hougaard (1986) introduced a family of generalized stable laws which includes
the two most often used frailty distributions for mortality modelling, namely
the Gamma and inverse Gaussian distributions, see for example Vaupel et al.
(1979), Hougaard (1984), Butt and Haberman (2004), Jarner and Kryger
(2011), Spreeuw et al. (2013). The family is obtained by exponential tilting
of stable densities with index α ∈ [0, 1). The stable laws themselves only have
moments of order strictly less than α, while moments of all orders exist for
the exponentially tilted densities. From the original three-parameter family,
we obtain a two-parameter family by imposing the condition that mean frailty
is one.

When Z follows a generalized stable law with index α ∈ [0, 1), mean one and
variance σ 2 the Laplace transform and mean frailty are given by

L(s)= exp

⎛⎜⎝1− α

α

⎡⎢⎣1−
(
1+ σ 2s

1−α
)α

σ 2

⎤⎥⎦
⎞⎟⎠ , (A1)

E[Z|t, x]=
(
1+ σ 2

1− α
M0(t, x)

)α−1

=
(
1+ α

1− α
σ 2M(t, x)

) α−1
α

. (A2)

The stated formulas are obtained from Hougaard (1986) using the
parametrization θ = (1− α)/σ 2 and δ = [(1− α)/σ 2]1−a.
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The generalized stable law specializes to the inverse Gaussian distribution
for α = 1/2 and to the Gamma distribution for the limiting case α = 0 defined
by continuity. While both Gamma and inverse Gaussian densities exist in
closed form, generally (tilted) stable densities exist only as a series representa-
tion, cf. Hougaard (1984). Since the closed form expressions for the Laplace
transform and mean frailty (A1)–(A2) are all we need for estimation and
forecasting purposes, this is not problematic.

Arguably, the Gamma distribution is the most widely used frailty distribu-
tion. It is well-known that Gamma frailty in combination with Gompertz or
Makeham baseline intensities leads to a cohort rate of the logistic type and has
been found to describe old-age mortality very well, see for example Thatcher
(1999), Cairns et al. (2006). Gamma distributed frailty is also mathematically
tractable and allows explicit calculations of many quantities of interest, for
example frailty among survivors at a given age is Gamma distributed with
known scale and shape parameters, cf. Vaupel et al. (1979).

It is generally found that Gamma frailty and the associated logistic form
provides a better description of old-age mortality than inverse Gaussian
frailty, see for example Butt and Haberman (2004), Spreeuw et al. (2013).
Furthermore, Abbring and van den Berg (2007) show that for a large class of
initial frailty distributions the frailty distribution among survivors converges
to a Gamma distribution as the cumulated rate tends to infinity. Thus, overall
the Gamma distribution is a good default choice.

B. ESTIMATION OF A COMPETING RISKS MODEL

We consider the competing risk model of (4.9)–(4.10), that is

D(t, x)∼ Poisson ([μs (ψ , θt, ηx, ζ , ξ)+μb (ζt, ξx)]E(t, x)) , (B1)

where we have made μs’s dependence on the vector of background parameters
explicit. Selective and background mortality are given by

μs (ψ , θt, ηx, ζ , ξ)= νψ
′
(
ν−1
ψ

{
M̃ (t, x, ζ , ξ)

})
F (θt, ηx) , (B2)

μb(ζt, ξx)=G(ζt, ξx), (B3)

for a fixed value of ψ . Imagine that deaths were recorded according to the
(hidden) sources

Ds(t, x)∼ Poisson (E(t, x)μs(ψ , θt, ηx, ζ , ξ )) , (B4)

Db(t, x)∼ Poisson (E(t, x)μb(ζt, ξx)) , (B5)

with Ds and Db mutually exclusive so that D(t, x)=Ds(t, x)+Db(t, x). Even
though Ds and Db do not necessarily exist and hence are not “missing” in the
usual sense of the word, we can still use the EM algorithm based on the missing
data interpretation of the model. Note that ζ and ξ are estimated from (B5),
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while θ and η are estimated from (B4) with ζ and ξ kept fixed at their current
value.

Omitting time and age indices for ease of notation the expectation step is
then to compute the complete data log-likelihood given death counts D and
current parameter estimates from iteration i− 1,

Q(θ , η, ζ , ξ )=E[�(θ , η, ζ , ξ ) |D, θ i−1, ηi−1, ζ i−1, ξ i−1], (B6)

where a death is distributed according to a Bernoulli trial with a success
parameter depending on the weight of the cause-specific death rate, that is

Ds|D, θ i−1, ηi−1, ζ i−1, ξ i−1

∼Bin

(
D,

μs
(
θ i−1, ηi−1, ζ i−1, ξ i−1

)
μs
(
θ i−1, ηi−1, ζ i−1, ξ i−1

)+μb
(
ζ i−1, ξ i−1

)) , (B7)

Db|D, θ i−1, ηi−1, ζ i−1, ξ i−1

∼Bin

(
D,

μb
(
ζ i−1, ξ i−1

)
μs
(
θ i−1, ηi−1, ζ i−1, ξ i−1

)+μb
(
ζ i−1, ξ i−1

)) , (B8)

under the assumption that the likelihood factorizes so that

�(θ , η, ζ , ξ )= �s(θ , η |Ds, ζ i−1, ξ i−1)+ �b(ζ , ξ |Db). (B9)

The maximization step consists of maximizing (B6) to obtain the i’th parame-
ter estimate, that is estimating the two marginal mortality models with death
counts

Ds =E

[
Ds |D, θ i−1, ηi−1, ζ i−1, ξ i−1

]
, (B10)

Db =E

[
Db |D, θ i−1, ηi−1, ζ i−1, ξ i−1

]
. (B11)

The E-step and M-step are iterated until converge.
In summary, the model (4.9)–(4.10) is estimated by optimizing the profile

log-likelihood function (4.14), which for fixed frailty parameter ψ is computed
by the following algorithm.

1. Initialize θ0, η0, ζ 0, ξ0 and set i= 1.
2. For all t and x in the data window compute M̃(t, x, ζ i−1, ξ i−1) and set

c(t, x)= ν′
ψ

(
ν−1
ψ

{
M̃
(
t, x, ζ i−1, ξ i−1

)})
. (B12)

3. Compute θ i and ηi as the maximum likelihood estimates of the model

Ds(t, x)∼ Poisson(c(t, x)E(t, x) F(θt, ηx)) (B13)
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with death counts

Ds(t, x)=D(t, x)
c(t, x) F

(
θ i−1
t , ηi−1

x

)
c(t, x) F

(
θ i−1
t , ηi−1

x

)
−G

(
ζ i−1
t , ξ i−1

x

) . (B14)

4. Compute ζ i and ξ i as the maximum likelihood estimates of the model

Db(t, x)∼ Poisson(E(t, x)G(ζt, ξx)) (B15)

with death counts

Db(t, x)=D(t, x)
G
(
ζ i−1
t , ξ i−1

x

)
c(t, x) F

(
θ i−1
t , ηi−1

x

)
−G

(
ζ i−1
t , ξ i−1

x

) . (B16)

5. Increase i by one.
6. Repeat steps 2–5 until convergence.
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