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Review

Progesterone receptors (PR) are ligand-activated
transcription factors that are also capable of rapidly
activating multiple intracellular signaling pathways
initiated at or near the plasma membrane. PR exist
as either 94 kDa A or 120 kDa B isoforms created by
the same gene and mRNAs by the use of alternate

promoters and unique translational start sites. The 
A isoform is an amino-terminally truncated version of
the longer B isoform, each containing a C-terminal
hormone-binding domain (HBD) and DNA-binding
domain (DBD), a hinge region (H), and transcriptional
activation function (AF) domains located within both
the HBD (AF-1) and N-terminni (AF-2 in PR-A and
PR-B; AF-3 in PR-B only). Like other steroid hormone
receptor family members (androgen, glucocorticoid,
estrogen, and mineralocorticoid receptors), PR are
heavily phosphorylated by multiple protein kinases,
primarily at N-terminal serine residues. Although the
role of PR phosphorylation (i.e. in humans) is not fully
understood, it has been shown to influence many
aspects of PR transcriptional regulation, including
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Abstract of the original article
The human progesterone receptor (PR) contains multiple Ser-Pro phosphorylation sites that are potential sub-
strates for cyclin-dependent kinases, suggesting that PR activity might be regulated during the cell cycle. Using
T47D breast cancer cells stably transfected with an mouse mammary tumor virus (MMTV) chloramphenicol
acetyltransferase reporter (Cat0) synchronized in different phases of the cell cycle, we found that PR function
and phosphorylation is remarkably cell cycle dependent, with the highest activity in S phase. Although PR
expression was reduced in the G2/M phase, the activity per molecule of receptor was markedly reduced in
both G1 and G2/M phases compared to the results seen with the S phase of the cell cycle. Although PR is
recruited to the MMTV promoter equivalently in the G1 and S phases, recruitment of SRC-1, SRC-3, and, con-
sequently, CBP is reduced in G1 phase despite comparable expression levels of SRC-1 and SRC-3. In G2/M
phase, site-specific phosphorylation of PR at Ser162 and at Ser294, a site previously reported to be critical for
transcriptional activity and receptor turnover, was abolished. Treatment with the histone deacetylase inhibitor
trichostatin A elevated G1 and G2/M activity to that of the S phase, indicating that the failure to recruit suffi-
cient levels of active histone acetyltransferase is the primary defect in PR-mediated transactivation.
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promoter specificity [1], coactivator interaction [2],
ligand-dependent [2,3] and independent [4,5] tran-
scriptional activities, receptor turnover [6], and nuclear
association [7].

In addition to progestin binding to PR, growth 
factors independently induce PR phosphorylation at
specific sites and by the same or separate kinase
pathways [7]. Cross-talk between PR and mitogenic
growth factors occurs at multiple levels, including
progestin upregulation of epidermal growth factor
receptors (EGFRs) and their ligands [8,9]. In the nor-
mal breast, EGF potentiates the proliferative actions
of progesterone and estrogen, and causes ductal
side branching and lobuloalveolar development of
the mature mammary gland [10,11]. In breast cancer
cells, EGF and progestins synergistically upregulate
cyclin D1 and cyclin E protein levels [12]. Cyclins, in
turn, regulate progression of cells through the cell
cycle by interaction with cyclin-dependent protein
kinases (CDKs). For example, D-type cyclins are
expressed throughout the cell cycle in response to
mitogenic stimulation, while the expression of cyclins
E, A, and B (the mitotic cyclin) is periodic. Cyclin D
isoforms form complexes with CDK4 and CDK6,
and cyclin E associates with CDK2 in S phase, as
does cyclin A. Cyclin A also forms complexes with
CDK1 in late S and G2, while cyclin B/CDK1 com-
plexes are restricted to M phase [13]. Notably, 8 of
14 phosphorylated Ser residues in PR are CDK2
sites [14–17]. Thus, PR phosphorylation is predicted
to be induced primarily by cyclinE/CDK2 (G1 to 
S transition) and/or cyclinA/CDK2 (early S phase) com-
plexes. In addition, progestins are excellent natural
synchronizers of the cell cycle, and induce increased
CDK2 levels and activity, cyclin D1 expression, and
precisely timed S-phase entry that is followed by cell
growth inhibition at the G1/S boundary [18]. CDK2
activity is known to increase PR transcriptional
activity, both in the presence and absence of prog-
estins [2,4].

Phosphorylation of PR by activated CDK2 suggests
a mechanism for the coordinate regulation of PR
action during cell cycle progression. This hypothesis
was recently directly tested in a paper appearing in
the April 2005 issue of Molecular and Cellular Biology
by R. Narayanan, D. P. Edwards, and N. L. Weigel
entitled, ‘Human progesterone receptor displays cell
cycle-dependent changes in transcriptional activity.’
The authors cleverly used three different treatment
protocols (designed for capturing cells specifically in
either G1, S, or G2/M phases) to create synchronized
populations of T47D cells stably expressing an MMTV
promoter-driven chloramphenicol acetyltransferase
(CAT) reporter gene [19]. Cells enriched for each
phase of the cell cycle were then stimulated with
progestin (6 h) and CAT activity was measured in cell

lysates to determine when PR are most active. In their
first set of experiments, Narayanan et al. [19] showed
that PR transcriptional activity is highest in S phase
relative to G1 and G2/M phases, in which PR are
expressed but exist in a state of repressed activity.

The phospho-status of PR in each phase was also
examined using available antibodies for selected
sites. Notably, Ser162 and Ser294 were hormonally
regulated and robustly phosphorylated in both G1
and S phase, but not in G2/M phase. The authors
suggest that in G2/M phase, PR is either in an
altered conformation or associated with other 
protein(s) that occlude these sites. An alternative inter-
pretation of these data is that Ser294 phosphorylated
PR species are active, but also rapidly degraded [3,6],
perhaps preferentially in G2/M phase. This would
explain low levels of phospho-Ser294 PR relative to
total. It is also possible that cytosolic phosphatases
(active in G2/M) mediate the ‘net’ dephosphorylation
of ‘shuttling’ PRs, which the authors found to be pri-
marily nuclear during S phase. Regardless of mech-
anism, a clear correlation exists between PR activity
and PR phosphorylation (at Ser162 and Ser294).
However, in a previous publication appearing in the
same journal [2], these investigators showed that the
CDK2-induced increase in PR transcriptional activity
(i.e. in the presence of progestin) did not map to
phosphorylation sites within PR, but instead stimu-
lated the association of phospho-SRC-1 to PR com-
plexes present at the MMTV promoter. They also
found that cyclin A and CDK2 associated with PR in
active transcription complexes. In the more recent
MCB paper reviewed herein [19], the authors used
CHIP assays to show that in addition to steroid recep-
tor coactivator 1 (SRC-1) [2], both SRC-3 and CREB-
binding protein (CBP) were preferentially recruited to
the MMTV promoter during S phase relative to G1 or
G2/M phases.

Finally, the authors showed that PR transcriptional
activity in both G1 and G2/M could be restored to the
S phase levels by addition of the histone deacetyl-
transferase (HDAC) inhibitor, trichostatin A (TSA).
However, TSA-treatment did not fully restore the abil-
ity of progestin to induce PR Ser294 phosphoryla-
tion. The authors interpret these data as suggestive
that phosphorylation of PR Ser294 is not involved in
the mechanism of PR transcriptional activation. An
alternative explanation is that histone acetylation
and chromatin remodeling (i.e. unwinding) are steps
that occur well after PR phosphorylation, which may
act to induce persistent nuclear accumulation of
PRs during S phase and early co-factor recruitment
(i.e. other than SRC isoforms). That is, PR Ser294
phosphorylation may not be required after complexes
with sufficient histone acetyltransferase (HAT) activ-
ity are appropriately formed.
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Perhaps an under-appreciated, but exciting aspect
of the Narayanan paper involves the question of hor-
mone sensitivity and cell cycle progression. Interest-
ingly, total levels of PR transcriptional activity in both
the G1 and G2/M phases of the cell cycle were highly
progestin sensitive, but remained low relative to 
S phase totals. In contrast, PR transcriptional activity
in S phase was heightened, but much less respon-
sive to added hormone (i.e. the basal activity was
also very high). As this activity was clearly blocked
by the addition of RU486, the authors attribute this
PR-dependent activity to residual ligand present after
the washout of required serum during the cell cycle
synchronization step for S phase enrichment. Yet,
both the G1 and G2/M phase protocols required the
same washout of added serum, while PR activities
remained quite low in the absence of freshly added
ligand. Although not addressed by Narayanan and co-
workers, these studies have revealed a window (i.e.
S phase) of PR ‘hypersensitivity’ in which phospho-
rylated nuclear receptors may be well-activated by
sub-physiologic levels of hormone. Phosphorylation
events that induce the recruitment of steroid receptor
coactivators (SRC-1, SRC-3, and/or CBP) are pre-
dicted to shift the dose–response curve for receptor
activation far to the left, lowering the apparent EC50
for transcriptional activation [20]. This suggests that
when cells are in S phase, much lower concentra-
tions of PR ligand (i.e. agonists) are sufficient to
achieve regulation of gene expression at selected
promoters.

What are the implications of these studies for
steroid hormone action relevant to breast cancer
biology? Breast cancers notoriously display alter-
ations in cell cycle regulation, including increased
expression of cyclins D, E and A, loss of p27, and
heightened CDK2 activity [21–26]. Clearly, increased
proliferation as measured by several markers, includ-
ing cyclin A, predicts a poor prognosis [27]. High
cyclin A levels are correlated with proliferation and
strongly predict a shorter time to first relapse and
shortened survival from diagnosis [28]. Thus, the key
question becomes, is there a role for S phase PR
action in breast cancer progression? Clinical data
suggest that the addition of a progestin to hormone
replacement therapy increases breast cancer risk [29].
Tumors that developed in women taking estrogen
plus progesterone were larger and of higher-grade
relative to estrogen alone or placebo [29], suggest-
ing that progestins actually stimulated breast cancer
progression. The paper reviewed herein [19] demon-
strated that in PR-positive breast cancer cells, PR
activity is highest in S phase, and may be particu-
larly ultrasensitive to low hormone levels. CDK2 can
also drive ligand-independent PR activity when p27
levels are low (as in S phase) or knocked-down [4].

What are the relevant PR target genes? Little infor-
mation exists on the role of PR target genes in breast
cancer cell growth control or metastasis. However,
nearly half of all PR regulated genes, identified in breast
cancer cells, using gene-array approaches encode cell
adhesion and membrane-bound proteins or proteins
involved in membrane-initiated signaling [30–32]. PR
is known to upregulate c-myc, STAT5A, cyclin D1,
TGF-beta, and EGFR mRNAs, and progestins syner-
gize with EGF to induce increased expression of c-
myc, c-fos, p21 and cyclins D1 and E [12,30–33].
Clearly much work remains to be done. However, in
light of these findings and the new studies reviewed
herein [19], inclusion of antiprogestins to existing anti-
estrogen and combination therapies (that block
kinases) should be seriously considered, as blocking
PR action in S phase may retard tumor progression
and thereby prevent or delay breast cancer recurrence.
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