A Theorem on the Complete Integral

By H. E. Daniels, Edinburgh University.
(Received 14th May, 1932. Read 4th June, 1932.)

The object of the present note is to show that a well-known theorem in the theory of non-linear partial differential equations, which is usually proved analytically, ${ }^{1}$ admits of a geometrical proof which exhibits the relations concerned in a more intuitive manner.

Theorem: Given a non-linear partial differential equation

$$
\begin{equation*}
f(x, y, z, p, q)=0 \tag{1}
\end{equation*}
$$

Let $f_{1}(x, y, z, p, q), f_{2}(x, y, z, p, q)$ be two independent functions satisfying

$$
\left[f_{1}, f\right]=0, \quad\left[f_{2}, f\right]=0
$$

Then if p, q be eliminated from

$$
\begin{align*}
& f=0 \\
& f_{1}=a_{1} \tag{2}\\
& f_{2}=a_{2} \tag{3}
\end{align*}
$$

where a_{1} and a_{2} are arbitrary constants, the necessary and sufficient condition that the surface so obtained should be a complete integral of (1) is

$$
\left[f_{1}, f_{2}\right]=0
$$

where

$$
\begin{aligned}
{[F, f] } & \equiv \frac{\partial F}{\partial x} \frac{\partial f}{\partial p}+\frac{\partial F}{\partial y} \frac{\partial f}{\partial p} \\
& +\frac{\partial F}{\partial z}\left(p \frac{\partial f}{\partial p}+q \frac{\partial f}{\partial q}\right)-\frac{\partial F}{\partial p}\left(\frac{\partial f}{\partial x}+p \frac{\partial f}{\partial z}\right)-\frac{\partial F}{\partial q}\left(\frac{\partial f}{\partial y}+q \frac{\partial f}{\partial z}\right)
\end{aligned}
$$

Solving (1) and (2) for p and q, say

$$
\begin{aligned}
& p=\phi\left(x, y, z, a_{1}\right) \\
& q=\psi\left(x, y, z, a_{1}\right)
\end{aligned}
$$

[^0]and substituting in (3) we get a certain surface S. Now solutions of $[F, f]=0$ are, by the theory of linear partial differential equations, the same as solutions of Charpit's equations for the characteristic strips of $f=0$, viz.
$$
\frac{d x}{\frac{\partial f}{\partial p}}=\frac{d y}{\frac{\partial f}{\partial q}}=\frac{d z}{p \frac{c f}{\partial p}+q \frac{\partial f}{\partial q}}=\frac{d p}{-\left(\frac{\partial f}{\partial x}+p \frac{\partial f}{\partial z}\right)}=\frac{d q}{-\left(\frac{\partial f}{\partial y}+q \frac{\partial f}{\partial z}\right)} .
$$

Hence if

$$
\begin{equation*}
f_{2}^{\prime}=\alpha_{2}^{\prime} \tag{4}
\end{equation*}
$$

were another independent integral of $[F, f]=0$, then (1), (2), (4) would give another surface S^{\prime} intersecting S along a characteristic curve of $f=0$. S must then be generated by characteristic curves C of $f=0$, whose associated strips satisfy $p=\phi, q=\psi$.

We have the identity

$$
[F, f] \equiv-[f, F]
$$

so that, since f_{1} satisfies $[F, f]=0, f$ satisfies $\left[F, f_{1}\right]=0$. Again, if we impose the relation

$$
\left[f_{1}, f_{2}\right]=0
$$

then f_{2} satisfies $\left[F, f_{1}\right]=0$. Also $\left[f_{1}, f_{1}\right] \equiv 0$, so $f=0, f_{1}=a_{1}, f_{2}=a_{2}$ are three integrals of Charpit's equations corresponding to the partial differential equation

$$
f_{1}=a_{1}
$$

and S is, by similar reasoning, generated by characteristic curves C_{1} of $f_{1}=a_{1}$, whose strips again satisfy $p=\phi, q=\psi$.

It follows that at the intersection of a C and a C_{1} the strips corresponding to C and to C_{1} have a common surface element, which must therefore be the element of S at that point (since two intersecting lines determine an element); and as every point of S is an intersection of a C and a C_{1}, S must be an integral surface of $f=0$ and $f_{1}=a_{1}$ (and also of $f_{2}=a_{2}$ since the argument is quite symmetrical with respect to f_{1} and f_{2}).

Conversely, if S is an integral surface of $f=0$, we can show that $\left[f_{2}, f_{1}\right]=0$.

For then the normal at any point of S is given by $p=\phi, q=\psi$ (since the strips belonging to the curves C now lie on the surface S). Hence S is also an integral surface of $f_{1}=a_{1}$ and so is generated by
characteristic strips of $f_{1}=a_{1}$. Let $f_{3}=a_{3}, f_{4}=a_{4}$ be the other two independent integrals of $\left[F, f_{1}\right]=0$. Then

$$
\left.\begin{array}{l}
f_{3}(x, y, z, \phi, \psi)=a_{3} \\
f_{4}(x, y, z, \phi, \psi)=a_{4}
\end{array}\right\}
$$

together give the congruence of characteristic curves of $\left[F, f_{1}\right]=0$ whose associated strips satisfy $p=\phi, q=\psi$.

If $\lambda\left(a_{3}, a_{4}\right)=$ const., then these curves generate the surface $\lambda\left(f_{3}, f_{4}\right)=$ const., λ being an arbitrary function. By choosing λ suitably, they can be made to generate $f_{2}(x, y, z, \phi, \psi)=a_{2}$, since we know that this is generated by curves of the above congruence; f_{2} must then be of the form $\lambda\left(f_{3}, f_{4}\right)$, and consequently must satisfy $\left[F, f_{1}\right]=0$.

The condition $\left[f_{1}, f_{2}\right]=0$ is thus both necessary and sufficient.

[^0]: 1 See, for example, L. Bieberhach, Differenticlgleichungen (Berlin, 1923), 220-221, or Goursat, Leçons surl'intégration des équations aux dérivées partielles du premiér ordre (Paris, 1891), 167 (§66).

