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Abstract

We consider a two-stage tandem queue with two parallel servers and two queues.
We assume that initially all jobs are present and that no further arrivals take place at
any time. The two servers are identical and can serve both types of job. The processing
times are exponentially distributed. After being served, a job of queue 1 joins queue 2,
whereas a job of queue 2 leaves the system. Holding costs per job and per unit time are
incurred if there are jobs holding in the system. Our goal is to find the optimal strategy
that minimizes the expected total holding costs until the system is cleared. We give a
complete solution for the optimal control of all possible parameters (costs and service
times), especially for those parameter regions in which the optimal control depends on
how many jobs are present in the two queues.
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1. Introduction

We consider a two-stage tandem queue with two parallel servers and two queues, queue 1
and queue 2. In the system, there are initially 7 jobs at queue 1 and n, jobs at queue 2, and
there are no further arrivals at any later time. The two servers are identical and can serve both
types of jobs. The processing time of a job at queue 1 or queue 2 is exponentially distributed
with mean 1/u1 or 1/u2, respectively. After being processed, a job of queue 1 joins queue 2,
whereas a job of queue 2 that has been served leaves the system. A holding costc;, i = 1, 2, per
job and per unit time is incurred if there are jobs holding in queue i. For the sake of simplicity,
we assume that if two jobs are being processed and one job finishes, then the other job can
be preempted and both servers can be allocated to new jobs. For example, if both servers are
working on jobs in queue 2 when a service is completed, then both servers can be immediately
assigned to jobs in queue 1. Our goal is to develop an optimal strategy that minimizes the
expected total holding costs until the system is cleared. That is, the target is to minimize the
expression

E[/o (c101(8) +62Q2(t))dt],
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where Q1(¢) and Q;(¢) denote the number of jobs at time ¢ in queue 1 and in queue 2,
respectively. The starting point of our considerations was the paper of Ahn et al. [2], who
considered this model with only one difference: in their model, if two jobs are being processed
and one job finishes, then the other job is not preempted and only one server can be allocated to
anew job. In [2], necessary and sufficient conditions on the parameters cy, ¢z, (1, and @ were
given for the optimality of allocating both servers to queue 1 or queue 2. More precisely, it was
shown, by induction arguments, that the optimal strategy allocates both servers to queue 1 or
to queue 2 (if possible) if and only if

2214.& or C—IEI+L,

&) M1 1) M1+ 2

respectively. In the case that

(I e N Y e )
mi+pu2 2 M1
[2] gave a numerical example which suggests that, in this case, the optimal strategy is rather
complicated.

Under the assumption of preempting the other job if one job is finished, we are able to give
a complete description of the optimal strategy, especially for the case (1). Moreover, we will
see that, in most cases, the optimal strategy for our model is easily transferable to the model
considered in [2].

Other related works on tandem queues are [1], [3], [4], [5], [6], and [7]. Ahn et al. [1]
considered a model with arrivals, two stations, and two flexible servers, and gave conditions
under which it is optimal to allocate both servers to station 1 or 2. In the model of [3], there is
one server fixed to process type-1 jobs while the second server can process both types of jobs.
In [5], Hajek considered a model with interacting service stations, where arrivals to the servers
take place. His goal was to find the optimal allocation of the arriving customers to the different
servers. Pandelis and Teneketzis [6] considered multiserver scheduling in a system with two
interconnected queues, where jobs completing service in queue 1 join queue 2 with a certain
probability. The processing time has a general distribution and they proved that, under certain
conditions, a pure nonpreemptive strategy is optimal.

Farrar [4] also considered a two-stage tandem queueing system with a given initial number
of customers and no further arrivals at any later time. In addition to there being one server at
each station, there is an extra server that can be allocated to each station. The aim is to allocate
the extra server in such a way that the expected total holding costs incurred until the system is
empty are minimized. He showed that the optimal control policy is transition monotone.

The model of Rosberg et al. [7] consists of a Poisson arrival stream into a network of two
M/M/1 service stations in tandem, where the service rate at station 1 can be selected from an
interval u € [0, a], as a function of the numbers of customers waiting at each station, in such a
way as to minimize the expected total discounted or average cost. They showed that the optimal
policy is of the form u = 0 or u = a. An additional result is that, for the case of discounted
cost, the optimal process can be nonergodic whereas the process in the case of average cost is
ergodic.

The rest of the paper is organized as follows. In Section 2, we explain the model and
introduce the optimal control matrix (C(i, j))?j':o- With the help of this matrix, the
optimal control can be illustrated graphically. The main results concerning the optimal
control are given in Section 3. In Section 4, some structural lemmas are stated and proved.
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These will be needed for the proofs of the theorems for the control matrix, which are given in
Section 5. Finally, in Section 6, the connection to [2] and some future work are discussed.

2. The model

Let (i, j, X) denote the state of the system, where i and j are the numbers of jobs in queue 1
and queue 2, respectively, and X denotes the state of the two servers. There are four possible
states for X, namely 11, 22, 12, or R, where 11 means that we take two jobs from queue 1, 22
means that we take two jobs from queue 2, 12 means that we take one job from each queue,
and R means that the server has finished processing a job and a decision must be made as to
whether to choose 11, 22, or 12. Furthermore, we define V (i, j, X) to be the minimal expected
total holding costs accumulated until the system is cleared. The function V (i, j, X) satisfies
the following dynamic equations:

VG, j 1) =2 Ly o1 L R), i>2.j>0,
241
VG, j.22) = 912 Ly SR, P20,
2H2 ®
Vi, =2 My R
2 W ol 7 2 e ol )
"y ji—1, R, ij=1,
m1 =+ 2
and
VG, j, R) = min{V(G, j, 11, VG, j,22), VG, j. 12)},  i,j =2,
V@, 1, R) =min{V(,1,11), V(,1,12)}, i>2, 3)
v, j, R) = min{V(l, j,22), V(1, j, 12)}, j=2
Furthermore, the following initial conditions are obviously valid:
VA, 1LR) = V(1, 1, 12),
V(0, j, R) =V(0,}j,22), J=2,
VG,0,R) = V(i 0,11,  i>2,
1 o “4)
VA,0,R) = — + —,
ni oo
VO.1,R) = 2.
12

The following lemma states that, for i, j > 2, it is sufficient to consider only the two strategies
X =11 and X = 22, i.e. to take two jobs from queue 1 or two jobs from queue 2.

Lemma 1. Fori, j > 2,
V@, j,12) z min{V (i, j, 11), V(, j, 22)}, (%)
Proof. Leti, j > 2. Then the dynamic equations (2) give

u

Vi, 12) = — v iy + —22 v, g, 22).
n1+ n2 n1+ u2

Thus, V (i, j, 12) is a convex combination of V (i, j, 11) and V (i, j, 22), which gives (5).
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FIGURE 1: Parameter regions for c1/c>.
The optimal strategy is realized with the help of a control matrix (C(i, j ))?3.:0 that, for each
(i, j) € No x Nog (Ng = {0, 1, 2, ...}), gives the optimal control of the queue. Thus, if there

are i > 0 jobs in queue 1 and j > O jobs in queue 2, with i + j > 2, then we have at least one
of the following three possibilities for control.

e Take two jobs of queue 1, denoted by C(i, j) = 11.
e Take two jobs of queue 2, denoted by C(i, j) = 22.
e Take one job of queue 1 and one job of queue 2, denoted by C(i, j) = 12.

In order to obtain a unique control matrix, we define

11 if V@G, j.11) < V. j.22). o
i jy=1{ 1 TVERIDSVE 7220,
22 if V@, j, 11) > V@, j,22),

22 i V(I j.22) < V(. j. 12).

ed, j) = Va2 = VIL LD,
12 iV, j,22) > v, j, 12),
11 if VG 1, 11) < V(. 1,12).

CU, 1) = ifVeE 1L 1) = VG 1, 12) 2.
12 VG111 > VG, 1, 12),

Furthermore, by (4), we have

C>G,0) =11, i>2,
C(0, j) =22, Jj=2,
e, 1) =12.

Finally, for the sake of completeness, we define

C(0,0) := 0,
C(1,0) := 1,
C(0, 1) := 2.

In the next section, we give the control matrix (C (i, j)), forall (i, j) € Ng x Ny, for all possible
parameters c1, ¢z, 41, and up. To this end, we separate the parameter region of ¢ /c; into four
subregions (see Figure 1):

A:(O,HL} B:(1+L,1+£+L),
H1+ 2 Hi+ pu2 2ur 2(pr + p2)

cz[1+ﬁ+L,1+&>, D:|:l+£,oo>.
2ur - 2(p1 + m2) M1 7

https://doi.org/10.1239/jap/1127322027 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1127322027

782 K. SCHIEFERMAYR AND J. WEICHBOLD

j
5122 22 22 22 22 22
4122 22 22 22 22 22
3122 22 22 22 22 22
2122 22 22 22 22 22
12 12 12 12 12 12
0] 0 1 11 11 11 11
0

1 2 3 4 5 -

j
5122
4122
3122
2|22
1] 2
0] 0
0 i

FIGURE 3: The control matrix for region D.
J

OI+1 |22 22 22 22 22 22
i) 2 12 22 2 2 2

22 12 22 22 22 22

22 12 22 22 22 22

2 12 12 12 12 12

0 1 1 11 11 11 .-

0 1 2 3 4 5 -

FIGURE 4: The control matrix for region B.

We will show that the control matrices for the above regions are of the following forms.
(Recall that the optimal controls fori = 0, j > 0andi > 0, j = 1 are obvious and will not
be discussed.) For ci/cy € A orci/cy € D, it is always optimal (if possible) to allocate both
servers to queue 2 or queue 1, respectively (see Figure 2 and Figure 3). For regions B and C,
the situation is more complicated. For c¢1/cy € B there is a partial column (i = 1) and a total
row (j = 1) of 12s, and the other entries are 22s, while for ¢1/c; € C there is a triangular
region of 11s, a partial column (i = 1) and a partial row (j = 1) of 12s, and the other entries
are 22s (see Figure 4 and Figure 5, where |-| denotes the largest integer smaller than or equal
to its argument).
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J
LiDj+21]22 22 22 22 .. 22 22 22
LOr+1 122 22 22 22 ... 22 22 22
LiD] 2 12 22 22 ... 22 22 22
P1+1 122 12 22 22 ... 22 22 22

Li® |22 12 2 .. 2 2 22

22 22 22
22 22 22

L®1+1 |22 12 22
Li®] 22 12

U |2 2 I 2 D
0 0 1 m 1 - 11 11 11
0 1 2 3 it + 1 42 -

FIGURE 5: The control matrix for region C.

3. Main results

In this section, we present the main results concerning the optimal control of the system.
For each parameter region A, B, C, and D, we explicitly give the control matrix (C(i, j)).
First we determine the control matrix (see Figures 2-5) for the entire parameter region for the
case i = 1, i.e. when there is one customer waiting at server 1. Then we give the rest of the
control matrices for the different regions.

Theorem 1. (a) Forci/cy € A,
C(, j) =22, Jj=2.
(b) For c1/c2 € B UC, there exists a j(l) > 2 such that

12 if2<j<jm,

C(,j) = =22 if j> 0,

and jW is in fact given by

1y _ Jog(l —crpr/lea(pr + p2)l)
J =

6
log(tt2/ (1 + 112)) ©

(c) Forc1/cy € D,
e, j) =12, j=2.

Theorem 2. Forci/c; € A,

Ci, =12, i>2
C(, j) =22, i>1, j=2.
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Theorem 3. Forci/c> € B,

Ci, =12, i>2,

el j)=22, i=2 j>2

Theorem 4. Let ci/cy € C. Then there exists an index i* > 2 such that the following three
assertions hold.

(a) For j =1,
11 f2<i<i*
cin={ F2=r=0
12 ifi>i*.
(b) There exist j@, ..., j%) such that, fori € {2, ...,i*},

I if1<j<jo,

Cli i ’
“&0 {22 ifj>jo,

and j9 is in fact given by

0 = 4 toaCima(erm — eaGu + pa))/leaGur + 142)*])

)
log(pa/(p1 + u2))
(¢c) Fori =i*+1land j > 2,
C(, j) =22.
Furthermore, the index i* is given by
i* =max{i € N: f(i) <0}, 8)
where
: 1 pmy\ C1i1
f(l):=1——.( )— ©)
i\ g+ uo (g + p2)
is a strictly monotone-increasing function.
Remark 1. It is quite easy to see that
F e e AL (10)

where j (I is given in (6). Inequality (10) is an immediate consequence of Lemma 3(a), below.
Note also that,_ for i = 1, formula (7) coir_lcides with j M as given in (6). If, in Theorem 4(b),
the number j(’) is an integer, then V (i, j(’), 11) =V, j(‘), 22) = Vi, j(’), 12).

Theorem 5. Forci/c; € D,

Ca, j) =11, i>2,j>1 an
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4. Structural lemmas

To proceed towards the proofs of our theorems, we must compute some costs and characterize
the structure of our control matrices.
Lemma 2. (a) For j > 1,
aQ+j+j%
4pr .
d)Let j = 1. IfC(1,£) =12 fort € {1,2, ..., j} then V(1, j, 12) is given explicitly by

V(, j, 22) = (12)

VL i 1 N 2 pa Y
(1,7, 12) = ——|4cipipa + co| 443/ + jOui —2uz( 1 -
Apiun 1+ p2

J
+2mm<j—1+<L) ))} (13)
n1+ u2

Proof. Part (a) is shown by induction on j. The cases j = 1 and j = 2 are clear. Assuming
that (12) holds for j, we then have

i1
V@, j+1,22) = GtDe o, j,22)
2

G+Do  oQ+j+j) a+G+D+G+D?
= + = 5
212 4un 4pa

and the result follows.
Part (b) is also shown by induction on j. For j = 1 we have

1 %) 2%}
——|4cipipuz + 2 <8u2 - 2M2(1 - —) +2u 1y ———
4,11,%;1,2[ ! 2 e e

1 ’ cl 2¢o
= ——[dcipuipa + 8eapuil = — + —
dpiun n1o p2

—V(l,1,12).

Assuming that (1, £) = 12 for £ € {1,2, ..., j} and that (13) holds for j, we then have

ci1+({+ e
1+ @ )2_|_ 23

V(,j+1,12) =
®1+ p2 M1+ w2

VO, j+2.22)+ —2 v, ) 12).
n1+ w2

By using the induction hypothesis and (12), we obtain

vV, j+1,12) =
1+ 2 1+ 2 4z

[1%) 1 . 2N 2
+( =2 s— | dcinipz + o\ (4437 + )y
M1+ w2 ) A g

J J
7%} , J1%)
H2 n1+ p2 Hik2 / n1+ u2
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which, after some algebra, gives

1
V(L j+1,12) = F[mmm +epd @430+ D+ G+ D)

2
j+1
w2
+2Qu?<—14-<—————> )
2 H1 + 2

j+1
. J2%)
+ 262M1/L2<J + <—) )]
n1+ u2

In the next two lemmas, we give some structural results for the control matrix (C (i, j))

as required.

o0
i,j=0"

Lemma 3. Letci/cy < 14 pa/uy, ie.ci/co € AUBUC.
(@) Leti > land j = 3. If C(i, j) =22 then C(i + 1, j — 1) = 22.
(b) Leti > 1. If C(i,2) =22 then C(i + 1, 1) = 12.
(¢) Leti >3and j > 1. IfC(i, j) =11 then C(i — 1, j + 1) = 11.
(d) Let j = 1. IfCQ2, j) =11then C(1, j + 1) = 12.

Proof. (a) We will compare the costs for the two different strategies in the state (i + 1, j —1).
If we assume that C(i + 1, j — 1) = 11 then, by C(i, j) = 22, we get into the state (i, j — 1).
On the other hand, if we assume that C(i + 1, j — 1) = 22 then we get into the state (i + 1, j —2).
There we take the suboptimal strategy 11 (since, in this state, we do not know the optimal
strategy) and again get into the state (i, j — 1). By showing that the costs along the second path
are smaller than those along the first path, we will conclude that C(i + 1, j — 1) = 22.

Let C(i, j) = 22. Then, by (5), it suffices to show that

Vi+1,j—-1,22)—V(@+1,j—-1,11) <O0.
By the dynamic equations (2), and since V(i + 1, j —2, R) < V(i + 1, j — 2, 11), we have

Vi+1,j—1,22)=V(@i+1,j—1,11)

_G@+Da+(-De i+ Dei+ G —Dea

+V@i+1,j—2,R)— - V@i j, R
2un 21
i+ 1 i —1 i+ 1 i — 1
< I+ Der+ (@ )62+V(i+1,j—2,11)—(l+ Jer + (j )CZ—V(i,j,ZZ)
2un 2y
i+ 1D+ (G —1De i+ D+ (G —2)c L.
:( )er + (j )2+( )er + (j )2+V(1,]—1,R)
22 2
- 1 . .
@+ Da+@ )CZ—ZCH_]CZ—V(Lj—l,R)
21 2u2
ool ) sl (03]
22 2un 2uipn e "1
< 0.
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(b) Let C(i, 2) = 22. Then, by (2), (3), and (4), we have

Vi+1,1,12) - V(@i +1,1,11)
i+ 1Dcp +c
:( )Cl 2 75

VGi,2, R) + —E2 v(i+1,0,R)
12%)

W1+ u2 ®1+ n2 M1+
i+ 1
_ w — V@G, 2,R)
21
i+ 1 i+ 1
=(l+ )Cl+C2+ J7%) V(i+1,0,11)—(l+ Jerte V(i.2.22)
n1+ u2 n1+ n2 211 n1+ u2
i+ 1 i+ 1
_ Gt )Cl+02+ 1) ((l+ )ci +V(i,1,R))
M1+ 2 mr+ 2\ 2pm
4+ 1 ] 2
G+ Dot <161 +2¢ L vt R)>
2 w1+ p2 2un
cipn — (e + p2) o1 |:Cl < Mz)}
21 (py + p12) 2u1(ur 4+ m2) Lea 231

< 0.
(c) For j = 1, part (c) is the contraposition of part (b) and, for i > 3 and j > 2, part (c) is the
contraposition of part (a).
(d) This statement is the contraposition of part (a) fori = 1.
Lemma4. Let j > 2.

(a) Let

1—1——”2 <C_1<1+—M2 K2

+ b
m1+u2 2(u1 +p2)  2u
i.e. ci/ca € B. If
e, pH)=c,j+1) =12

then C(2, j) = 22.

(b) Let

&
w ok _a Lk

I+ ———+ < ,
2(1 +p2)  2u1 T 2 1
ie. ci/ca € C,andlet j > jP, where j? is given by (7). If
cl,jH)=cd,j+1)=12

then C(2, j) = 22.

() Let

c
n2 M2<_1<1+&

I+ ———+ < ,
21 +pn2) 201 T e “1
ie. ci/ca e C, leti =2, andlet j > jOtV where jUtV is given by (7). If

CG, j)y=cCcGj+1)=11

then C(i + 1, j) = 22.
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Proof. Leti > 1and j > 2. From Lemmas 3(c), 3(d), and 2(b), we obtain

VG +1,7,22) —V@i+1,],11)
i+ D+ jo
B 2un
_ i+ Datje
- 2

. 1 s j
DO HIC i - 11D = V(L4 12) - 22
20 2

(i + ey + joo 1
= +
22 2p01 12

+Vi+Lj-LR-VGE+1j 11

+VGE+1,j—1,1)=V@i+1,j,11)

w i+j .

2 L ic

X [cz(—) (1 + pu2) — (T +i+ jHu +uz)} -
M1+ p2 2

1 i+j
= [cl(i+1>m+cz[<L) (M1+M2)—(i+1)(ul+uz)ﬂ- (14)
12 M1+ p2

If we seti = 1 in (14) then we obtain

j
V@, j.22) - V@ . 11) < a_a_a  alw/itw)

M2 M2 Ml 241
cr @ cop2

M2 M2 pr o 2pp(ur + p2)

o [er 7% w2
_efa (i, —)}
n2 [02 ( 21 2(uy + p2)

which gives the assertion of part (a).
In cases (b) and (c), by (14), V(i + 1, j,22) — V(i + 1, j, 11) < O is satisfied if

i+j+1 2
2 (n1 + pn2) .
Cz( a ) PLTRD (4 (e — e + 1)),

U1+ p2 n2

which is equivalent to

log(—(i + Dpa(erpr — ey + pa))/lea(ur + 12)*)) _ D)

Jj>—-G+1D+
log(ua/(p1 + p2))
For i = 1, this gives part (b), and for i > 2, it gives part (c). This completes the proof.

Lemma 5.

Mn2 M2 . C1
— 4+ —je.—e€CUD,
2(pr + u2) - 20 1)

.. Cl m2 m2 . C1
12 f — <14+ ——"——+—,ie. — € AUB.
2 2(w1 +p2) 2w 2

.. Cl1
1 irt>1+
)

https://doi.org/10.1239/jap/1127322027 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1127322027

Optimal stochastic scheduling of a tandem queue 789

Proof. By Lemma 3(d) and Lemma 2(b),

V2, 1,11) - V(2,1,12)

2 2
e R VO T ) W e S L BSOS e B V0 3 R B\
211 pr+p2 g+ m1 + 2
2 2 2
_ata ate K Za 2 (va,2.12) = v, 1, 12)
2 M1+ p2 o opr 220 pmtp2
2ci+c2 21+ u2 20 M2 (362 &) )
= - - i RS e A -
2 mrdpe A2 2+ pa \2p2 0 2001 4 p12)
1 mip3
= (2o + 2 <2u1uz i+
2uipa(pr + 12) ( 2+

c c
2 (1 LT S _1),
M1+ u2 2ur - 2t p2) @
which gives the assertion.

Remark 2. Note that, for
‘ e S

=1+ + ,
) 2(pr +p2) 21
we have V(2,1,11) = V(2, 1, 12).

5. Proofs of the theorems

5.1. Proof of Theorem 1
First note that C(1, 1) = 12. Define

J¥i=sup{j: C(1,0) =12, 1 <L < j}.

A simple computation gives

V(1,2,12) = vV(1,2,22) = ;_2<1 LK C—‘),

u2 M1+ p2 2
whence
12 it s 1+%,i.e.c—legucu0,
C C
e(1.2) = cz MM u2 Cz
2 if L<i+ 2 e Lea.
2 m1+ 2 2
Thus, for
‘1 <1 M2 ’
2 u1 + 2
ie.c1/cy € A, we have j* = 1.
Now let
C
g
c m1 =+ 2
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i.e.c1/cp € BUC U D. Using Lemma 2(b), we find, for all j, 1 < j < j*, that

—va -2y o1
2u
1 ) 7% J c1+je
= olum+jip+u————| W +wu) )| ————.
2uipn m1+ w2 2u

Thus, V(1, j, 12) — V (1, j, 22) < 0is equivalent to

j
—<L> <1+ﬂ><c—1—<1+ﬂ). (15)
M1+ u2 M1 2 M1

D142

2 M1
i.e. c1/ca € D, then the right-hand side of (15) is nonnegative. Since the left-hand side of (15)
is negative, we have V (1, j, 12) < V(l, j, 22); hence, C(1, j) = 12 for every j > 2 and, in
this case, j* = oo. This proves part (c).
If, on the other hand,

Consequently, if

C
U1+ p2 2 251

i.e.c1/c2 € BUC, then (15) is equivalent to

log(1 — cip1/lea(1 + 12)])
log(pa/ (1 + u2))

Hence, we have proved that there exists a 7 > 2 such that (1, j) = 12, for2 < j < jD,
and C(1, |j V| + 1) = 22, where jV is given by (6) and, recall, | x| denotes the largest
integer smaller than or equal to x. Thus, (6) and the stated values of the optimal control
e, j), j < j, have been verified.

Finally, let
C_] <1 + &’
&) n1

i.e.c1/cy € AUBUC. We will prove case (a) and the remainder of case (b) by induction on j.
Note that we have already proved that C(1, 2) = 22 in case (a) and

e, jP)+1n=22

in case (b); this is our basis for induction.
Assume that C(1, j) = 22. Then, from

B - VAU T P et e L B S SRR R
212 H1+p2 g1+ 2

- —® _va,j-1R
u1+ u2
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we find the inequality

SRS AT O N 3 R 0 B VO RS ) W Bt e S T
w1+ u2 IS s S VA R S 15 22
Thus, by the induction hypothesis V (1, j, R) = V (1, j, 22) and (16), we obtain
va,j+1,22)-v(Q,j+1,12)
i+ 1 i+ 1
:C1+(J+ )C2+V(1’j’R)_C1+(J‘|‘ )2 VO, j+2.22)
22 n1+ p m1+ p2
n2 .
-——V(,j,R)
w1+ u2
i+ 1 i+ 1
261+(J+ )Cz+ 1 V(l,j,22)—cl+(]+ )2 VO, j+2.22)
22 H1+ p2 M1+ u2 M1+ u2
c1+(+ De c1+ je . c1+(+ De
_atG+De  _ m <1 J2+V(1,]—1,R)>—1 (j+Dea
22 mr+u2\ 2u2 1+ 2
— By, j+2,2
n1+ p2
. .
:c1+(]+ )cz+ 3 c1+]cz+ "1 VA, j—1.R)
2442 m1+u2 2u2 m1+ u2
i+ 1 4+ 2
~at+Gt+Dbe e G+ m V. j+1.22)
W1+ u2 M1+ u2 242 w1+ u2
c1+ (j+ Dce c1+ je c1+ je .
G (J )2+ 1 i fje atje  wm VO, j+1.22)
2442 m1+u2 2u w1+ u2 o p 2
. 11 1o
_atjeo a+(+Da  w G+ m V. +1.22)
2un w1+ 2 w2 2u2 w1+ 12

_C_2+<L>C_l_ 2 _( i >_2

2u2 mi+p2/)2u0 g+ p w1+ 2 /)

=L<ﬂ_(1+&>><o.
2uz(p1 + pu2) \ 2 1

Hence, C(1, j 4+ 1) = 22 and parts (a) and (b) follow, in their entireties, by induction.
5.2. Proof of Theorem 2
By Theorem 1(a) and Lemmas 3(a) and 3(b), the assertion follows immediately.

5.3. Proof of Theorem 3

By Lemma 5, we have C(2,1) = 12 in region B. Therefore, by Theorem 1(b) and
Lemmas 3(a), 3(b), and 4(a), the assertion follows immediately.

5.4. Proof of Theorem 4

Define
i*i=supli: C, 1) =11,2 < ¢ <i}.

https://doi.org/10.1239/jap/1127322027 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1127322027

792 K. SCHIEFERMAYR AND J. WEICHBOLD

Since G(2,1) = 11 in region C (see Lemma 5), we have i* > 2 and, by Theorem 1 and
Lemmas 3(a) and 3(b), we have i* < oo. Leti € {2,...,i*} be fixed and define j* by

J*=sup{j: CG O =11,1<¢<j)
=sup{j: V(@ j,1D)—-V(, j,22) <0,1 <<}

By Theorem 1 and Lemma 3(a), the index j* is finite. Our goal is to compute a formula for j ).
By Lemmas 2(b), 3(c), and 3(d), for every j € {2, ..., j*}, we have

icir+ je _

=V(a j11) — Vi, j—1,11)

(i—Deca ici+jer

VA,i+j—1,12)=V(,i+j—212)+

2p 2
el + 4 ) — ealpa/ (1 + p2) ™ (1 + p2)? L =Da_iatje
2u1p3 2 2
: ( 1 1 ) ict  calpa/ (1 + p2))H (ur + p2)?
=ic\l—+— )77 — 5 .
2u1 - 2u 22 2u1 4y

Thus, V(i, j, 11) — V (i, j, 22) < 0 is equivalent to

i+J

129 .

—Cz(—) (1 + 12)* < —ipa(ea(ur + wa) — c1pe1),
U1+ w2

which is in turn equivalent to

) . log(—ipa(cipr — c2(ur + p2)/Iea(pr + 142)21)
J=-i+ ‘
log(ua/(p1 + p2))

It follows that
C@, j) =11,

Ch, iV +1) =22,

fori € {2,...,i*}and 1 < j < j(i), with j(i) as given in (7). By Lemmas 4(b), 4(c), and
3(a), it follows that C(i, j) = 22 foralli = 1,...,i* and j > j@. Hence, part (b) has been
entirely proved.

We next consider the column i = i*+ 1. By the definition of i* and j ), we have j(i*+1) <l.
Thus, by Lemmas 4(c) and 3(a), we find that

C@{*+1,j)=22 forall j > 2. a7n
Hence, by (17) and Lemma 3(a), part (c) immediately follows. By part (c) and Lemma 3(b),
we then have C(i, 1) = 12 fori > i* 4+ 1. This proves part (a) in its entirety.

Now we prove (8) and (9). With the help of Lemmas 3(c) and 3(d), we can easily compute
the difference V (i, 1, 11) — V (i, 1, 12). Indeed, using Lemma 2(b), for all i € {2,...,i*}
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we obtain

Vi, 1,11) — V@, 1,12)
ici+c ici +¢ 231

- FVGE—1,2,11) - — Vi—1,2,11) - —*2 v, 0, 11)
2u1 M1+ M2 1t 2 H1+ u2
_lata lata Gk P2 G120 - Vi—1.1.11))
21 i+ 2 2pp(ur + u2) e+ 2
_ ici+ ¢ _ ici+ ¢ _ iciun
2 pur+p2 2ur(py + p2)
)
2 (O )2 VL2 — V(L — 1., 12))
w1+ 12 2
ici+ ¢ _ ici+ ¢ iciun

2 wi e 2m1(en + o)
M2 <(i —2)c2 N ca(pr +ipy + p2 — (m2/(1 + w2) (1 + Mz)))

w1+ 2 21 2up2
1

i

: . "2

=——————— | —cripip2 + 02<l,u2(,u1 + p2) — pa(py + ,uz)<—) )}
22 (e + Mz)[ m1+ u2

e ( CIit1 1 ( s )l)
= (-—+1— - — .
2ur \ ca(pr + u2) i\ 1+ u2
Thus, having V (i, 1, 11) — V (i, 1, 12) < 0 is equivalent to having f (i) < 0, where f(i) is as

defined in (9). We conclude that i* = max{i € N: f(i) < 0}, since f (i) is strictly monotone
increasing in i, .

5.5. Proof of Theorem 5
Leti > 2. We will prove (11) by induction on j. For j = 1, we have
V@i, 1,11) — Vi, 1,12)
ici +c¢ ici+c¢ "1 2

- +V(GE—1,2,R) — - V(i—1,2,R) — —2v(i,o,11)
2u1 W1+ p2 2 H1+ u2
_lata, My, plata (£+v(i_1,1,R)>

21 Wi+ 12 mi+p o pr+ a2 \ 20
Llata My gy tata (ﬂ+V(i—1,1,R)>
2u1 W1+ 12 wir+ 2 g+ 2 \ 20
‘ i — 1 2
2101+cz+ 7%} ((l el + C2+V(i—1,1,R)>
21 w1+ u2 22
_latae K <ﬂ+V(i—1,1,R)>
M1+ p2 ot p2 \2p
1

= [e1G (1 + p2) 2 — 2ipipa + (i — Deg o — ip3)
2y 2 (1 + p2)

+ (1 + pa)pr — 2 pp + 21 142)]

:c—2<1+&_c_1)5().
Mm1+ 2 M1 (%)
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Hence, we have proved that C(i, 1) = 11 for i > 2. Now assume that C (¢, j) = 11. Then

VG, j+1,11) = VG, j+1,22)

R i
_atURDe |y e p - ARV EDE gy
21 2un
A ke
L URDE |y g oy ARURDE g
211 2
i e i
=101+(J+)02_|_(l )C1+(J+)CZ+V(i—l,j+1,R)
21 2un
S T
a4+ G+ )02_101+162_V(l._1’j+1’R)
2un 21
1 1
:Q<_+_>_C_1:C_2[<l+&>_c_l]
2ur - 2u 2ur 2u2 Ml )

<0.
Hence, the induction process is complete and Theorem 5 follows in its entirety.

6. Discussion

6.1. The relation between the preemptive and the nonpreemptive models

In this section, we discuss the differences between our results and those obtained in [2].
The main difference between the two models, as mentioned in the introduction, is that we
preempt the servers when one job finishes. Therefore, in each state (i, j), we can allocate
both servers to the queues, as if we had started in this state. This preemptive strategy makes
it possible to calculate the optimal control for all regions A, B, C, and D. In the following,
we will call our model the preemptive model and the one in [2] the nonpreemptive model. Due
the memoryless property of the exponential distribution, in the preemptive model the costs in
each state (7, j), until the system is cleared, are less than or equal to those in the nonpreemptive
model. Hence, if it is possible, in each state (i, j) in the nonpreemptive case, to satisfy the
optimal control of the preemptive model along the path taken until the system is empty, then the
control optimal in the preemptive model is also optimal in the nonpreemptive one. Therefore,
we obtain the following corollary for the nonpreemptive model.

Corollary 1. (a) Let c1/co € AU B U D. Then the control matrix of the nonpreemptive model
is the same as that of the preemptive model.

(b) Letci/cy € Cand (i, j) € Nx N. Ifeitheri = 1 or C(i, j) = 11, then the control C(i, j)
optimal in the preemptive model is also optimal in the nonpreemptive model.

Thus, for regions A, B, and D, and partially for region C, our control matrix is also optimal
in the nonpreemptive model. Of course, for regions A and D, this is a rederivation of the results
of [2] but, due to our structural lemmas, by a shorter method.

Now let c1/c € C. For those (i, j) € N x N for which C(i, j) # 11, the optimal control
in the nonpreemptive case is more complicated, so let us explain the differences between the
preemptive and nonpreemptive models in an example. Let u; = ux = 1, ¢; = 1.995, and
c2 = 1,1e. c;/cp € C. Figures 6 and 7 show the control matrices in the preemptive and
nonpreemptive cases, respectively. Note that, in the nonpreemptive case, the control matrix
only gives the optimal control in (Z, j) in the beginning. It is not clear what happens if we start
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J

1022 22 22 22 2 22 22 22 22
9 (22 22 2 2 2 22 22 2 2
8 |22 12 22 22 2 2 22 22 22
7022 12 2 2 22 22 22 22 22
6 |22 12 2 22 22 2 2 2
5022 12 g 22 22 2 2 2
4 |22 12 JILIL 22 22 22 22 22
3022 12 2 22 22 22
2 |2 12 gl 22 22 22
1212 PR T 1212
oo 1 11 11 11 11 11 11 11

0 1 2 3 4 5 6 71 8 - i

FIGURE 6: The control matrix in the preemptive case for the parameters u; = pu2 = 1, ¢ = 1.995,

and ¢y = 1.

j

10 | 22 22 22 22
9 (22 22 22 22
8 |22 12 22 22
7122 12 22 22
6 | 22 12 22 22
5122 12 22 22
4 122 12 22 22
3 122 12 22 22
2 122 12 22 22
1 2 12 12 12
0 0 1 1 11 11 11 11 11 11

0 1 2 3 4 5 6 7 8 -
FIGURE 7: The control matrix in [2] (the nonpreemptive case) for the parameters u; = u2 = 1,

c1 =1.995,and ¢p = 1.

in (i, j) = (3, 6) and get into the state (3, 5), because there the optimal control 11 cannot be
realized. By comparing the figures, we also see that the first columns (i.e. i = 1) and the states
with optimal control 11 are identical, as stated in Theorem 1(b). In Figure 7, C(2,7) = 12 and
C(3, 6) = 22; therefore, from the preemptive strategy we cannot conclude what is optimal at
the positions (i, | )| 4+1),i > 2, in the nonpreemptive strategy. The rest of the control matrix
seems to be identical in both strategies.

6.2. The case of one server

Since we did not find the case with only one server in the literature, for completeness we
here state the optimal control for the one-server problem. The proof is easy and, therefore,
omitted.
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Theorem 6. In the case of one server, it is always optimal to serve a job of queue 1 or queue 2
(if possible) if and only if

c c

a > 1+ & or a <14+ &’

1) n1 €2 1

respectively.

6.3. Extensions
From these results there arise some interesting questions.

e How does the control matrix change if there are arrivals to the queues?

e What is the optimal control for a tandem queue with two servers, where the served jobs
of queue 1 join queue 2 with a probability p and leave the system with probability
1 — p? This problem will be solved in a forthcoming paper [8], which will describe
the connection between the case p = 1 and the case p = 0. The latter case has been
extensively investigated in the literature.

e What is the optimal control if there are more than two servers?
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