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Abstract

A notion of entropy for the non-singular action of finite co-ordinate changes on (X = flSi ^2. M) is
introduced. This quantity—average co-ordinate or AC entropy—is calculated for product measures and
G-measures. It is shown that the type III classes can be subdivided using AC entropy. An equivalence
relation is established for which AC entropy is an invariant.

2000 Mathematics subject classification: primary 28D20, 28A35.

1. Introduction

Let T be a measure preserving transformation on the space (X, 3$, /Li) and a be a
finite, measurable partition of X. Then the entropy of T with respect to a is given by
the formula

h(T,a)= lim -H I\7 T~'a J ,
^ ° ° n \Zo J

where H(0) = - £"=1 /i(B,-) log ix(Bi) for /? = {5,}"=1 a finite measurable partition
of X. The entropy of T is defined as h(T) = supa h(T,a).

Now the above limit must always exist for T measure preserving, and further the
entropy of a transformation is invariant for metric isomorphism. Both these results
rely upon the fact that H(<t>~xa) = H(a) for any measure preserving automorphism 4>.
Obviously this is not necessarily true for a non-singular <p.

Attempts have been made to define a non-singular version of entropy. For example
in [12], an entropy is defined using the Krengel entropy of skew products. However
the resulting quantity is somewhat limited as it only takes the values zero and infinity.
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172 Genevieve Mortiss [2]

In this paper we formulate a new notion of entropy for a class of non-singular
dynamical systems which have been the subject of much recent interest—systems of
finite co-ordinate changes. This new quantity, which we will call average co-ordinate
or AC entropy may be regarded as a measure of the average uncertainty or randomness
in the initial co-ordinates of a point x e X = ]~I~, 22 as it is acted upon by the group

r = {y € X : 3N e N such that yn - 0 for n > TV}.

Our original motivation for examining such systems arose from their relative sim-
plicity. Having the same group acting on two spaces (X, SB, /i) and (X, SB, v) means
that we need only attend to the differences in their measures.

We begin with some notation before we give our definition of AC entropy. When
we write (X, F, /A) we are denoting the system of finite co-ordinate changes that is
the action of F on (X, SB, /x). Here n is a probability measure on X = ]~[~i ^2
which is quasi-invariant and ergodic for the action of F. For an element y € F,
yx 6 X is defined by (yx)n = yn + xn (mod 2). Let Fn denote the subgroup
{y € F : yk = 0 for all Jt > n] and Xn the set {x e X : xx = x2 = • • • = xn = 0}.

Note that while we have chosen to work with X = FJ" j Z2, we could easily extend
our work to cover X = I~[~i ^-P f°r anY p € N.

The real differences between two systems of finite co-ordinate changes lie in their
measures. Therefore we denote our new entropy as hAC(fi) where fi is the measure
on the system under consideration.

For all partitions f and rj if £ < t) then H(i;) < H(rj). If our new entropy is
to be similar in some respect to the standard form then we should be looking for
some kind of supremum over partitions. For this reason we define AC entropy using
(}n = {yX"}yern the finest cylinder set partition for fixed n e N.

DEFINITION 1.1. For a system of finite co-ordinate changes (X, F, fi) we define the
AC entropy by

hAC(fi) = lim -H(fiH)
n-»oo n

where this exists. If this limit does not exist we say that the AC entropy of n is
undefined.

Here the prefix AC stands for 'average co-ordinate', and will be used to distinguish
our new quantity from the standard metric entropy.

Note that our definition maintains the same basic entropy ratio as we find in the
metric entropy of a transformation acting on a a two set partition of X. For fixed n,
the maximum number of non-trivial elements in V"=o T~'(a) is 2", the same as the
number of elements in fin.
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[3] Average co-ordinate entropy 173

We provide formulae for the AC entropy for two important classes of measures—
namely Markov measures (a subclass of Brown and Dooley's G-measures introduced
in [1]) and product measures. In the latter case AC entropy reduces to an extremely
simple expression. It is for this reason that much of our focus will be on product
measures, although in the longer term we hope to extend all our results to G-measures.
We also give results relating to AC entropy and measure equivalence. It follows from
Kakutani's theorem that two equivalent product measures have the same AC entropy.
While we cannot make the same statement for Markov measures generally, we are
able to produce such a result for a special type of these measures which we have called
Quas-Markov.

In Section 4 we show that AC entropy can be used to subdivide the type III classes.
The AC entropy of a system, if it exists, lies in the interval [0, 1]. For each k e [0, 1]
there exist type IIIX systems of all possible AC entropies.

Ultimately our aim in this work would be to prove a result analogous to Ornstein's
isomorphism theorem using AC entropy as an invariant. To this end in Section 5 we
define an equivalence relation which we shall call Initial Co-ordinate or IC equivalence.
Roughly speaking, two systems (X, F, /i) and (X, F, v) are IC equivalent if there
exists a suitable map between them which preserves equality of initial co-ordinates
between two points. We give some examples of IC equivalences and show that two
IC equivalent systems have the same AC entropy. Further work may allow us to
define a class of systems within which AC entropy would be a complete invariant for
IC equivalence, as entropy is a complete invariant for isomorphism between finitely
determined systems.

Recently it has been discovered that the AC entropy of a system of finite co-
ordinate changes (X, F, fu.) is closely related to another invariant known as the
critical dimension associated with the odometer action on (X, /x). The critical di-
mension ([10]) quantifies the asymptotic growth rate of the Radon derivative sums
Hi=o dT~'fi(x)/dfi and is an invariant for isomorphism of non-singular ergodic
transformations. The relationship between the AC entropy of a system (X, F, /x) for
(i a product measure and the critical dimension of the associated odometer can be
appreciated by considering a Shannon-McMillan-Breiman type theorem in Section 2.
By this theorem, the results of Section 4 have immediate implications for the study of
non-singular isomorphism classes.

2. Product measures

Let n = ®°^, Mi be a product measure on X with

where a, e (—1, 1). Then by an easy calculation we have:
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174 Genevieve Mortiss [4]

PROPOSITION 2.1. For a product measure as described

, . x .. -1 A l + Oj l+a, \-at \-athAc(fJ-) = lim — > — — log ——• + — — log ——-.
n—oo n t—1 2 2 2 2

NOTE. Unless otherwise stated, all logs are taken to base 2.

This formula will feature in much of the remainder of this paper.
If fi = ® ~ i M(. v = <S*i=i vi a r e t w o infinite product measures on X = Y\H\ ^2,

then by Kakutani's Theorem we can state the following fact:

PROPOSITION 2.2. Iffj, and v are equivalent measures on X then hAC{fi) = h^dv).

But of course it is not hard to see that there exist non-equivalent measures with the
same AC entropy.

EXAMPLE. Let /A,(0) = a, \ii = (1) = 1 - a for i odd while /A,(0) = b, /J .-(1) =
1 — b for / even where a ^ b. Then take v,(0) = b, vt(l) = 1 — b for i odd and
V/(0) = a, V;(l) = 1 — a for i even.

The above example leads us to consider invariance of AC entropy in permuted
measures. That is, if v, = fxn^ for what sort of permutations n do we have hAC{v) =
hAC((i)? We can at least partly answer this question.

PROPOSITION 2.3. Suppose /IAC(A0 exists andn, a permutation of N satisfies

(1)
n-KX> n

(Here n : (1, n) is the range of it over (1, n).) Then ifvt = fin(i) then hAc(v) exists
and equals

Note that the set of permutations n satisfying (1) forms a subgroup under compo-
sition.

We include the following example to illustrate how the previous result may fail
without the limit condition on n.

EXAMPLE. Define fi = ® ° ! , \i{ on X such that

f l , for/odd;

11/2, for i even.

So h^cbx) = 1/2 + 1/2 • 1/2 = 3/4. Now let v = ® ~ , vt = <g>~, fim where n is
defined as follows:
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[5] Average co-ordinate entropy 175

Divide N into blocks {1}, (2, 3}, {4, 5, 6, 7 } , . . . , {2" , . . . , 2n+1 - 1 } , . . . . Let n
be a permutation that sends all the even integers in {2" , . . . , 2"+1 — 1} to the first half
of that block and all the odd integers to the second half. For example, such a n acting
on the block {4, 5, 6, 7} could give us {4, 6, 5, 7).

Now at the end of each block, that is, at i •= 2" — 1

# 1 ( 1 , 2 " - 1 ) A w : ( 1 , 2 » - 1 ) 1 n
z : = 0 ,

and

lim -^— V H(n,) = \ = lim - i — £ H{vt).
n-KX> 2" — 1 t-*1 4 «-*oo 2" — 1 ^ ^

But in the middle of each block, that is, at i = 2" + 2"~l - 1,

• — as n —> oo
2 » + 2 - 1 - l ~ 2 " + 2 ' - 1 - l 6

and
2"+2^i 1 2 / 3

2 + 2 1 2 + 2

as n -> oo. Thus the AC entropy of v is not defined. So even the existence of the AC
entropy limit is not preserved under n.

To conclude this section we present the following Shannon-McMillan-Breiman
type result:

THEOREM 2.4. Let X be equipped with a product measure fi = ^)°tt fii- Then

urn = I)
n-K» n

for fi-almost all x € X.

The proof Theorem 2.4 is easily derived from the following result from [4].

THEOREM 2.5. Let yi,yi,-.- be mutually independent random variables with
E(yt) = 0 and £(y,2) = of < oo. Then i /EJV?/1 2 ) < oo, we have

for ii-almost all x € X.
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Note that it has been shown ([10]) that the critical dimension of a odometer is
equal to liminf^ooQ/n) £"=, — log(/i,(jc,)) for /n-almost all x e X for a wide class
of product measures. Further, it can be established that for any product measures
if the AC entropy limit exists then it is equal to the critical dimension. In light
of this it may seem tempting to have begun our study of AC entropy by defining
it as liminfB_>0O(l/n)H(^B) expecting that for a general measure on X the critical
dimension of the associated odometer action would be the same. However, as will
be shown in the following section, a question remains as to whether two equivalent
Markov odometers (which must have the same critical dimension) can have different
AC entropies. Hence it would be premature at this stage to try and identify the two
invariants, although it is fairly clear that some close relationship does exist in the
general case.

3. G-measures

Brown and Dooley's G-measures [ 1 ] are a generalized form of Keane's g-measures
[6]. Calculating the AC entropy of a general G-measure (Proposition 3.4) does not
really tell us anything concrete and for this reason we narrow our focus to Markov
measures. Within a restricted class of these measures, which we shall refer to as
the Quas-Markov class, we are able to show that provided two measures satisfy the
hypotheses of the Kakutani's Theorem analogue for G-measures then AC entropy is
an invariant for measure equivalence. However, as we explain later in this section, the
same relationship may not hold for general Markov measures.

DEFINITION 3.1. Let G = (Gn)^, be a family of non-negative Borel functions on
X = n " i Z2 satisfying

(i) normalization, that is, ( l / | r n | ) X^er, Gn(yx) = 1 for all x € X; and
(ii) compatibility, that is, Gn(yx)Gm(x) = Gm(yx)Gn(x), where n > m, y e Tm

and* € X.

Then from this family of functions we construct the family (gn(x))™=1, where

which satisfy the following

(i) gn(x) depends only on the co-ordinates (xn,xn+l,...); and
(ii) for each n e N, (gn(0, xn+l,xn+2,...) + gn(l,xn+uxn+2,... ) ) / 2 = 1 for all

x eX.
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Now we say n is a G-measure if d(j,(x)/dn(n) — ]~["=i £<(*) = Gn(x) where /x(n) =

Our work in this section relies upon the following two results. The first is necessary
for our AC entropy calculations (Proposition 3.4 and Proposition 3.5). The second
is a G-measure version of Kakutani's Theorem which we require for the proof of
Lemma 3.7.

LEMMA 3.2 ([1]). Let n be a quasi-invariant G-measure. Then for each k € N,
gk(x) > Ofor fi a.a. x e X, and for y € V,

LEMMA 3.3 ([2]). Suppose fi is a unique G-measure and v is a unique F-measure
and that if gi(x) = 0, then /,(*) = 0. Then the following conditions are equiva-
lent:

(i) (i ~ v;
(ii) the series Yl7=i Hyez2 Wfniyx) - VgUyxj) converges for v almost all x\

(iii) the above series converges on a set of positive v-measure.

PROPOSITION 3.4. For a quasi-invariant G-measure

E C da

f
x" i=

flgk(Yx)dtiw(x)\og[ f f\gk(.yx)dnw(x)

Unfortunately this is about as far as we can go without making assumptions about
the functions gt(x). For this reason we shall restrict ourselves to considering Markov
measures, that is, those G-measures for which gn(x) = gn(xn,xn+i). So our normal-
ization condition reduces to (gn(0, xn+x) + gn(l,xn+l))/2 = 1. Now
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178 Genevieve Mortiss [8]

so first we will need a formula for fi(yX"), where y e Vn and X" = [x : x\ = x2 =
• • = * „ = 0}.

Now if y e rn_!, we have

SkiYk, Yk+l) gn-l(.Yn-l,0)

n-2n gt(yt,
ft(on

M ft(o,o) ft_, (0,0)

:, Yk+l) gn-l(Yn-U

J J ft(0,0) ft_,(0,0) gn(0,;c+1)

n"~' gt(n, n+i) /" gH(l,*n+i) ,

j . , ft(0,0) JX.gn(0,Xn+l) ^

Of course these expressions for fi(yX") depend on the values fi(Xn) and so by using
the recursive relationship

,(1,0) ft(l.l)

H)J
and some further straightforward calculations we obtain the following:

PROPOSITION 3.5. For a Markov measure fi,

In-l

where h(x) = —x log*

n-2 ln-k(n n-\i) n
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[9] Average co-ordinate entropy 179

for

Obviously our formula for AC entropy on even the simplest G-measure is extremely
cumbersome. However for a certain class of Markov measures discussed in [5] we
can obtain a more usable expression.

DEFINITION 3.6. We call /x on X = YVtLo ^2 a Quas-Markov measure if there exist
Ko, Kx = 1 - Ko and P%\ ij e {0, 1}, for n > 1 such that

H([xux2,...,xn]) = KXI P«l2 P £ 3 • • • P ^

for ? " = P $ = 1 - /&> = 1 - P<$.

The symmetric nature of these measures means that they are product-like in some
respects. In [5] Quas-Markov measures were shown to be orbit equivalent to product
measures, as their associated flows have the AT property.

LEMMA 3.7. If /x and v are Quas-Markov measures satisfying the hypotheses of
Lemma 3.3 and [i ~ v then ifhAC((J-) exists then hAC(v) exists and equals AAC(M)-

PROOF. Consider the function <fr : (X, r)) ->• (X, fj,) where (j>{x) = y for vn =
m=oxi (mod 2) and t] is the product measure r) = 0 ~ o 17, where ??o(O) = ^0 and
fl,(0) = P& and nQ) = P™.

As <p is measure preserving we know that /IAC(M) = ^AC(*?)- NOW as

^0 F^o-!) f! (0,0) ft(0,0) gn_, (0,0)

and

we obtain

As P/7" = 1 - P /7 0 we have

So by Lemma 3.3 we have our result. •
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180 Genevieve Mortiss [10]

The AC entropy of a Quas-Markov measure is easily calculated. For a general
T,, P^X2P™X,""' P"nZ!,xnM a r k o v m e a s u r e of the fo rm n([xi, x 2 , . . . , *„]) = AT,, P^X2P™X,""' P"nZ!,xn

 w e n a v e

the recursive relationship

O (h (P&

where /i(X°_,) is the measure of the set of x e X with xn_i = 0 . This formula will
allow us to explain why it may be possible for two equivalent Markov measures to
have different AC entropies.

Now by results of Lodkin ([8]) and LePage and Mandrekar ([7]), two Markov
measures which are ergodic for T on X = YlHo^-i and have weights Pff, Q("J
bounded away from zero are equivalent if and only if

00 / /— /—V
< OO

for all i,j = 0,1. By this condition lim,,-^ h(P^) = lim,,-^ h(Q("J). However, it
is not immediately clear to us that this condition is sufficient to guarantee equality of
AC entropy. In addition, questions remain as to the validity of the Markov measure
equivalence criteria if the weights are not bounded away from zero, or if AC entropy
is defined on a more general space X = Yl^i %-no- Hence we leave examination of
the detail of this point to a future paper.

4. AC entropy within orbit equivalence classes

In the study of ergodic dynamical systems most attention has been given to those
systems which are measure preserving. For this reason we believe that in developing
a new invariant we should hope to provide more information about the type III
systems rather than the already well-studied measure preserving systems and then-
close relatives in the II i class.

AC entropy is not an invariant of orbit equivalence as shown by the results below.
However it does allow us to subdivide the type III orbit equivalence classes, and so it
may hold potential in the investigation of the IIIo classes.

In this section we are dealing exclusively with product measures on X = ]"[", T2.
We summarize our results as follows:

• All II! systems have /JAC(M) = 1-

• For every c € [0, 1] there is a 111̂ (0 < A. < 1) system with /IAC(M) = c.

One of our major tools in this section will be the following result.
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[11] Average co-ordinate entropy 181

THEOREM 4.1 (Moore's Criteria [9]). Let [i be a product measure on X. Then

(1) ix is type I if and only i/5^,-(l — «<•) < oo;
(2) [i is type W.x if and only if^t aj < oo;

(3) fi is type III if and only (/"£,(! ~ ai)(nun(2ai/(l - a,-), I))2 = oo;
(4) if fx satisfies none of the above conditions then /z is of type 11^.

From part (2) it immediately follows that

PROPOSITION 4.2. All Hi systems (X, r , n) have AC entropy 1.

PROPOSITION 4.3. For all c, (0 < c < 1) //iere emta a IIIi system (X, f, /x) vvi'f/i

PROOF, (i) /IAC(A0 = 0- We take an example from [5].

EXAMPLE. Let {CT, = log(l + a,-)/(l — a , )}^ , be a sequence of the form

Pi, Pi. • • • , Pi, P2, P2, • • • , 2pi, 2 p [ , . . . , 2p2, 2p2,

where P1/P2 ^ Q and if «*, is the number of terms kpt then «t( > e*A.

Now it can be shown that e~Pl and e-P2 are both in the ratio set of this measure and
hence that n is a type III] measure where a, —>• 1 and so hAC(n) = 0.

(ii) AAC(M) = 1. For /IAC(M) = 1 we merely quote [3, Proposition 6.2]: 'If a, -+ 0

and J2 a] — °° t n e n M is °f {yPe I^i •'
(iii) AAC(M) = c, 0 < c < 1. We can easily obtain a IIIi system by defining

/z,(0) = (1 - a)/2, /i,-(l) = (1 + a)/2 for 1 odd (0 < a < 1),

/x,(0) = (1 - b)/2, Mi(l) = (1 + b)/2 for j even (0 < b < 1),

where

-b))

Define n = ® ~ , /Lt/ so that

1 + a , \+a 1 - a , \-a '
— - — l o g — -—log——— = c + S, for 1 odd;

2 2 2 2
i + fc l + Z , 1-fc X-b

l o g — — log —£- = c - S, for J even,log

where S, (0 < S < c), is such that

f ( 3 ) _ l o g ( ( l + « t f ) ) / ( l - « ( * ) ) ) , Q
J log((l + 6(«))/(l - 6(5))) ^ ^ -

(The function / decreases continuously from 1 so such a S must exist.) Hence
8) = c. D
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PROPOSITION 4.4. Fix k, (0 < k < 1). For any c, (0 < c < 1), there exists a IIIX

system (X, F, n) such that /IAC(M) = c-

PROOF, (a) Case IIL., (0 < k < 1).
(i) /IAC(M) = 0- Define /x = 0 ° ^ /x, in blocks of integer length n, > I/A/,

; = 1,2, . . . , so that for / in the yth block/x,(0) = kj/(kj + l),/i,-(l) = 1/(A/ + 1).
As i - • oo, H(/z,) ->• 0 so /IAC(M) = 0.

(ii) /IAC(M) = 1- For each n e N let A(n) c [0, n] be an index set such that
( 1 / 2 ) [ V B ] < #A(n) < [V^]. For i e A(«), let /*,(0) = vA(0) = k/(l + k),
fi,(l) = vx(l) = 1/(1 +A.), while for i e [0,n] \ A(n) let fi,(0) = /*,-(l) = 1/2.
Then

«-#A(n) #A(n)
AACO) = lim H #(V) = 1.

«->oo n n

(iii) hAC(fi) = c € Q, (0 < c < 1). Let c = m/n, for m,n € 1+. We define the
required measure by taking the sequence <J, = {log(l 4- a,)/( l — a,)} = {— log A.J(|)}
from the measure constructed in part (i) and inserting strings of 0 values to form a
new sequence or/. Take a block of length n. In the first m places we put a\ = 0,
that is, H(fj,j) = 1. In the remaining places put a'm+i = a, = {— logA/(0} for
j = 1, 2 , . . . , n — m.

Repeat the process, taking another m terms with a\ = 0 and then the next n — m
values in the {— log A/(l)} sequence. Continuing in this manner the resultant measure
li will be of type III by Moore's Criteria as there will still be nk terms with 1 — a, =
2A.*/1 + kk, and further n will be of type IIL. as we have not changed the ratio set. It
is clear that /IAC(M) — m/n.

(iv) /IAC(M) = c ^ Q, (0 < c < 1). It is easily seen that by using rational
approximations we can adapt the measure from (iii) to provide examples of IIIX

systems with irrational AC entropies.
Take, for example, the decimal expansion ofc = rfi/10 + d2/102 + d3/103H =

.dxd2d-i • • • where d, 6 { 0 , 1 , . . . , 9}. Choose e (0 < e < 1). Let c, be a series of
decimal approximations to c with c, < ci+i for all i e N so that c — c, < e'/2. First
define the //,/ in blocks of length 10"' where c\ = .did2 • • • dnr The first dxd2 • • • dni

places will have //(/*;) = 1. while the remaining /i, will be taken from the sequence
defined by the at sequence used in part (iii).

Choose # ! so that if this cycle were repeated infinitely, then for all n > JVi we
would have \H(ftn)/n — c j < e/2. After that, keep defining /A, in blocks of length
10"', but now make sure that dxd2 -d^ of each 10"2 places has //(/x,) = 1. Then
choose N2 so that for all n > N2 we would have \H(fin)/n — c2\ < €2/2 and so on.

Now cn ->• c as n increases and further after each Nk, \H(f}n)/n — c\ < 2ek.
(b) Case IIIo.
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(i) /iAC (/-<•) = 0. Here we refer to an example from [5]. We shall modify it in
parts (ii), (iii) and (iv).

EXAMPLE. Let {or,-}", be of the form

2k 2k 2k 2 k + l 2 k + l 2 k + 2

To ensure that fx is of type III we choose the nk to satisfy part (3) of Moore's Criteria
so that ]T^,(1 — at) = oo. Here we have 1 — a, = 2/(1 + e"') so we can take
nk > (e2* + l ) /2 . The resulting measure ^ is of type III0. Further, l i m , . ^ a, = 1 so
we have /JAC(M) = 0-

(ii) hAC(fi) = 1. We modify the sequence {CT,} from part (i) by inserting long
sequences of zeroes (that is, fit with entropy 1) between the 2k strings; that is,

2k,2k,... ,2*. 0, 0 , . . . , 0, 2* + 1 , . . . ,2*+ 1

where the Nk are chosen so large that £*=i n,
Our new measure is still type IIIo but we now have AAC(M) = 1.
(iii) /IAC(M) = c € Q, (0 < c < 1). Let c = m/n, for m,n € 2 + . Again we will

take our IIIo measure from part (i) and add strings of zeroes to the sequence {criJ^j.
Define {CT/}~| in blocks of length n. The first m values for a[ in each block will be

zero, that is, the /x, have entropy 1. The remaining n — m values in the block will be
taken from the original {a,} sequence and integrated into the {a/} sequence with their
srder undisturbed, for example,

0 , 0 , . . . ,0 ,2* ,2* ,2* + 1 , . . . , 2* + 1 .

n

Fhere will still be nk terms of 2* so our resulting measure will still be type III, and as we
lave not changed the ratio set we know it will be type III0. Clearly /IAC(M) — m/n = c
is required.

(iv) /IAC(M) = c $. Q, (0 < c < 1). We obtain III0 systems with irrational AC
entropies by modifying the measure from part (iii) using rational approximations, as
llustrated previously in the IIL. case. •

5. IC equivalence

In this section we introduce an equivalence relation—Initial Co-ordinates or IC
iquivalence—for which AC entropy is an invariant. The definition of this equivalence
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relation was inspired by Proposition 2.3. Although that result dealt solely with
permuted product measures, the formulation of IC equivalence contains no such
restriction.

DEFINITION 5.1. Let (X, F, n) and (X, F, v) be two systems of finite co-ordinate
changes. Suppose we have an invertible, bi-measurable map (f> : (X, /x) ->• (X, v)
satisfying the following: For each n e N there exist m^n) , m2(n) € N with

(n) <n <m2(n), »ii(n) < m\{n + 1), m2(n) < m2(n + 1),
and

mi(n) m2(n)
hm = hm = 1,
n-*oc n n-»oo /j

such that for almost all x, y € X,

(i) if 0 ( J : ) and </>(y) have the same first n co-ordinates (that is, they are initially
equal), then x and v have the same first mi(n) co-ordinates; and

(ii) if x and y have the same first m2(n) co-ordinates, then <p (x) and <f>(y) have the
same first n co-ordinates.

Now if ix o <p = v (here /i o <j>(E) = fx(<j>~l(E)) for measurable E) we say (X, T, /i)
and (X, F, v) are IC equivalent.

NOTE. Our definition requires that /x o<f> = v. It would be preferable to weaken this
requirement to fi o <p ~ v as is the case for orbit equivalence. Remember that our aim
is to develop an equivalence relation for which AC entropy is an invariant. In certain
cases we could replace the measure equality condition with measure equivalence
and still achieve our objective. For example, if ix, ix o <f> and v were all product
measures then, as our working will later show, all that would be required to establish
^AC(M) = hAc(v) would be /x o <j> ~ v for a suitable (j>. However as we have shown
in Section 3, this may not be sufficient in the general case.

LEMMA 5.2. IC equivalence is an equivalence relation.

PROOF. Reflexivity is obvious, taking (f> as the identity map.
For symmetry, suppose fx is IC equivalent to v via the map <p, with sequences m i (n)

and m2(n) to guarantee properties (i) and (ii) in our definition. We will show that for
the map <j>~x we can find m\ (n) and m'2(n) for each n to satisfy these same properties.

Let x and v have the same first n co-ordinates. We want m\ (n) < n such that <p(x)
and <j>{y) have the same first m\(n) co-ordinates.

We know from property (ii) that if x and v have the same first m2{p) co-ordinates
then <(>(x) and </>(v) have the same first p co-ordinates. So if n = m2(p) for some
p € N, we could take m\(n) = p. Let p e N be the greatest integer such that
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consider the partitioning of orbit equivalence classes by IC equivalence. Establishing
an intermediate classification between measure equivalence and orbit equivalence
could yield some interesting results. In fact such a scheme may even be necessary if
we are ever to gain a clearer picture of the III0 class.
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