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BUI AN TON 

Introduction. Singular perturbations of linear elliptic and parabolic 
boundary-value problems have been studied extensively by Visik and 
Lyusternik (7), Huet (5), and others. It is the purpose of this paper to extend 
the results of (5) to the non-linear elliptic and parabolic variational boundary-
value problems considered during the last few years by Browder (2, 4). 

In §1, we give the notations and state the main assumptions on the non-
linearity of the elliptic operators. In §2 we study the singular perturbations 
of non-linear elliptic variational boundary problems. In §3, we consider the 
case of non-linear parabolic variational boundary problems with a small 
parameter. 

1. Let 12 be a bounded, open set of En with a C°° embedding mapping of its 
boundary d!2 into En. The points of 12 will be denoted by x = (xu . . . , xn) 
and derivatives with respect to the x-variables by: 

Dj = i^d/dxj, 1 < j < n; Da = Df* . . . Dn
a», 

n 

a = (ai, . . . , an) with \a\ = ^ ar 
3=1 

The points of Rl will be denoted by t and differentiation in t by d/dt. If 
u, v are functions on 12, we denote by (u, v) their inner product in L2(12). 

Let Wm'2(ti) be the Hilbert space defined by: 

Wm'2(ti) = {u:u £ L2(12), Dau Ç L2(12) for \a\ < m) 

(the derivatives are taken in the sense of the theory of distributions) with the 
norm: 

and inner product: 

0 , v)m = EiaKm (D°uf D«v), u, v in Wm>2(2). 

We denote by C^Çiï) the family of infinitely differentiate functions with 
compact support in 12. We consider differential operators of the form: 

(1) Aku = Z\ai,m<mkD«(akap(x,uy . . .tD^tyD'u), urn I^*,2(12). 
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We assume the following conditions on the coefficients akap\ 

ASSUMPTION (I). The coefficients akap are continuous functions of all their 
arguments. There exists a continuous function gk{r) of the real variable r such that: 

\akap(x, « , . . . , D^^u)] < gk{\\u\\mk-i,2) 

for u in Wmk'2(n). 

Let e be a small positive parameter. To two non-linear differential operators 
of the form (1) with m^ > mi, we associate the non-linear differential operator 
of the form (2): 

(2) A€u = T,\a\,wKm2D
a(a2a^(x, eu,..., eDm^lu)D^eu) 

+ £i«u/JKmi D<*(alap(x, u,..., Dm^lu)D^u) 
iovu in Wm*'2(ti). 

Let Vk be a closed subspace of Wmk,2{Q) with Cc°°(12) C Vk. We consider 
the Hilbert space L2([0, T], Vk) of equivalence classes of functions u from 
[0, T] to Vk with 

W{l)\\lik,2dt < + ° ° . 

The norm is given by 

m * 1 I \\u(t)\\wmk,2(V) du . 

Z,2([0, T], Vk) is a separable reflexive Hilbert space; k = 1,2. 
Let (L2([0, T], Vk))* be the conjugate space of L2([0, T], Vk), i.e. the space 

of bounded conjugate linear functionals on L2([0, T], Vk). For u Ç L2([0, T], 
Vk) and w G (L2([0, T], Vk))*, we denote by (w, u) the pairing of w with u. 
For u e L2([0, T],L2(12)) and v Ç (L2([0, T],L2(12))*, we denote by (( , )) 
the pairing of v with u. 

Let Ak(t) be differential operators of the form: 

(10 Ak(t)u = Z\a\,w\<mk Da(akae(x} t,u,..., Dm^u)D?u) 

for u e L2(R\ Wm*'2(tt));k = 1, 2. 

We make the following assumptions on akap\ 

ASSUMPTION (I ;): The coefficients akap are functions defined on 0 X Rl 

measurable in x, t and continuous in (u, . . . , Dmk~lu). There exists a continuous 
function gk(r) of the real variable r such that 

\aM(x, t,u,..., Dmk-\)\* < gk( f |K/)||2 dt) 
\ ^ - o o mk-1,2 / 

foru e L2(R\ Wm*'2(Q)). 
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To Ai(t) and A2{t) of the form (1/), we associate the non-linear differential 
operator of the form 

(2') Ae(t)u = Ei«i.i/Ji<m2 D
a(a2ap(x, / , € « , . . . , €Dm*-lu)Df>eu) 

+ Eiai,i/3i<»i Da(aiap(x, t,u, . . . , Dmi~1u)D^u)1 

m2 > nuandu G L2(R\ Wm*-2(Q)). 

2. In this section, we study the singular perturbations of non-linear elliptic 
variational boundary-value problems. 

Let Vi be a closed subspace of Wmi,2(Q) with Cc
œ(12) C V\. Corresponding 

to the non-linear elliptic operator A\ of the form (1), we define the non-linear 
Dirichlet form: 

a>i(u, v) = Lki.i/ïKmi (aiap(x, u, . . . , Dmi-1u)Dau, Dh) 

for each pair u,v in Wmit2(Q). With the Assumption (I) on the coefficients 
aia/s, the Dirichlet form is well defined. 

Let Vi* be the conjugate space of V\. We now define the variational 
boundary-value problem corresponding to (Ai, V\). 

DEFINITION. Let f 6 Vi*. Then u is said to be a solution of the variational 
boundary problem for A\U = / satisfying the null boundary conditions corres
ponding to the space Vi if: 

(1) ai(u, v) = (/, v) for all v Ç Vi, 
(2) u 6 7i. 

THEOREM 2.1. Let A\ be a non-linear elliptic differential operator of the form 
(1), of order 2mi and satisfying Assumption (I). Let V\ be a closed subspace of 
Wmi,2(Q) such that Cc°°(12) C V\. Suppose that there exists a non-negative con
tinuous function Ci(r) on R} with \imT^+œ c\{r) = + oo such that 

Re{ai(u, u — v) — ai(v, u — v)} > ci(\\u — v\\mU2)\\u — v\\mi^ 

Then for every f G Vi*, the variational boundary problem for A i u = f with null 
Vi-boundary conditions has a unique solution. 

The theorem is due to Browder (2). 
Let A€ be the non-linear elliptic operator defined in Section 1. We have the 

following theorem for A e u e = / . 

THEOREM 2.2. Let Ak be two non-linear elliptic differential operators of the 
form (1), of order 2mk with m2 > mi and satisfying Assumption (I). Let Vk be 
two closed subspaces of Wmk,2(ti) such that Cc°°(12) C Vk with V2 C V\. Suppose 
that there exist two non-negative continuous functions ck(r) on R1 and 

limr^+00cfc(r) = +oo 
such that 

Re{ak(u, u - v) - ak(v, u - v)} > ck{\\u - v\\mkt2)\\u - v\\mkx, 
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u,v G Vk; k = 1 ,2 . Let e be a small positive parameter and A e be the non-linear 
elliptic differential operator of the form (2). Then for every f in F2*, there exists 
a unique solution ut of the variational boundary problem A€ue = f with null 
Vr-boundary conditions. 

The proof of the theorem is essentially the same as that of Theorem 2.1; 
cf. (2). 

THEOREM 2.3. Let A € be the non-linear elliptic differential operator of Theorem 
2.2 Let ue be the solution of the variational boundary problem A€ue = f€ with 
null V^-boundary conditions. Let u0 be the solution of AiU0 = f with null Vi-
boundary conditions. Suppose that there is a set V dense in both Vu V2. Then, if 
/e —>/ weakly in Vi* as e —> 0: 

u€^Uo in Wm^2{Q), eue->0 in Wm*>2(Q). 

Proof. We have: 

a€(ue, ue) = a2(ew0 u€) + ai(ue, u€). 
Hence 

C2(e\\ut\\m2f2)\\u€\\m2)2 + Ci(||we||OT1,2)||Wc|Ulf2 < Rea€(u€1 ue) 

< Re{a2(euej u€) + ai(w e , ue)}. 
But a€(u€1 ue) = (/e, ue). So we obtain 

^ l ( | | W € | U l , 2 ) | | w € | | m i t 2 < | | / e | | | | ^ c | | m i , 2 . 

Since f€ —>/ weakly in Vi*,f€ is uniformly bounded in Vi*. Hence 

^l(lke|Ui,2) < M, 

where M is a constant independent of e. By hypothesis, the function Ci(r) 
satisfies limr_^+00 Ci(r) = + <». Therefore there exists a constant M' indepen
dent of e such that ||w€||mi,2 < Mf. A similar argument yields: €||w€||m2f2 < M'. 

From the weak compactness of the unit ball in a Hilbert space it follows 
that there is a subsequence ue such that: 

ue —» v weakly in Wmi'2{9) as e —» 0, 

eue -> 0 weakly in Wm*'2(Q) as e -> 0. 

We now show that v = u0. First we note that v belongs to Vu Indeed 
\\ut\\Vl < M, and Vi with the topology induced by IF™1*2 (12) is a Hilbert 
space. 

Consider a€(u€, #);<££ V. We have 

H\a\,m<m2 t(a2ap(x, euej . . . , eDm2~1u e)D
au €1 D?4>) 

+ L |a | , | / 5 |<mi<a ia / s (x , We, . . . , Dm^~lU€)D
aUe, D f y ) . 

The last term is equal to 

L i « u ^ i < m i ( ^ o â ^ ( x , u€, . . . , Dmi-lue)DP<j>). 
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Since ue^v weakly in Wm2'2(ti) and 12 is a bounded domain with a C00 embed
ding mapping of its boundary dS2 into En, the Sobolev embedding mapping 
theorem yields that ue —> v in Wmi~1,2(Çl). By taking a subsequence if necessary 
we may assume that 

Dau€ —» Dav a.e. on 9, for |a| < Wi - 1. 

On the other hand, by hypothesis, a\a$ are continuous functions of their 
arguments; hence 

âia/3(x, ue, . . . , Dm^lut)D^ -> ala/3(x, », . . . , Dm^1v)D^<j> 

a.e. on 12 as e —> 0. 
Moreover 

since ||we||mi,2 < M. By the Lebesgue bounded convergence theorem, it follows 
that 

âlafi(x, u€,..., Dm^-lue)D^4> -> âlafi(x, v,..., Dm^lv)D^ in L2(Q) as e -> 0, 

for |a|, |0| < Wi. 
Since Z>*̂ € —» Z>y weakly in L2(12), we have 

Liai,i/3i<mi(aia|8(ff, ««, . . . , Dmi-1u€)D
au€} Dfy) -> a^v, <f>) as e -» 0. 

Applying the same argument to 

Liai.i/si<«2 « K ^ O , ew€, . . . , eDm2-1u€)D
au€1 Dfy), 

we find that it goes to zero as e —» 0. Therefore di(v, <£) = (/, <j>) for all 0 in V. 
So ai(», w) = (/, w) for all w in Fi since F is dense in Vu 

From the uniqueness of the solution of AiU0 = / with null Fi-boundary 
conditions, it follows that v = u0. 

It remains to show that w€ —> w0 in Wmi,2(Q) and eu€-±0 in 1FW2,2(0) as 
e—>0. Consider the expression Re{ai(^e, u€ — u0) — di(uo, u€ — u0)}. From 
the hypothesis, we obtain 

\\ue — Uo\\mit2 Ci(\\ue — u0\\mu2) < Re{ai(^e, ue — u0) — ai(u0, u€ — u0)} 

< Re{ai(uet u€ - Mo) + (/,«<>) — (/»««)}• 
Also 

€||tte||TOgf2C2(€|W|OT2f2) < Rea2(e^c , ewc) = e Re a2(eu€, ue). 

Therefore 

lke|U2,2^2(e||we||m2)2) + \\ue — u0\\mi,2C1(\\ue — u0\\mi,2) < Re{d2(euej ue) 

+ di(ue, Ue) — di(ue, Ue) + di(ue, Ue — Uo) — di(Uo, U€ ~ U0) } . 

The right-hand side of this inequality is equal to 

Re{(/, u€) — di(ut, Uo) + (/, UQ) — (/, u)} —>0as € —> 0. 
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So 

lime^o||we — Mo|Ui.2Ci(||we — ^o|Ui,2) = 0, 

lime_>o\\ue\\m2,2C2(e\\u€\\m2,2) = 0 . 

If \\u€ — Uo\\mit2 > V > 0 for e > + 0 , then 0 < Ci(rç) < 0, which is impos
sible. Similarly, suppose that e||w€||m2>2 > y > 0 for e > + 0 . Since £2(r) is 
positive for r > 0 by hypothesis, we would have 0 < c2(rç) < 0, which is 
impossible. So 

lim^0u€->Uo inWmi'2(12), 

lim^0eu€-*0 in Wm*-2(Q). 

3. In this section, we study the singular perturbations of non-linear parabolic 
variational boundary problems. 

Let Vk be a closed subspace of Wmk'2{Q), as before, and such that 

Cc
œ(0) C Vk(k = l , 2 ; m 2 > wi) 

and F2 C l^i algebraically and topologically. To the non-linear elliptic differen
tial operator Ak(t) of the form (1/) of order 2mk corresponds the non-linear 
Dirichlet form 

hk(u, v) = ^ I (akap(x, t,u, . . . , Dmk~1u)Dau1 D%)dt; 
|a|,|/3|<mfc *Jo 

u,v£ L2([0, T], Vk);k = 1,2. 

With the assumption (I') on the coefficients akap, the Dirichlet form is well 
defined. 

DEFINITION. Let L0k be the linear mapping of Fk = {v: v 6 £2([0, T], Vk), 
v is continuous from [0, T] to Vk and is continuously differentiable from [0, T] to 
L2(Û), v(0) = 0} into (L2([0, T], F*))* « " * that 

(L0ku,v)= j ( ^ , * ) * 

for allvin L2([0, T], Vk), k = 1,2. Let Lk be the closure of L0k as a linear operator 
with domain in L2([0, T], Vk) and range in (L2([0, T], Vk))*. 

L0k is preclosed and has a densely defined adjoint, so Lk is well defined. 

DEFINITION. Let f be an element of (X2([0, T], Vk))*. Then an element 
u £ DÇLk) and belonging to L2([Q, T], Vk) is said to be a solution of the variational 
boundary-value problem 

du/dt + Ak(t)u = / 

if(Lku,v) +hk(u,v) = (f,v)forallv £ L2([0, T], Vk),k = 1,2. 

We have the following theorem. 
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THEOREM 3.1. Let A i (t) be a non-linear elliptic differential operator of order 2wi, 
satisfying Assumption (I '). Suppose that there exists a non-negative continuous 
function d{r) with limr^+00 d(r) — + ° ° , such that 

Rej&iO, u — v) — hi(v, u — v)) > c\(\\u — f| | |i)| | |« — v\\\i 
forallu,v e L2([0, T], Vx). 

Then there exists a unique solution of the variational boundary-value problem for 
the parabolic equation 

du/dt + Ax(t)u =f on [0, T] X Û 

for given f £ (L2([0, T], Vi))*. This solution u is continuous from [0, T] to 
L2(Q) andu(0) = 0. 

This theorem has been proved by Browder (4) under weaker hypotheses on 
the ellipitic operator A\ and for Lp([0, T], Vi) where 1 < p < °°. 

DEFINITION. For each u € Fkf let L0k*u be the element of (L2([0, T], L2(0))* 
such that 

((£«'«, v)) = J \ f f , v/dt forallv € L\[0, T],ti (0)). 

Let L/ be the closure of L0k* as a linear operator with domain in L2([0, T], Vk) 
and range in (X2([0, T], L2(ti))*, £ = 1,2. 

First, we note that L0Jf is preclosed and has a densely defined adjoint so 
that Lk* is well defined. 

Here ((,)) denotes the pairing of L2([0, T], L2(Û)) and of (Z,2([0, r ] , Z,2(S2))*. 

LEMMA 3.1. (1) D(Lk) = D(Lf), k = 1, 2. 
(2) D(Lé) C D(LX*) and Léu = Lfu if u G D(Li). 
(3) ((Ljfu, v)) = (Lk u, v) for all u £ D(Lk) and v G Z2([0, T], £ 2 (0)) . 

Proof, (i) Let u G D(Lk). Then there exists a sequence of elements 
un£D(L0k) such that un-^u in £2([0, T], 7*), L0k un = Lk un-> v in 
(Z2([0, T], F J ) * , and v = Lku. But we have 

«L0k#un, w)) = J J ( ^ , « ; ) & = (L* «», w) for all w Ç L2([0, T], 7,). 

Here ( ( , )) denotes the natural pairing between elements of L2([0, T], L2(Q)) 
and (L2([0, T], L2(0))*, and (, ) is the natural pairing between £2(0, T, Vk) 
and (L2([0, T], V*))*. Let J be the injection mapping from (L2([0, T],L2($))* 
into (L2([0, T], 7,))* with 

(/*, «0 = ((0, w)) for 0 6 (L2([0, T\, L2(S2))*. 

We have JLk*un = Lkun-*v in (L2([0, J ] , 7#))*. Since / is bounded and 
Lk is closed, JLk* is closed; hence JL/u = v and D(Lk) C D(Lk*). 
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Now let u G D(Ljf). Then un—>u in L2([0, T], Vk), L0]fun — L^un —> v in 
(L*([o, r ] , i 2 ( Q ) ) * ^ = i»#«. So 

((Lk*un, w)) = (L* wn, w) —> (0 , w)) a sw-> » . 

Hence 

Uun-ïg weakly in (L2([0, T], 7*))*. 

But Lfc is closed, so weakly closed, and it follows that g = Lku. Therefore 
D{Lk) = D(L*) and ((Lh*u,w)) = (Lku,w). 

(ii) We now show that D(L2*) CD(Lf). 
Let u G D(L$). Then there exists a sequence of elements wn of D(LQ2*) 

such that ^ -> w in L2([0, T], F2), i02
#«„ = L2*un -» » in (Z2([0, T], Z2(S2))*, 

and y = L2
#w. 

We have 

((Lo^.w)) = J 0 X ^ ' W ) * 
for all w in £2([0, T], L2(12)). Since ww G F2 | ww lies in D(L0i#) and 

((L01#un, w)) = ((Lo2*un, w)) = I y - rp , ray <& 

for all w G L2([0, T], L2(12)). So L01*un = L02*un for wn in D(L02*) and 
L0i*un = L^un-^vm (L2([0, 71, L2(12)))*. Since L / is closed, it follows that 
v = L^u = L2*u. 

The lemma is proved. 

We define the global variational boundary-value problem. 

DEFINITION. For each u G F = {u G L2(R1, F2), w w continuous from R1 to 
V2, u is in C1 from R1 to L2(ti), and u has compact support in R1}, let L0 u be the 
element of L2(Rl

y F2*) such that 

(L0u,v)= (\f,v)dt 

for all v G L2(R1
1 V2). Let L be the closure of Lo as a linear operator with domain 

in L2(R\ V2) and range in L2(R\ V2*). 

One can show that L* = — L; cf. (4). 

DEFINITION. Let f G L2(R1, V*). Then u is said to be a global solution of the 
variational boundary-value problem for the equation 

du/dt + A(t)u = f onttX R1 

if (Lu,v) + h(u,v) = (f,v) for all v G L2(R1
i V) and u is an element of 

D(L) r\L2(R\ V). 
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THEOREM 3.2. Let Ak{t) be two non-linear elliptic differential operators of 
order 2mk with m 2 > m\ and satisfying Assumption (/ ') . Let Vk be two closed 
subspaces of Wmki2{Çl) and such that Cc°°(12) C Vk. Suppose that there exist non-
negative, continuous functions ck(r) with limr_>+00 ck(r) = + 00 such that 

Re{hk(u, u - v) - hk(y, u - v)} > ck(\\\u - v\\\k)\\\u - v\\\k 

for all uy v in Vk, k = 1,2. Let e be a small positive parameter. Letf be an element 
of (X2[(0, T], V2))* and f be the element of L2{RX, V2*) obtained by setting 
f = f on [0, T] and 0 outside of [0, T]. Then for each e > 0, there is a unique 
solution u€ of the variational boundary-value problem 

bujbt + At(t)ue = f onR1 XV. 

Moreover the restriction of ue to [0, T] is the unique solution of the variational 
boundary-value problem for the equation 

dujdt + At(t)u< = / on [0, r ] X Q 

with respect to V2. u€ is continuous from [0, T] to L2(12) and ue(0) = 0. 

The proof is essentially the same as in (4). The uniqueness of the solution 
of the global variational boundary problem for dujdt + A€(t)ue —f follows 
from the assumptions that C\{r) and c2(r) are two non-negative functions. 

THEOREM 3.3. Letf e L2([0, T], L2(Q)). With the hypotheses of Theorem 3.2, 
let ue be the solution of the variational boundary-value problem 

dujdt + Ae(t)ue = / 

with respect to V2 on [0, T] and with ut(0) = 0. Let u0 be the solution of the 
variational boundary-value problem 

duo/dt + Ai(t)uQ = f 

with respect to V\ on [0, T] and with u0(0) = 0. Suppose that there is a set V 
dense in both Vi, V2. Then as e —> 0, ue—>Uo in L2([0, T]} Wmi'2(Q)) and 
eu€-^QinL2{[0,Tl Wm*>2(&)). 

Proof. Set / to be equal to 0 outside of the interval [0, T]. Then / can be 
considered as an element of L2(R1

1 L2(Q)). By Theorem 3.2, there exists a 
unique solution of the global variational boundary-value problem for the 
equation 

bujbt + Ae(t)ue = f 

with respect to V2 on R1 X Œ. Moreover the restriction of ue to [0, T] is the 
unique solution of the equation on [0, T] X Œ. Hence 

(Lue, w) + h€(ue, w) = ((/, w)) for all w in F2. 
In particular 

(Lu€,u€) +he(ue,u<) = ((/, u€)). 
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But since L* = —L, we obtain 

Reh€(ue,ue) = Re((/ , ue)). 

We also have 

Re he(u€1 u€) = Re h2(eue, ue) + hi(u€} ue), 

Re ht(ut9 u.) > C2(€ | |H | | a ) | |H | |2 + c idlMHOIIHII i . 

Therefore, £i(|||^e|||i) < M and ^2(e| 11̂ €̂| 112) < M where M is a constant 
independent of e. The functions ck(r) are such that limr^+00 ck(r) = +00. 
Hence there exists a constant Mr such that |||we|||i < M', €|||we|||2 < M'. 

From the weak compactness of the unit ball in a reflexive Banach space, it 
follows that there is a subsequence u€ such that ue-^v weakly in 

L\R\ Wm**($L)) 

and eu€-^0 weakly in L2(R1
1 Wm2,2($l)) as e —> 0. Moreover v belongs to 

L\R\ Vl). 
We now show that v = u0. We have (Lu€, w) = ((/,«/)) — he(uej w) for all 

w 6 L2(RX, V). Since || |we | | |iand e |||we|||2 are uniformly bounded, we obtain 

Hence 

\(Lue, 

j " \\Lut\\
2

Vi*dt<M. 

D(L) with the graph norm is a Banach space and the injection mapping of 
D(L), considered as a Banach space with the graph norm into 

L2([0, T], W»»-i-*(n)), 

is compact; cf. (1). So eut - • 0 in L2([0, T], Wm*-i>*(Q)) as e -> 0. Let 

w 

{£ + \J_jLw\\k*dtj. 
D(L) with the ||| |||-norm is a Banach space and the injection mapping of 
D(L), considered as a Banach space with the ||| |||€-norm into 

Z,2([0, T], W^-^iil)) 

is compact. Thus ut—*v in L2([0, T], Wmi~1,2(12)) as e —•» 0. By taking a 
subsequence if necessary, we may assume that 

Daue -» Z>z/ a.e. on [0, T] X Û for |a| < Wi - 1, 

eDau, -» 0 a.e. on [0, r ] X f i for |a| < m2 - 1. 
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Consider he(u€, w) = h2(eu€1 w) + hi(ue, w). We have 

(&iap(x, t, ue,. . . , Dmi~xu?)DaUt, D^w)dt 

(Dau€, âlap(x, t, ue, . . . , D^^uJD^dt. 
.-..,-,—* o 

From the Assumption (/') on the coefficients a\a$, we deduce that 

âiafi(pc, t, u€, . . . , Dm*-lUt)Dtw -> âiapix, t,v,..., Dm^~lv)D^w 

a.e. on [0, T] X Œ. Moreover 

|<Wx, t,ut,..., Dmi-He)D?w\ < giOIHUOlZ^H < ikf|£>%|. 

From the Lebesgue bounded convergence theorem, it follows that 

âktfOe, /, We, . . . , Dm^-lue)D^w -> ala/3(x, * , » , . . . , Dm^~lv)D^w 

in L2([0, T],L2(0)) as € - » 0 . Since D«u€->D°v weakly in L2([0, r] ,L2(f i)) , 
we obtain hi(u€y w) —> &i(y, w) for all w in £2([0, T], V). A similar argument 
holds for h2(euei w), yielding lim^o h2(euei w) —» 0. Hence he(u€, w) —> &i(z>, w) 
for w in L2([0, T], V) as e -> 0. 

On the other hand, we have by definition 

(L2ueiw) +h€(ueiw) = ((/, w)). 

From Lemma 3.1, we have 

(L2ueiw) = ((L2*u€,w)) = ((Lfu€,w)). 
Therefore 

((Li#u€, w)) —» ((/, ?e0) — &i(tf, w) as e —> 0 

for ^ G L2([0, r ] , TO. 
Since Z,/ is weakly closed, it follows that 

( (LA, w)) + h^v, w) = ((/, w)) for all w in L2([0, T], F). 

By hypothesis, V is dense in V\\ hence 

( (LA, w)) + hi(v, w) = ((/, w)) for all w in L2([0, T], 7i) . 

Now z; G D(Lx), for D(Lx) = Z)(Li#), and moreover (Zaz>, w) = ((Li*v, w)). 
Hence 

(Li»,w) +*i(w,w) = ((f,w)) fo ra l l^ inL 2 ( [0 , T], Fi). 

We deduce from Theorem 3.1 that v = Wo. 
It remains to show that ue->u0 in L2([0, T], JFWl'2(Û)) and e^ e ->0 in 

L2([0, T], IF^ 2 (Û)) a s e ^ o . 
First, we note that 

Ci(|||«€ — «o|||i)|||«« — Wo|||i < Re{&i(^e, ue — u0) — Ai(wo, w€ — w0)} 
< Re{hi(u€, u€) — hi(ue, Uo) + hi(u0y u0) — hi(u0, ue)} 
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and 

C2(e|||wc|||2)|||wc|||2 < Re{h2(eu€1 ue) + hi{ue, ue) - hi(uey u€)}. 

So C2(e|||w€|||2)|||we|||2 + ci(llk* "" ^o|||i)|||^e — Uo\\\i is majorized by 

Re{he(ue, ut) — hi(ue, u0) — hi(u0, ue) + hi(u0, u0)}. 

The last expression is equal to 

Re{((/, ue)) — (Lue, ue) + hi(uo, u0) — hi(ue, u0) — hi(u0, ue)}. 

But L* = —L, so that Re (Lut1 u€) = 0 . Hence 

Ci( | | |w e — Wo|||i)| | |w€ — «o | | | i + C 2 ( e | | | w e | | | 2 ) | | | ^ e | | | 2 

< Re {((/, ut)) + hi(u0ju0) — hi(ut,uo) - hi(u0, ue)}. 

As e —> 0, the right-hand side of the inequality tends to 

Re {(Of, wo)) - hi(u0,uo)}. 

Let V be the operator corresponding to L, involved in the definition of the 
global variational boundary problem for the equation du/dt + Ai(t)u = / on 
R1 X Œ. Then, as for L, we have (Z/)* = —L'. We obtain 

Re {((/, u0)) — /ziOo, Uo)} = Re (L'u0, u0) = 0. 

Since C\{r) and c%{r) are two non-negative functions, we obtain 

lim \\\u,t — w0|||iCi(|||we — Wo|||i) = 0, lim|||^e|||2£20|||^c|||2) = 0. 

If \\\ue — wolll > v > 0 for e > + 0 , then 0 < £1(7?) < 0, which is impossible. 
Hence ue—*u0 in L2([0, T], Wmi'2(Q)) as e —» 0. A similar argument shows 
that eu€ -> 0 in L2([0, T], Wm*>2(Q)) a s e ^ O . 
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