A Theorem on the Complete Integral

By H. E. DANIELS, Edinburgh University.

(Received 14th May, 1932. Read 4th June, 1932.)

The object of the present note is to show that a well-known theorem in the theory of non-linear partial differential equations, which is usually proved analytically,¹ admits of a geometrical proof which exhibits the relations concerned in a more intuitive manner.

Theorem: Given a non-linear partial differential equation

$$f(x, y, z, p, q) = 0.$$
 (1)

Let $f_1(x, y, z, p, q)$, $f_2(x, y, z, p, q)$ be two independent functions satisfying

$$[f_1, f] = 0, \qquad [f_2, f] = 0.$$

Then if p, q be eliminated from

$$f = 0$$

 $f_1 = a_1$ (2)
 $f_2 = a_2$ (3)

where a_1 and a_2 are arbitrary constants, the necessary and sufficient condition that the surface so obtained should be a complete integral of (1) is $[f_1, f_2] = 0$

where

$$[F, f] \equiv \frac{\partial F}{\partial x} \frac{\partial f}{\partial p} + \frac{\partial F}{\partial y} \frac{\partial f}{\partial p} + \frac{\partial F}{\partial q} \frac{\partial f}{\partial p} + \frac{\partial F}{\partial p} \left(\frac{\partial f}{\partial x} + p \frac{\partial f}{\partial z} \right) - \frac{\partial F}{\partial q} \left(\frac{\partial f}{\partial y} + q \frac{\partial f}{\partial z} \right).$$

Solving (1) and (2) for p and q, say

$$p = \phi (x, y, z, a_1)$$
$$q = \psi (x, y, z, a_1),$$

¹ See, for example, L. Bieberbach, Differentialgleichungen (Berlin, 1923), 220-221, or Goursat, Leçons sur Vintégration des équations aux dérivées partielles du premier ordre (Paris, 1891), 167 (§ 66). and substituting in (3) we get a certain surface S. Now solutions of [F, f] = 0 are, by the theory of linear partial differential equations, the same as solutions of Charpit's equations for the characteristic strips of f = 0, viz.

$$\frac{\frac{dx}{\partial f}}{\frac{\partial f}{\partial p}} = \frac{\frac{dy}{\partial f}}{\frac{\partial f}{\partial q}} = \frac{\frac{dz}{p\frac{\partial f}{\partial p} + q\frac{\partial f}{\partial q}}}{p\frac{\partial f}{\partial q}} = \frac{\frac{dp}{-\left(\frac{\partial f}{\partial x} + p\frac{\partial f}{\partial z}\right)}}{-\left(\frac{\partial f}{\partial y} + q\frac{\partial f}{\partial z}\right)}.$$

e if
$$f'_2 = a'_2 \tag{4}$$

Hence if

were another independent integral of [F, f] = 0, then (1), (2), (4) would give another surface S' intersecting S along a characteristic curve of f = 0. S must then be generated by characteristic curves C of f = 0, whose associated strips satisfy $p = \phi$, $q = \psi$.

We have the identity

$$[F,f] \equiv -[f, F],$$

so that, since f_1 satisfies [F, f] = 0, f satisfies $[F, f_1] = 0$. Again, if we impose the relation

$$[f_1, f_2] = 0,$$

then f_2 satisfies $[F, f_1] = 0$. Also $[f_1, f_1] \equiv 0$, so f = 0, $f_1 = a_1$, $f_2 = a_2$ are three integrals of Charpit's equations corresponding to the partial differential equation

$$f_1 = a_1,$$

and S is, by similar reasoning, generated by characteristic curves C_1 of $f_1 = a_1$, whose strips again satisfy $p = \phi$, $q = \psi$.

It follows that at the intersection of a C and a C_1 the strips corresponding to C and to C_1 have a common surface element, which must therefore be the element of S at that point (since two intersecting lines determine an element); and as every point of S is an intersection of a C and a C_1 , S must be an integral surface of f = 0and $f_1 = a_1$ (and also of $f_2 = a_2$ since the argument is quite symmetrical with respect to f_1 and f_2).

Conversely, if S is an integral surface of f = 0, we can show that $[f_2, f_1] = 0$.

For then the normal at any point of S is given by $p = \phi$, $q = \psi$ (since the strips belonging to the curves C now lie on the surface S). Hence S is also an integral surface of $f_1 = a_1$ and so is generated by characteristic strips of $f_1 = a_1$. Let $f_3 = a_3$, $f_4 = a_4$ be the other two independent integrals of $[F, f_1] = 0$. Then

$$f_{3}(x, y, z, \phi, \psi) = a_{3}$$

$$f_{4}(x, y, z, \phi, \psi) = a_{4}$$

together give the congruence of characteristic curves of $[F, f_1] = 0$ whose associated strips satisfy $p = \phi, q = \psi$.

If $\lambda(a_3, a_4) = \text{const.}$, then these curves generate the surface $\lambda(f_3, f_4) = \text{const.}$, λ being an arbitrary function. By choosing λ suitably, they can be made to generate $f_2(x, y, z, \phi, \psi) = a_2$, since we know that this is generated by curves of the above congruence; f_2 must then be of the form $\lambda(f_3, f_4)$, and consequently must satisfy $[F, f_1] = 0$.

The condition $[f_1, f_2] = 0$ is thus both necessary and sufficient.