
Proceedings of the Edinburgh Mathematical Society (1996) 39, 151-162 .C

A MIXED DIRICHLET-NEUMANN PROBLEM FOR A
NONLINEAR REYNOLDS EQUATION IN
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The aim of this work is to study the existence of solutions for a mathematical model of the displacement of a
piezoviscous lubricant between two elastic surfaces. As we deal with a rolling ball contact problem, the
deformations are modelled by the linear Hertzian theory. The fluid pressure behaviour is governed by the
classical Reynolds equation for thin film displacement. The relevant aspect of cavitation in lubrication is
described by means of the Elrod Adams model which leads to a mathematical free boundary problem.

The two main original features of the model problem in relation to previous works are: the supply of
lubricant coming from a groove that is transversal to the direction of fluid displacement and the consideration
of a piezoviscous law of Barus. Mathematically, the first one leads to a mixed Dirichlet-Neumann problem for
the Reynolds equation and the second one involves an additional nonlinearity in a diffusion type term.

1991 Mathematics subject classification: 35J25, 35J60, 35R35, 73T05

1. Introduction

The greatly increasing number of industrial technical devices involving the presence of
lubricated contacts motivates interest in studying more suitable mathematical models
for the different practical situations. The two elastic solids in contact can present several
geometries: cylinder-cylinder, cylinder-plane and sphere-plane contacts, for example. A
complete rigorous mathematical study might include not only the description of the
numerical algorithms that provide results agreeing with experimental measures but also
the theoretical proofs, based on tools of mathematical analysis, that ensure their
validity.

We consider as solids both an elastic rolling ball and a rigid plane. The real
possibility of the ball deformation leads to an elastohydrodynamic lubrication problem.
Basic aspects of the early developed theory in this scientific domain can be found in
Dowson-Higginson [8] where the three main common features of this kind of problem
are already quoted: the fluid hydrodynamic displacement, the solid elastic deformation
and the air bubble generation. The Reynolds equation, linear Hertz contact theory and
different cavitation models try to mathematically model these three phenomena
respectively. Moreover, the modification of the initial fluid viscosity due to the presence
of sufficiently high values of lubricant pressure might have to be taken into account in
certain devices. For this purpose, in this paper, we consider the piezoviscous relation
given by Barus law (see Cameron [6]).
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In some cases, the set of equations that takes into account the different phenomena
consists of a non-linear elliptic problem. In others, the behaviour of fluid pressure is
modelled in terms of a variational inequality. For the latter, in the constant viscosity
case, the works of Oden-Wu [13] and Hu [11] treat the problem in one and two
dimensions. For this variational inequality cavitation model, existence results appear in
Hu [11] and in Rodrigues [14] by using different 'a priori' estimates. Nevertheless, as is
pointed out in Bayada-Chambat ([1] and [2]), this model is not always appropriate to
describe the cavitation phenomenon. An alternative model introduces a saturation
function as a supplementary unknown, see Bayada-Chambat [1]. Consideration of this
model also leads to the existence and uniqueness of the solution for a hydrodynamic
piezoviscous problem in Vazquez [15] and only to existence in several elastohydro-
dynamic isoviscous problems in Durany-Vazquez [9] and Bayada-Durany-Vazquez
[3]. More recently, the existence of a solution has been proved for an elastohydro-
dynamic piezoviscous case with Dirichlet boundary condition in Bayada-El Alaoui-
Vazquez [4]. The main objective of this work is the extension of this last result to the
mixed Dirichlet-Neumann boundary condition. The need of this type of boundary
condition is motivated by the transversal supply of fluid in the physical device treated
here.

2. The model problem

In the book of Dowson-Higginson [8], a large variety of contacts in industrial
devices are reduced to a ball-plane geometry by using the equivalent radius concept. So
the elastohydrodynamical contact here considered consists of an elastic ball that rotates
above a sliding rigid plane. They are separated by a thin film of lubricant supplied
through an axial groove as shown in Fig. 1. The classical approximation of the gap is
given in the rigid case by the expression

?^f- (2.1)

that represents a parabolic approximation for a given sphere whose radius is R. The
positive constant h° corresponds to the gap at the point nearest to contact (placed at
the origin of coordinates). Clearly, the condition

0<h°<ho(x,y)<hi, with h°,hl two constants (2.2)

is satisfied in a bounded domain Q.
In the case of elastic surfaces an additional deformation term to expression (2.1) must

be considered (see Oden-Wu [13]). Therefore, the total gap also depends on the fluid
pressure in the following way:

h = h(x, y, p) = ho(x, y) + \ I , P ( t ' u ) dt du (2.3)
*Eay/(x-t) 2 + (y-u)2
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FIGURE 1
Lubricated device and bidimensional domain.

where £ represents the Young equivalent modulus. It can be proved that the function

2
k((x,yUt,u)) = - (2.4)

belongs to L'(fi) in the variable (t,u) and the corresponding norm is bounded by a
positive constant denoted hereafter by K.

The pressure-viscosity law of Barus for the homogeneous lubricant obeys the
equation
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v(p) = voe" (2.5)

where a and v0 denote the piezoviscosity constant and the zero pressure viscosity
respectively.

The whole mathematical strong formulation of the problem is posed on a bi-
dimensional domain fi = ( — Mt,M2) x( — N,N) with A/,, M2 and N positive constants.
Physically, it corresponds to a small region located in a neighbourhood of the near-
contact point in the rigid case. The set of equations modelling the coupled problem is:

Find (p, 0) such that:

„ , - - „ . . „ , - •- „ , 6vos—, p>0 and 0=1 in Q+ (2.6)
dx\ dx) dy\ dyj dx

^-(6h) = 0, p = 0 and O ^ 0 = l in fi0 (2.7)8_
dx

^6v0s(l9)hcos(n,l), p = 0 on S (2.8)

on

with the boundary conditions

0 = 0O o n r 0 (2.9)
p = 0 on T (2.10)

where s denotes the velocity of fluid displacement in the x direction, 0O is a supply
parameter, n represents the unit normal vector to £ pointing to Qo, i is the unit vector
in the x-direction; and the sets appearing above are defined by

no={(x,y)eQ/p(x,y) = 0}

I =3Q+nfi (2.11)

To ={(x,y)edn/x=-Ml}

r =

In order to complete the above set of equations the gap-pressure relation (2.3) must
be added.

Remark 2.1. The boundary conditions associated with the nonlinear elliptic partial
differential equation correspond to a mixed Dirichlet-Neumann type problem. The
Neumann condition is imposed on the supply boundary Fo while on the rest of the
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boundary a homogeneous Dirichlet condition is considered. The equation (2.6) repre-
sents the Reynolds equation in the fluid part of the domain denoted by Q+.

Let Hl(£l) denote the classical Sobolev space and let V be the space

equipped with the norm

\\\\ ( i \ \ ) U 2 (2.12)

that is equivalent to the norm usually considered in
We propose the following variational formulation:

Problem (&). For 0oeL2(ro), 0£00£l, find peH^Q) and BeL^Cl) such that:

(2.13)
x ro

in fi (2.14)

p^O in Q (2.15)

where H denotes the Heaviside function defined by

and h(p) is given by expression (2.3).

3. Existence of solution

In order to obtain an existence of solution theorem for problem {&) we follow the
classical method of regularization of the Heaviside map as in other related problems
treated in Bayada-Chambat [2] and Vazquez [15]. This technique introduces the so-
called regularized problem

Problem (^t). Find pt e V such that

+ 6vos J 60h(pc)<t>do V 0 e K (3.1)
To
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Pe^O (3.2)

where the Heaviside function H is approached by

(3.3)

In order to demonstrate the existence of solution of the above regularized problem
c) we propose some fixed-point theorem tools.
Let us define the subset BR of the Hilbert space L2(Q.) as

Hc(t)=l t/e O^t^e.

<:<t>^R a.e. in Q}

and the operator

p->T(p)=q

where q is the solution of the following linear problem.

Problem (J). Find qeV such that

J h\p) e-"VqV4> dx dy = 6vos J H.(p)h(p) ̂ dx dy
n n ox

+ 6vos f 60h(p)<t>do V<f>eV (3.4)
To

where we have dropped the e index in the clearly e-dependent solution.

Remark 3.1. For a given p in BR the function h(p) is well defined on Fo in the sense
of traces and belongs to L2(F0) by means of the straightforward bound of the integrals
involved. In fact, the function h0 belongs to L2(r0) and the inequality

UUk((-MuyUt,u))p(t,u)dtdu)2dy\ ^RL^2K (3.5)

holds with L = 2N, the length of Fo.

In order to study the linear problem (2) we proceed in three steps:

Step 1. Existence and L2(Q)-estimates for problem (3).
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By the estimate

$k({x,y),(t,u))p(t,u)dtdu
n

<hl+R $k((x,y),(t,u))dtdu <hl + KR

the inequality

(3.6)

leads to the existence and uniqueness of solution for the linear problem ($). Moreover
we can take 0 = q as a test function to have as p lies in BR

dxdy + \\h\\LHrJq\\LHrJ
J

Therefore

(3.7)

( 3 . 8 )

with C(fi) the norm of the trace mapping from Hl(Sl) into L2(V0).

Step 2. The function q e Hl
0(Cl) n C(H).

For a real parameter A and a pair of given functions /,geL°°(n), such that / > 0 and
there exists a strictly positive constant [i satisfying g^fi, we consider the variational
inequality:

Find preKr such that

where

(3.9)

(3.10)

Existence and uniqueness of solution for (3.9) are classical results of variational
inequalities. Moreover, the following theorem holds.
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Theorem 3.1. Let f e L°°(Q) n L2(r0) fee suc/i r/utf / > 0 , geL«>(n)nL2(r0) be such
that there exists n satisfying g ^ j / > 0 in Q, and 6oeL2(ro) with 0^6o^l. Let p be the
solution of the problem:

Find peV such that

l Q V«£eK (3.11)
a a ox ro

If pr is the unique solution for (3.9) and if 9^ defined on f0 by

& = X(l-ffo)f, (3.12)

satisfies 90 ^ 8r
0 we have p ^ pr.

Proof. The proof is a straightforward generalization of Theorem 3 in the work
Durany-Vazquez [9] for the isoviscous case (<x=0). •

Corollary 3.1. Let 0oeL2(ro) , O g 0 o ^ l , and let ^ be defined by (3.12). If 0o^%,
then the function q, the solution o/(3.4), belongs to Hj(fi)

Proof. Clearly, the choice of g = h3(p) e"ap, f = h(p), n = (ho)3e~xR and A = 6vos
satisfies the hypotheses of the previous theorem. •

Moreover the fact that HE(p) and h(p) belong to H1(Q) leads to the regularity
property qeH2(Q)c:C{Cl) and concludes this step.

Step 3. L°°(fi)-estimates for the linear problem.

After the previous computations we use the classical LCO(Q) estimates for elliptic
variational equations (see Kinderlehrer-Stampacchia [12] and Chipot [7], for example).

Thus, for a given k^O, Proposition 5.3 in P2] , allows us to consider

as a test function in (3.4). So, we have

6vos\HXp)h{p)^dxdy+6vos J
n ox ro

= 6vos J HE(p)h(p)d-^dxdy + 6Vos j eoh(p)^kda. (3.13)
ox
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Nevertheless, the last integral on the boundary vanishes because q e HQ(Q) n C(Q).
Therefore, the Holder inequality leads to

J h\p)
iinlq>k] dx

\l/2

dxdy)

Thus

and

For /cj ̂ fc2i?0 we have [q>fci]<=[g>/c2] and then

(* i -*2 )1 [9>* i ] |= 1 (kt-

fa>«ti] lq>k2] \

where the last inequality holds for p* > 2 by means of the continuity inclusion of //^(fi)
into Z/*(Q) with the Sobolev constant C. Whence, we can state

and apply Lemma B.I. from Kinderlehrer-Stampacchia [12, p. 63] to establish the
bound

(3.15)

for all p* > 2.
Now we can formulate the following proposition:

Proposition 3.1. For a given peBr there exists a solution of problem (2). Moreover we
have the estimates:
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ll/ill < ®VOSe ^ |o|(l/2)-(l/p>)o(p*)/(p*-2)_^ /-I 1 -T\
||9||L»(n)= 7LO)2 l"l l "~C2 Wl/)

for all p* > 2.

The next technical lemma is useful for the required hypotheses for the application of
the Schauder fixed point theorem.

Lemma 3.1. The functional from L2(Q) to L2(fi) defined by peL2{£l)->h(p) is
continuous.

Proof. See lemma 7.12 in Gilbarg-Trudinger ([10, p. 159]). •

Theorem 3.2. / / the Sobolev exponent p* > 2, the Sobolev constant C and the physical
parameters of the problem satisfy the condition:

2)<1 (3.18)

then there exists a solution of the problem (^c) for every s>0. Moreover we can obtain the
s-independent estimates:

(3.19)

L«.(O)^C2. (3.20)

Proof. The operator T from BR to L2(il) is compact and continuous. In fact, the
continuity follows from Lemma 3.1 and the continuity of the exponential and He

functions. Compactness is a direct consequence of the estimate (3.17) and the compact
inclusion of H^Q) into L2(Q).

In order to apply Schauder fixed point theorem we need the choice of a real positive
number R such that T(BR) c BR. It can easily be proved that q is nonnegative by taking
q~ =max( — q,0) as a test function. So, it remains for R to satisfy the inequality

6vosea C|^i(1/2)_(1/p.)2(P«,/<p.-2)<£

°)2(h°)

But if condition (3.18) is satisfied then there exists an interval (R0,Ri) such that for
all Ke(K0.Ki) the inclusion T(BR)cBR holds. Let f^R) and f2(R) be defined by
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where

Thus we need to establish the existence of R such that fl(R)^f2(R). For this, it is
enough for A to be greater than the slope of the tangent line to ft that contains the
origin. The translation of this geometrical argument leads to condition (3.18). •

A solution of problem (^) can be obtained as the limit of the sequence {pE}£ of
regularized problems solutions.

Theorem 3.3. If condition (3.18) is fulfilled then there exists a solution of problem (SP).

Proof. From (3.19) and (3.20) we have a subsequence of {p£}£, still denoted {p£}£,
such that

3pe V n L°°(n)/pc->p in //'(Q) weakly and in LCO(Q) weakly- *.

Moreover

30eL°°(Q)/tf£(p£)->0 in L°°(fi) weakly-*.

Therefore, from Theorem 3.2, the continuity of the exponential map and the previous
convergences, we can obtain that the pair (p, 0) is a solution of the problem {£?) by
passing to the limit in (0J). •

4. Conclusions

In this paper the authors mainly generalize previous results of existence of solution
for an isoviscous mathematical model to the more realistic piezoviscous case. Another
original, but no less important, aspect is the supply of lubricant which is taken into
account by means of a mixed Dirichlet-Neumann boundary condition.

Further effort is now being devoted to two research lines: the study of theoretical
models that involve charge-imposed effects and the performance of numerical algorithms
that allow approximated solutions to be obtained with a certain degree of accuracy.

Acknowledgements. This work has been partially supported by the Research Projects
of D.G.I.C.Y.T. (PB92-0323) and Xunta de Galicia (XUGA21005B93).

REFERENCES

1. G. BAYADA and M. CHAMBAT Existence and uniqueness for a lubrication problem with
nonregular conditons on the free boundary, Boll. Un. Mat. ltal. B 6 (3-B) (1984), 543-557.

2. G. BAYADA and M. CHAMBAT, Sur quelques modelisations de la zone de cavitation en
lubrication hydrodynamique, J. Theor. Appl. Mech. 5 (1986), 703-729.

https://doi.org/10.1017/S0013091500022860 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022860


162 J. DURANY, G. GARCIA AND C. VAZQUEZ

3. G. BAYADA, J. DURANY and C. VAZQUEZ, Existence of solutions for a lubrication problem in
elastic journal bearing devices with thin bearing, Math. Methods Appl. Sci. 18 (1995), 255-266.

4. G. BAYADA, M. EL ALAOUI and C. VAZQUEZ, Existence of Solution for Elastohydrodynamic
Piezoviscous Lubrication Problems with a New Model for Cavitation (Publication de l'Equipe
d'Analyse Numerique Lyon-Saint Etienne, 163, 1994) and European J. Appl. Math. (1995), to
appear.

5. H. BREZIS, H. KINDERLEHRER and G. STAMPACCHIA, Sur une nouvelle formulation du probleme
de l'ecoulement a travers une digue, C. R. Acad. Sci. Paris Sir A-B (1978), 711-714.

6. A. CAMERON, Basic Lubrication Theory (Ellis Horwood Series, 1981).

7. M. CHIPOT, Variational Inequalities and Flow on Porous Media (Applied Math. Sciences
Series 52, New York. Springer-Verlag, 1984).

8. D. DOWSON and G. R. HIGGINSON, Elastohydrodynamic Lubrication (Pergamon Press, 1977).

9. J. DURANY and C. VAZQUEZ, Mathematical analysis of an elastohydrodynamic lubrication
problem with cavitation, App. Anal. 53 (1994), 135-142.

10. D. GILBARG and N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order
(Berlin. Springer-Verlag, 1977).

11. B. Hu, A quasivariational inequality arising in elastohydrodynamics, SIAM J. Math. Anal.
21 (1990), 18-36.

12. D. KINDERLEHRER and G. STAMPACCHIA, An Introduction to Variational Inequalities and their
Applications (New York. Academic Press, 1980).

13. J. T. ODEN and S. R. Wu, Existence of solutions to the Reynolds equation of elastohydro-
dynamic lubrication, Internal. J. Engrg. Sci. 23 (1985), 207-215.

14. J. F. RoDRiGUES, Remarks on the Reynolds problem of elastohydrodynamic lubrication,
European J. Appl. Math. 4 (1993), 83-96.

15. C. VAZQUEZ, Existence and uniqueness of solution for a lubrication problem with cavitation
in a journal bearing with axial supply, Adv. in Math. Sci. and Appl. 4 (1994), 313-331.

DEPARTMENT OF APPLIED MATHEMATICS
UNIVERISTY OF VIGO
36280-VIGO
SPAIN

https://doi.org/10.1017/S0013091500022860 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022860

