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Abstract

Kruskal’s theorem states that a sum of product tensors constitutes a unique tensor rank decomposition if the

so-called k-ranks of the product tensors are large. We prove a ‘splitting theorem’ for sets of product tensors, in

which the k-rank condition of Kruskal’s theorem is weakened to the standard notion of rank, and the conclusion of

uniqueness is relaxed to the statement that the set of product tensors splits (i.e., is disconnected as a matroid). Our

splitting theorem implies a generalization of Kruskal’s theorem. While several extensions of Kruskal’s theorem

are already present in the literature, all of these use Kruskal’s original permutation lemma and hence still cannot

certify uniqueness when the k-ranks are below a certain threshold. Our generalization uses a completely new proof

technique, contains many of these extensions and can certify uniqueness below this threshold. We obtain several

other useful results on tensor decompositions as consequences of our splitting theorem. We prove sharp lower

bounds on tensor rank and Waring rank, which extend Sylvester’s matrix rank inequality to tensors. We also prove

novel uniqueness results for nonrank tensor decompositions.
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1. Introduction

Let [<] = {1, . . . ,<} when m is a positive integer, and let [0] = {} be the empty set. For vector spaces

V1, . . . ,V< over a field F, a product tensor in V = V1 ⊗ · · · ⊗ V< is a nonzero tensor I ∈ V of the

form I = I1 ⊗ · · · ⊗ I<, with I 9 ∈ V 9 for all 9 ∈ [<]. Product tensors are also known in the literature as

‘rank-one tensors’ and ‘decomposable tensors’. We refer to the spaces V 9 that make up the space V as

subsystems. The tensor rank (or rank) of a tensor E ∈ V , denoted by rank(E), is the minimum number

n for which v is the sum of n product tensors. A decomposition of v into a sum of rank(E) product

tensors is called a tensor rank decomposition of v. An expression of v as a sum of product tensors (not

necessarily of minimum number) is known simply as a decomposition of v. A decomposition of v

E =
∑

0∈[=]

G0 (1)

into a sum of product tensors {G0 : 0 ∈ [=]} is said to be the unique tensor rank decomposition of v if

for any decomposition

E =
∑

0∈[A ]

H0 (2)

of v into the sum of A ≤ = product tensors {H0 : 0 ∈ [A]}, it holds that A = = and {G0 : 0 ∈ [=]} =

{H0 : 0 ∈ [=]} as multisets (sets with repetitions allowed). The decomposition (1) is said to be unique

in the j-th subsystem if for any other decomposition (2), it holds that A = = and there exists a permutation

f ∈ (= such that G0, 9 is a scalar multiple of Hf (0) , 9 for all 0 ∈ [=]. Kruskal’s theorem gives sufficient

conditions for a given decomposition to constitute a unique tensor rank decomposition [Kru77]. We

refer to results of this kind as uniqueness criteria.

Uniqueness criteria have found scientific applications in signal processing and spectroscopy, among

others [Lat11, Lan12, CMDL+15, SDLF+17]. In these circles, subsystems are also referred to as fac-

tors and loadings, and the tensor rank decomposition is also referred to as the canonical decomposition

(CANDECOMP), parallel factor (PARAFAC) model, canonical polyadic (CP) decomposition, and to-

pographic components model. Uniqueness of a tensor decomposition is also referred to as specific

identifiability and uniqueness criteria as identifiability criteria.

1.1. Kruskal’s theorem and a generalization

For a finite set S, let |( | be the size of S. The Kruskal-rank (or k-rank) of a multiset of vectors {D1, . . . , D=},

denoted by k-rank(D1, . . . , D=), is the largest number k for which dim span{D0 : 0 ∈ (} = : for every

subset ( ⊆ [=] of size |( | = : . Similarly, we call dim span{D0 : 0 ∈ [=]} the standard rank (or rank) of
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{D1, . . . , D=}. Kruskal’s theorem states that if a collection of product tensors {G0,1 ⊗ · · · ⊗ G0,< : 0 ∈ [=]}

has large enough k-ranks : 9 = k-rank(G1, 9 , . . . , G=, 9 ), then their sum constitutes a unique tensor rank

decomposition. This theorem was originally proven for < = 3 subsystems over R [Kru77], was later

extended to more than three subsystems by Sidiropoulos and Bro [SB00] and then extended to an

arbitrary field by Rhodes [Rho10].

Theorem 1 (Kruskal’s theorem). Let = ≥ 2 and < ≥ 3 be integers, let V = V1 ⊗ · · · ⊗ V< be a vector

space over a field F, and let

{G0,1 ⊗ · · · ⊗ G0,< : 0 ∈ [=]} ⊆ V \ {0}

be a multiset of product tensors. For each 0 ∈ [=], let G0 = G0,1 ⊗ · · · ⊗ G0,<. For each 9 ∈ [<], let

: 9 = k-rank(G1, 9 , . . . , G=, 9 ).

If 2= ≤
∑<
9=1 (: 9 − 1) + 1, then

∑
0∈[=] G0 constitutes a unique tensor rank decomposition.

In [Der13], it is shown that the inequality appearing in Kruskal’s theorem cannot be weakened:

There exist cases in which 2= =
∑<
9=1 (: 9 − 1) + 2 and the decomposition is not unique. While Kruskal’s

theorem gives sufficient conditions for uniqueness, necessary conditions are obtained in [Kri93, Str83,

LS01]. In [COV17a], it is shown that Kruskal’s theorem is effective over R or C in the sense that it

certifies uniqueness on a dense open subset of the smallest semialgebraic set containing the set of rank

n tensors. A robust form of Kruskal’s theorem is proven in [BCV14].

Our main result in this work is a ‘splitting theorem’, which is not itself a uniqueness criterion, but

implies a criterion that generalizes Kruskal’s theorem. In our splitting theorem, the k-rank condition in

Kruskal’s theorem is relaxed to a standard rank condition. In turn, the conclusion is also relaxed to a

statement describing the linear dependence of the product tensors. Before stating our splitting theorem,

we first introduce the generalization of Kruskal’s theorem it implies.

Theorem 2 (Generalization of Kruskal’s theorem). Let = ≥ 2 and < ≥ 3 be integers, let V = V1 ⊗ · · · ⊗

V< be a vector space over a field F and let

{G0,1 ⊗ · · · ⊗ G0,< : 0 ∈ [=]} ⊆ V \ {0}

be a multiset of product tensors. For each 0 ∈ [=], let G0 = G0,1 ⊗ · · · ⊗ G0,<. For each subset ( ⊆ [=]

and index 9 ∈ [<], let

3(9 = dim span{G0, 9 : 0 ∈ (}.

If 2|( | ≤
∑<
9=1 (3

(
9
− 1) + 1 for every subset ( ⊆ [=] with 2 ≤ |( | ≤ =, then

∑
0∈[=] G0 constitutes a

unique tensor rank decomposition.

To see that Theorem 2 contains Kruskal’s theorem, assume the conditions of Kruskal’s theorem

hold and note that for any subset ( ⊆ [=], the multiset of product tensors {G0 : 0 ∈ (} satisfies

3(
9
≥ min{: 9 , |( |}. Using this fact, it is easy to verify that 2|( | ≤

∑<
9=1 (3

(
9
− 1) + 1 for every subset

( ⊆ [=] with 2 ≤ |( | ≤ =.

In Section 9, we compare Theorem 2 to the uniqueness criteria of Domanov, De Lathauwer and

Sørensen (DLS), which are the only known extensions of Kruskal’s theorem that we are aware of

[DL13a, DL13b, DL14, SL15, SDL15]. All of these extensions rely on Kruskal’s original permutation

lemma and, as a result, still require the k-ranks to be above a certain threshold. Our generalization uses a

completely new proof technique, can certify uniqueness below this threshold and contains many of these

extensions. In contrast to the cited results of DLS (and many previous versions of Kruskal’s theorem),

our generalization holds over an arbitrary field and does not rely on coordinate-dependent arguments.

The cited results of DLS contain many similar but incomparable criteria, which can be difficult to
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keep track of. For clarity and future reference, in Theorem 37 we synthesize these criteria into a single

statement. Using insight gained from this synthesization and our generalization of Kruskal’s theorem,

we propose a conjectural uniqueness criterion that would contain and unify every uniqueness criteria of

DLS into a single, elegant statement.

For < ≥ 4, Kruskal’s theorem can be ‘reshaped’ by regarding multiple subsystems as a single

subsystem. In Section 4, we present an analogous reshaping of Theorem 2, which has many more

degrees of freedom to choose from than the reshaped Kruskal’s theorem.

1.2. A splitting theorem for product tensors

We now state our splitting theorem, which we use in Section 4 to prove our generalization of Kruskal’s

theorem, and in Sections 6, 7 and 8 to obtain further results on tensor decompositions. We first require

a definition.

Definition 3. Let = ≥ 2 be an integer, and let V be a vector space over a field F. We say that a

multiset of nonzero vectors {E1, . . . , E=} ⊆ V \ {0} splits, or is disconnected, if there exists a subset

( ⊆ {E1, . . . , E=} with 1 ≤ |( | ≤ = − 1 for which

span{E1, . . . , E=} = span(() ⊕ span((2),

where (2 := {E1, . . . , E=} \ (. In this case, we say that S separates {E1, . . . , E=}. If {E1, . . . , E=} does

not split, then we say it is connected.

Note that {E1, . . . , E=} splits if and only if it is disconnected as a matroid [Oxl06]. We now state our

main result.

Theorem 4 (Splitting theorem). Let = ≥ 2 and < ≥ 2 be integers, let V = V1 ⊗ · · · ⊗ V< be a vector

space over a field F, let

� = {G0,1 ⊗ · · · ⊗ G0,< : 0 ∈ [=]} ⊆ V \ {0}

be a multiset of product tensors, and for each 9 ∈ [<], let

3 9 = dim span{G0, 9 : 0 ∈ [=]}.

If dim span(�) ≤
∑<
9=1 (3 9 − 1), then E splits.

In Section 5, we use Derksen’s result [Der13] to prove that the inequality appearing in Theorem 4

cannot be weakened.

We now give a rough sketch of how our splitting theorem implies Theorem 2, which we formalize

in Section 4. First, a direct consequence of Theorem 4 is that E splits whenever = ≤
∑<
9=1 (3 9 − 1) + 1

(see Corollary 10). To prove Theorem 2, let {G0 : 0 ∈ [=]} be a multiset of product tensors satisfying

the assumptions of Theorem 2, and let {H0 : 0 ∈ [A]} be a multiset of A ≤ = product tensors for which∑
0∈[=] G0 =

∑
0∈[A ] H0. Consider the multiset of [= + A] product tensors

� = {G0 : 0 ∈ [=]} ∪ {−H0 : 0 ∈ [A]}.

Since 2= ≤
∑<
9=1 (3

[=]
9

− 1) + 1, E splits. Let Σ(() denote the sum of S when S is a subset of E. Since

Σ(�) = 0, it follows that Σ(() = Σ((2) = 0 for any separator S of E. Now, continue applying the splitting

theorem to S and (2 until every multiset has size 2 and contains one element each of {G0 : 0 ∈ [=]} and

{−H0 : 0 ∈ [A]}.
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1.3. Further applications of the splitting theorem

In Sections 6, 7 and 8, we use the splitting theorem to prove further uniqueness results and sharp lower

bounds on tensor rank. In Section 6, we present sufficient conditions for a set of product tensors to

satisfy properties that are stronger than splitting but weaker than uniqueness and in particular strengthen

results in [HK15, BBCG18, Bal20]. In Section 7, we prove sharp lower bounds on tensor rank and

Waring rank, a notion of rank for symmetric tensors. In Sections 6 and 8, we obtain uniqueness results

for nonrank decompositions, a novel concept introduced in this work. We close this introduction by

reviewing these results in more detail.

It is known that if a multiset of product tensors {G0 : 0 ∈ [=]} satisfies

= + A ≤

<∑

9=1

(: 9 − 1) + 1 (3)

for A = 0, then it is linearly independent, and if it satisfies equation (3) for A = 1, then the only product

tensors in span{G0 : 0 ∈ [=]} are scalar multiples of G1, . . . , G= [HK15]. When A = =, it holds that∑
0∈[=] G0 constitutes a unique tensor rank decomposition, by Kruskal’s theorem. It is natural to ask

what happens for A ∈ {0, 1, . . . , =}. In Section 6.1, we use our splitting theorem to prove that when

the inequality (3) holds, the only rank ≤ A tensors in span{G0 : 0 ∈ [=]} are those that can be written

(uniquely) as a linear combination of ≤ A elements of {G0 : 0 ∈ [=]}, which interpolates between

Kruskal’s theorem for A = =, and the results of [HK15] for A ∈ {0, 1}. We generalize our interpolating

statement in a similar manner to our generalization of Kruskal’s theorem (Theorem 15). We also

interpolate to weaker notions of uniqueness, which are explained further at the end of this introduction.

We remark that the < = 2, A = 0 case of a result in this section was proven by Pierpaola Santarsiero in

unpublished work, using a different proof technique.

The interpolating statement described in the previous paragraph immediately implies the following

lower bound on tensor rank:

rank

[ ∑

0∈[=]

G0

]
≥ min

{
=,

<∑

9=1

(: 9 − 1) + 2 − =

}
.

In Section 7, we use our splitting theorem to improve this bound. Namely, provided that the k-ranks are

sufficiently balanced, we prove that two of the k-ranks :8 , : 9 appearing in this bound can be replaced

by standard ranks 38 , 3 9 , improving this bound when the ranks and k-ranks are not equal. Our improved

bound specializes to Sylvester’s matrix rank inequality when < = 2 [HJ13]. In Section 7.1, we prove

that our improved bound is sharp in a wide parameter regime.

In Section 8, we use our splitting theorem to prove uniqueness results for non-Waring rank decom-

positions of symmetric tensors. (Our terminology for symmetric tensor decompositions is analogous to

that of general tensor decompositions, and we refer the reader to Section 2 for a formal introduction.) In

particular, we prove a condition on a symmetric decomposition E =
∑
0∈[=] U0E

⊗<
0 for which any other

symmetric decomposition must contain at least Amin terms, where Amin depends on the rank and k-rank

of {E0 : 0 ∈ [=]}. For Amin ≤ =, this gives a Waring rank lower bound that is contained in our lower

bound described in the previous paragraph. For Amin = = + 1, this gives a uniqueness result for symmet-

ric tensors that is contained in Theorem 2 but is stronger than Kruskal’s theorem in a wide parameter

regime. Our main contribution in this section is the case Amin > = + 1, which produces an even stronger

statement than uniqueness: There are no symmetric decompositions of v into a linear combination of

fewer than Amin terms, aside from E =
∑
0∈[=] U0E

⊗<
0 (up to trivialities). This is an example of what we

call a uniqueness result for nonrank decompositions of a tensor.

In Section 6.2, we prove further uniqueness results for nonrank decompositions of (possibly non-

symmetric) tensors. In particular, we give conditions on a multiset of product tensors {G0 : 0 ∈ [=]} for

which whenever
∑
0∈[=] G0 =

∑
0∈[A ] H0 for some A > = and multiset of product tensors {H0 : 0 ∈ [A]},
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there exist subsets ' ⊆ [=], & ⊆ [A] such that |& | = |' | = @ for some fixed positive integer q, and

{G0 : 0 ∈ &} = {H0 : 0 ∈ '}. In contrast to our nonrank uniqueness results of Section 8, which apply

only to symmetric decompositions of symmetric tensors, the results of this subsection apply to arbitrary

tensor decompositions.

In Section 8.2, we identify two potential applications of our uniqueness results for nonrank decom-

positions: First, they allow us to define a natural hierarchy of tensors in terms of ‘how unique’ their

decompositions are. Second, any uniqueness result for nonrank decompositions can be turned around

to produce a result in the more standard setting, in which one starts with a decomposition into n terms

and wants to control the possible decompositions into fewer than n terms.

From the proof sketch of our generalization of Kruskal’s theorem that appears at the end of the

previous subsection, it is easy to surmise that if
∑
0∈[=] G0 =

∑
0∈[A ] H0, and 2= ≤

∑<
9=1 (3

[=]
9

− 1) + 1,

then there exist nontrivial subsets& ⊆ [=] and ' ⊆ [A] for which
∑
0∈& G0 =

∑
0∈' H0. This conclusion

can be viewed as an extremely weakened form of uniqueness, and it is natural to ask what statements

can be made for notions of uniqueness in between the standard one and this weakened one. We answer

this question in Sections 6.1 and 6.2.

We say that a set of nonzero vectors forms a circuit if it is linearly dependent and any proper subset

is linearly independent. As a special case of our splitting theorem, in Corollary 21, we obtain an upper

bound on the number of subsystems 9 ∈ [<] for which a circuit of product tensors can have 3 9 ≥ 2.

This improves recent bounds obtained in [BBCG18, Bal20] and is sharp.

2. Mathematical preliminaries

Here, we review some mathematical background for this work that was not covered in the introduction.

For vector spaces V1, . . . ,V< over a field F, we use Prod(V1 : · · · : V<) to denote the set of (nonzero)

product tensors in V1 ⊗ · · · ⊗ V<. This set forms an algebraic variety given by the affine cone over the

Segre variety Seg(PV1 × · · · × PV<), with the point 0 removed. We use symbols like 0, 1 to index

tensors and symbols like 8, 9 to index subsystems. For vector spaces V and W , let Hom(V ,W) denote

the space of linear maps from V to W , and let End(V) = Hom(V ,V). For a vector space V of dimension

d, let {41, . . . , 43} be a standard basis for V .

For a product tensor I ∈ Prod(V1 : · · · : V<), the vectors I 9 ∈ V 9 for which I = I1 ⊗ · · · ⊗ I< are

uniquely defined up to scalar multiples U1I1, . . . ,U<I< such that U1 · · · U< = 1. For positive integers n

and m, we frequently define multisets of product tensors

{G0 : 0 ∈ [=]} ⊆ Prod(V1 : · · · : V<)

without explicitly defining corresponding vectors {G0, 9 } such that

G0 = G0,1 ⊗ · · · ⊗ G0,<

for all 0 ∈ [=]. In this case, we implicitly fix some such vectors and refer to them without further

introduction.

We use the notation

G0, 9̂ = G0,1 ⊗ · · · ⊗ G0, 9−1 ⊗ G0, 9+1 ⊗ · · · ⊗ G0,<,

V 9̂ = V1 ⊗ · · · ⊗ V 9−1 ⊗ V 9+1 ⊗ · · · ⊗ V<,

so G0, 9̂ ∈ V 9̂ . Note that V1 ⊗ · · · ⊗ V< is naturally isomorphic to Hom(V∗
9 ,V 9̂ ) for any 9 ∈ [<], where V∗

9

is the dual vector space to V 9 . The rank of a tensor in V1 ⊗ V2 is equal to the rank of the corresponding

linear operator in Hom(V∗
1
,V2). We denote the rank of a tensor E ∈ V , viewed as an element of

Hom(V∗
9 ,V 9̂ ), by rank 9 (E). The flattening rank of v is defined as max{rank1(E), . . . , rank<(E)}. Note

that the tensor rank of v is lower bounded by the flattening rank of v.
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We write ( ∪ ) to denote the union of two sets S and T. If S and T happen to be disjoint, we often

write ( ⊔) instead to remind the reader of this fact. For a positive integer t, we say that a collection of

subsets (1, . . . , (C ⊆ ) partitions T if (? ∩ (@ = {} for all ? ≠ @ ∈ [C], and (1 ⊔ · · · ⊔ (C = ) .

For a multiset of nonzero vectors � = {E1, . . . , E=} ⊆ V , a connected component of E is an inclusion-

maximal connected subset of E. Any multiset of nonzero vectors E can be (uniquely, up to reordering)

partitioned into disjoint connected components )1 ⊔ · · · ⊔)C = � [Oxl06, Proposition 4.1.2]. Observe

that

span(�) =
⊕

8∈[C ]

span()8),

and note that ( ⊆ � separates E if and only if

dim span{E1, . . . , E=} = dim span{E0 : 0 ∈ (} + dim span{E0 : 0 ∈ (2}

if and only if

span{E0 : 0 ∈ (} ∩ span{E0 : 0 ∈ (2} = {0}

(see [Oxl06, Proposition 4.2.1]).

In the remainder of this section, we formally introduce symmetric tensors and symmetric tensor

decompositions, which are natural analogues of tensors and tensor decompositions. For a positive

integer < ≥ 2 and a vector space W over a field F with Char(F) > < or Char(F) = 0, we say that a

tensor E ∈ W ⊗< is symmetric if it is invariant under permutations of the subsystems. The Waring rank

of a symmetric tensor v, denoted by WaringRank(E), is the minimum number n for which v is equal to

a linear combination of n symmetric product tensors. A decomposition of v into a linear combination of

WaringRank(E) symmetric product tensors is called a Waring rank decomposition of v. A decomposition

of v into a linear combination of symmetric product tensors (not necessarily of minimum number) is

known simply as a symmetric decomposition of v.

A symmetric decomposition of v

E =
∑

0∈[=]

U0E
⊗<
0 (4)

is said to be the unique Waring rank decomposition of v if for any nonnegative integer A ≤ =, multiset

of nonzero vectors {D0 : 0 ∈ [A]} ⊆ W \ {0} and nonzero scalars {V0 : 0 ∈ [A]} ⊆ F× for which

E =
∑

0∈[A ]

V0D
⊗<
0 , (5)

it holds that A = = and

{U0E
⊗<
0 : 0 ∈ [=]} = {V0D

⊗<
0 : 0 ∈ [=]}.

More generally, for a positive integer =̃ ≥ =, we say that the symmetric decomposition (4) is the unique

symmetric decomposition of vinto at most=̃terms if for any A ≤ =̃ and symmetric decomposition (5),

either

k-rank(D0 : 0 ∈ [A]) = 1,

or A = = and

{U0E
⊗<
0 : 0 ∈ [=]} = {V0D

⊗<
0 : 0 ∈ [=]}.
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Note that equation (4) is the unique Waring rank decomposition of v if and only if it is the unique

symmetric decomposition of v into at most n terms. Note also that if equation (4) is the unique symmetric

decomposition of v into at most =̃ > = terms, then it is the unique Waring rank decomposition of v.

We refer to results that certify uniqueness of a symmetric decomposition into at most =̃ > = terms as

uniqueness results for non-Waring rank decompositions. We present such results in Section 8.

Our assumption that Char(F) > < or Char(F) = 0 in the symmetric case ensures that the symmetric

subspace is isomorphic to the space of homogeneous polynomials over F of degree m in dim(W)

variables, and that every symmetric tensor has finite Waring rank (see, e.g., [IK99, Appendix A] and

[Lan12, Section 2.6.4]).

3. Proving the splitting theorem

In this section, we prove Theorem 4. We first observe the following basic fact.

Proposition 5. Let = ≥ 2 be an integer, let V = V1 ⊗ V2 be a vector space over a field F and let

� = {G0 ⊗ H0 : 0 ∈ [=]} ⊆ Prod(V1 : V2)

be a multiset of product tensors. If E is connected, then {G0 : 0 ∈ [=]} and {H0 : 0 ∈ [=]} are both

connected.

Proof. Suppose toward contradiction that E is connected and {G0 : 0 ∈ [=]} splits, that is,

dim span{G0 : 0 ∈ [=]} = span{G0 : 0 ∈ (} ⊕ span{G0 : 0 ∈ (2} (6)

for some nonempty proper subset ( ⊆ [=]. Since E is connected, there exists a nonzero vector

E ∈ span{G0 ⊗ H0 : 0 ∈ (} ∩ span{G0 ⊗ H0 : 0 ∈ (2}.

Let 5 ∈ V∗
2

be any linear functional such that (1 ⊗ 5 )E ≠ 0. Then (1 ⊗ 5 )E is a nonzero element of

span{G0 : 0 ∈ (} ∩ span{G0 : 0 ∈ (2},

contradicting equation (6). The result is obviously symmetric under permutation of V1 and V2. �

It is not difficult to see that Theorem 4 follows directly from the < = 2 case of Theorem 4,

Proposition 5 and induction on m: Let V1, . . . ,V< be F-vector spaces, and let

� = {G0 : 0 ∈ [=]} ⊆ Prod(V1 : · · · : V<)

be a multiset of product tensors for which dim span(�) ≤
∑<
9=1 (3 9 − 1). If

�<̂ := {G0,<̂ : 0 ∈ [=]}

splits, then E splits by Proposition 5 (recall that G0,<̂ = G0,1 ⊗ · · · ⊗ G0,<−1). Otherwise, by the induction

hypothesis dim span(�<̂) >
∑<−1
9=1 (3 9 − 1). But this implies dim span(�) ≤ dim span(�<̂) + 3< − 2, so

E splits by the < = 2 case of Theorem 4. Hence, we need only prove the < = 2 case of Theorem 4,

which we now explicitly state for clarity.

Theorem 6 (< = 2 case of Theorem 4). Let = ≥ 2 be an integer, let V = V1 ⊗ V2 be a vector space over

a field F, and let

� = {G0 ⊗ H0 : 0 ∈ [=]} ⊆ Prod(V1 : V2)
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be a multiset of product tensors. Let

31 = dim span{G0 : 0 ∈ [=]}

and

32 = dim span{H0 : 0 ∈ [=]}.

If E is connected, then dim span(�) ≥ 31 + 32 − 1.

To prove Theorem 6, we require a matroid-theoretic construction called the ear decomposition of a

connected matroid (see, e.g., [CH96]).

Lemma 7 (Ear decomposition (see, e.g., [CH96])). Let = ≥ 2 be an integer, let V be a vector space over

a field F and let � = {E1, . . . , E=} ⊆ V \ {0} be a multiset of nonzero vectors. If E is connected, then

there exists a collection of circuits �1, . . . ,�C ⊆ � such that

� = �1 ∪�2 ∪ · · · ∪�C ,

and for each ? ∈ [C], the multisets �? and �? := �1 ∪ · · · ∪�? satisfy the following two properties:

1. �? ∩ �?−1 ≠ {}

2. dim span(�?) − dim span(�?−1) = |�? \ �?−1 | − 1

Now, we prove Theorem 6.

Proof of Theorem 6. For a subset ( ⊆ [=], let

3( = dim span{G0 ⊗ H0 : 0 ∈ (},

3(1 = dim span{G0 : 0 ∈ (},

3(2 = dim span{H0 : 0 ∈ (}.

In a slight change of notation from Lemma 7, let �1, . . . ,�C ⊆ [=] be the index sets corresponding to

an ear decomposition of E, and let �? = �1 ∪ · · · ∪�? ⊆ [=] for each ? ∈ [C]. The theorem follows

from the following two claims

Claim 8. 3�1 ≥ 3
�1

1
+ 3

�1

2
− 1.

Claim 9. For each ? ∈ {2, . . . , C},

|�? \ �?−1 | − 1 ≥ 3
�?

1
− 3

�?−1

1
+ 3

�?

2
− 3

�?−1

2
.

Before proving these claims, let us first use them to complete the proof. Note that

3�2 = 3�1 + |�2 \ �1 | − 1

≥ 3
�1

1
+ 3

�1

2
− 1 + |�2 \ �1 | − 1

≥ 3
�2

1
+ 3

�2

2
− 1.

The first line is a property of the ear decomposition, the second line follows from Claim 8, and the

third line follows from Claim 9. So Claim 8 holds with �1 replaced with �2. Repeating this process

inductively gives 3 [=] ≥ 3
[=]

1
+ 3

[=]

2
− 1, which is what we wanted to prove. This completes the proof,

modulo proving the claims.

Proof of Claim 8. By permuting [=], we may assume that �1 = [@] for some @ ∈ [=] and that {G0 : 0 ∈

[3
[@]

1
]} is a basis for span{G0 : 0 ∈ [@]}. Let B = 3

[@]

1
.
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Suppose that there exists 1 ∈ [B] such that H1 ∉ span{H0 : 0 ∈ [@] \ [B]}. Let 5 ∈ V∗
1
, 6 ∈ V∗

2
be

linear functionals such that 5 (G1) = 6(H1) = 1, 5 (G0) = 0 for all 0 ∈ [B] \ {1}, and 6(H0) = 0 for all

0 ∈ [@] \ [B]. So

( 5 ⊗ 6) (G0 ⊗ H0) =

{
1, 0 = 1

0, 0 ≠ 1
.

It follows that G1 ⊗ H1 ∉ span{G0 ⊗ H0 : 0 ∈ [@] \ {1}}, contradicting the fact that �1 indexes a circuit.

So {H0 : 0 ∈ [B]} ⊆ span{H0 : 0 ∈ [@] \ [B]}, which implies

3
�1

2
≤ @ − B

= 3�1 + 1 − 3
�1

1
,

completing the proof.△ �

Now, we prove Claim 9.

Proof of Claim 9. Let � ⊆ �?−1 be such that {G0 : 0 ∈ �} is a basis for span{G0 : 0 ∈ �?−1}. By

permuting [=], we may assume that �? \ �?−1 = [@] for some @ ∈ [=] and that � ∪ {G0 : 0 ∈ [B]} is a

basis for span{G0 : 0 ∈ �?}, where B = 3�? − 3�?−1 . If there exists 1 ∈ [B] for which H1 ∉ span{H0 :

0 ∈ [@] \ [B]}, then, as in the proof of Claim 8,

G1 ⊗ H1 ∉ span{G0 ⊗ H0 : 0 ∈ �? \ {1}}.

But this contradicts connectedness of E. It follows that 3
�?\�?−1

2
≤ @ − B, so

3
�?

2
− 3

�?−1

2
≤ 3

�?

2
− 3

�?∩�?−1

2

≤ 3
�?\(�?∩�?−1)

2
− 1

= 3
�?\�?−1

2
− 1

≤ @ − B − 1

= |�? \ �?−1 | − (3
�?

1
− 3

�?−1

1
) − 1.

The first line is easy to verify (in matroid-theoretic terms, this is submodularity of the rank function).

The second line follows from the fact that {H0 : 0 ∈ �?} is connected. The third line is obvious, the

fourth line follows from 3
�?\�?−1

2
≤ @ − B, and the fifth line follows from our definitions. This completes

the proof. �

The proofs of Claims 8 and 9 complete the proof of the theorem. �

4. Using our splitting theorem to generalize Kruskal’s theorem

In this section, we use our splitting theorem (Theorem 4) to prove our generalization of Kruskal’s

theorem (Theorem 2). We then introduce a reshaped version of Theorem 2, which has many more

degrees of freedom than the standard reshaping of Kruskal’s theorem.

To prove Theorem 2, we first observe the following useful corollary to our splitting theorem.

Corollary 10. Let = ≥ 2 and< ≥ 2 be integers, letV = V1 ⊗ · · · ⊗V< be a vector space over a field F, let

� = {G0 : 0 ∈ [=]} ⊆ Prod(V1 : · · · : V<)
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be a multiset of product tensors, and for each 9 ∈ [<], let

3 9 = dim span{G0, 9 : 0 ∈ [=]}.

If = ≤
∑<
9=1 (3 9 − 1) + 1, then E splits.

Proof. If E is linearly independent, then it obviously splits. Otherwise,

dim span(�) ≤ = − 1,

and the result follows immediately from our splitting theorem. �

Now, we use this corollary to prove our generalization of Kruskal’s theorem.

Proof of Theorem 2. Let G0 = G0,1 ⊗ · · · ⊗ G0,< for each 0 ∈ [=], and suppose that∑
0∈[=] G0 =

∑
0∈[A ] H0 for some nonnegative integer A ≤ = and multiset of product tensors {H0 :

0 ∈ [A]} ⊆ Prod(V1 : · · · : V<). For notational convenience, for each 0 ∈ [A] let G=+0 = −H0, so

that
∑
0∈[=+A ] G0 = 0. Let )1 ⊔ · · · ⊔ )C = [= + A] be the index sets of the connected components of

{G0 : 0 ∈ [= + A]}. Since
∑
0∈[=+A ] G0 = 0, it follows that

∑
0∈)? G0 = 0 for all ? ∈ [C], so |)? | ≥ 2 for

all ? ∈ [C].

For each ? ∈ [C], if

��)? ∩ [=]
�� ≥

��)? ∩ [= + A] \ [=]
��, (7)

then it must hold that

��)? ∩ [=]
�� =

��)? ∩ [= + A] \ [=]
�� = 1, (8)

otherwise {G0 : 0 ∈ )?} would split by Corollary 10, a contradiction. Since A ≤ = and the inequality

(7) can never be strict, it follows that A = = and equation (8) holds for all ? ∈ [C]. This completes the

proof. �

For < ≥ 4, both Kruskal’s theorem and our Theorem 2 can be ‘reshaped’ by regarding multiple

subsystems as a single subsystem, to give potentially stronger uniqueness criteria. It is worth noting that

the reshaped version of Theorem 2 has quite a different flavour from the reshaped version of Kruskal’s

theorem; in particular, there are many more degrees of freedom to choose from. We omit the proof of

the following reshaped version of Theorem 2 because it is similar to the proof of Theorem 2.

Theorem 11 (Reshaped generalization of Kruskal’s theorem). Let = ≥ 2 and < ≥ 3 be integers, let

V = V1 ⊗ · · · ⊗ V< be a vector space over a field F and let

{G0 : 0 ∈ [=]} ⊆ Prod(V1 : · · · : V<)

be a multiset of product tensors. For each ( ⊆ [=] and � ⊆ [<], let

3(� = dim span
{⊗

9∈�

G0, 9 : 0 ∈ (
}
.

If for every subset ( ⊆ [=] with 2 ≤ |( | ≤ =, there exists a partition �1 ⊔ · · · ⊔ �C = [<] (which may

depend on S) such that 2|( | ≤
∑
8∈[C ] (3

(
�8
− 1) + 1, then

∑
0∈[=] G0 constitutes a unique tensor rank

decomposition.
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It is instructive to compare Theorem 11 to the standard reshaping of Kruskal’s theorem:

Theorem 12 (Reshaped Kruskal’s theorem). Let = ≥ 2 and < ≥ 3 be integers, let V = V1 ⊗ · · · ⊗ V<

be a vector space over a field F and let

{G0 : 0 ∈ [=]} ⊆ Prod(V1 : · · · : V<)

be a multiset of product tensors. For each � ⊆ [<], let

:� = k-rank

(
⊗

9∈�

G0, 9 : 0 ∈ [=]

)

.

If there exists a partition of [<] into three disjoint subsets � ⊔  ⊔ ! = [<] such that

2= ≤ :� + : + :! − 2, then
∑
0∈[=] G0 constitutes a unique tensor rank decomposition.

Theorem 12 clearly follows from our Theorem 11. In Theorem 12, one could of course consider

more general partitions of [<] into more than three subsets, but since the k-rank satisfies :�∪ ≥

min{=, :� + : − 1} for any disjoint subsets �, ⊆ [<] (See Lemma 1 in [SB00]), it suffices to

consider tripartitions � ⊔  ⊔ ! = [<]. In contrast, it is not clear that one can restrict to tripartitions

in Theorem 11. There is another major difference between these two theorems: In Theorem 12, one

chooses a single partition of [<], whereas in Theorem 11, one is free to choose a different partition of

[<] for every S.

We remark that many other statements in this work (for example, the splitting theorem itself) can be

reshaped similarly to Theorem 11. We do not explicitly state these reshapings.

5. The inequality appearing in our splitting theorem cannot be weakened

In this section, we find a connected multiset of product tensors � = {G0 : 0 ∈ [=]} that satisfies

dim span(�) =
∑<
9=1 (3 9 − 1) + 1. In fact, we prove that this multiset of product tensors forms a circuit,

which is stronger than being connected. This proves that the bound in Corollary 21, and the inequality

dim span(�) ≤
∑<
9=1 (3 9 − 1) appearing in Theorem 4, cannot be weakened. The example we use is

Derksen’s [Der13], which he used to prove that the inequality appearing in Kruskal’s theorem cannot

be weakened.

Fact 13. For any field F with Char(F) = 0 and positive integers 31, . . . , 3< with

= − 1 =
∑<
9=1 (3 9 − 1) + 1, there exist vector spaces V1, . . . ,V< over F and a multiset of product tensors

{G0 : 0 ∈ [=]} ⊆ Prod(V1 : · · · : V<) that forms a circuit and satisfies

dim span{G0, 9 : 0 ∈ [=]} ≥ 3 9

for all 0 ∈ [=].

We note that if 31 = · · · = 3<, then the multiset of product tensors {G0 : 0 ∈ [=]} can be taken to be

symmetric in the sense introduced in Section 2 (this is obvious from Derksen’s construction [Der13]).

As a result, our splitting theorem is also sharp for symmetric product tensors. We use this fact in Sections

7 and 8 to prove optimality of our results on symmetric decompositions. We remark that the assumption

Char(F) = 0 can be weakened, see [Der13].

Proof of Fact 13. By Theorem 2 of [Der13], there exist vector spaces V1, . . . ,V< over F, a pos-

itive integer =̃ ≤ =, and product tensors {G0 : 0 ∈ [=̃]} ⊆ Prod(V1 : · · · : V<) with k-ranks

3 9 = k-rank(G1, 9 , . . . , G=̃, 9 ) such that
∑
0∈[=̃] G0 = 0. If =̃ < =, then =̃ ≤

∑<
9=1 (3 9 − 1) + 1, which implies

{G0 : 0 ∈ [=̃]} is linearly independent by Corollary 18 (or Proposition 3.1 in [HK15]). But this contra-

dicts
∑
0∈[=̃] G0 = 0, so =̃ = =. The equality = =

∑<
9=1 (3 9 − 1) + 2 implies that 3 9 ≤ =− 1 for all 9 ∈ [<].

It follows that for any subset ( ⊆ [=] of size |( | = = − 1, it holds that k-rank(G0, 9 : 0 ∈ () ≥ 3 9 . Since

= − 1 =
∑<
9=1 (3 9 − 1) + 1, then by Corollary 18, {G0 : 0 ∈ (} is linearly independent. It follows that

{G0 : 0 ∈ [=]} is a circuit. �
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6. Between splitting and uniqueness: intermediate consequences of the splitting theorem

For the entirety of this section, we fix nonnegative integers = ≥ 2 and < ≥ 2, a vector space V =

V1 ⊗ · · · ⊗ V< over a field F and a multiset of product tensors {G0 : 0 ∈ [=]} ⊆ Prod(V1 : · · · : V<). For

each subset ( ⊆ [=] and index 9 ∈ [<], we define

3(9 = dim span{G0, 9 : 0 ∈ (}

and use the shorthand 3 9 = 3
[=]
9

for all 9 ∈ [<].

As a consequence of our splitting theorem, if = ≤
∑<
9=1 (3 9 − 1) + 1, then {G0 : 0 ∈ [=]} splits

(Corollary 10). We used Corollary 10 to prove our generalization of Kruskal’s theorem: If 2|( | ≤∑<
9=1 (3

(
9
− 1) + 1 for every subset ( ⊆ [=] with 2 ≤ |( | ≤ =, then

∑
0∈[=] G0 constitutes a unique tensor

rank decomposition. It is natural to ask what happens when other, similar inequalities hold. In particular,

suppose that

|( | +R(|( |) ≤

<∑

9=1

(3(9 − 1) + 1 (9)

for all ( ⊆ [=] with B + 1 ≤ |( | ≤ =, for some B ∈ [= − 1] and function R : [=] \ [B] → Z. What can

be said about the tensors E ∈ span{G0 : 0 ∈ [=]}?

In this section, we use Corollary 10 to answer this question for choices of s and R that produce useful

results on sets of product tensors. In Section 6.1, we prove uniqueness results for low-rank tensors in

span{G0 : 0 ∈ [=]}. These results can be viewed as a family of statements that connects the choice

of parameters in Corollary 10, where B = = − 1 and R(=) = =, to the choice of parameters in our

generalization of Kruskal’s theorem, where B = 1 and R = 1. We use this family of statements to

prove a new lower bound on tensor rank, to improve (and sharpen) results of Ballico on the number of

nontrivial subsystems in a circuit of product tensors [BBCG18, Bal20], to strengthen a known sufficient

condition for a set of product tensors to be linearly independent and to strengthen a known sufficient

condition for a set of product tensors to contain no other product tensors in their span (aside from

scalar multiples) [HK15]. In Section 6.2, we prove uniqueness results for nonrank decompositions of∑
0∈[=] G0 (i.e., decompositions into a nonminimal number of product tensors), which appear to be the

first known results of this kind. We prove all of these results using the language of subpartitions of pairs

of decompositions, which we now introduce.

Definition 14. For positive integers n and r, multisets of product tensors

{G0 : 0 ∈ [=]}, {H0 : 0 ∈ [A]} ⊆ Prod(V1 : · · · : V<),

and nonzero scalars

{U0 : 0 ∈ [=]}, {V0 : 0 ∈ [A]} ⊆ F×,

for which

∑

0∈[=]

U0G0 =

∑

0∈[A ]

V0H0,

we say that the (ordered) pair of decompositions (
∑
0∈[=] U0G0,

∑
0∈[A ] V0H0) has an (B, ;)-subpartition

for some positive integers s and l if there exist pairwise disjoint subsets &1, . . . ,&; ⊆ [=] and pairwise

disjoint subsets '1, . . . , '; ⊆ [A] for which

max{1, |'? |} ≤ |&? | ≤ B
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and
∑
0∈&?

U0G0 =
∑
0∈'?

V0H0 for all ? ∈ [;]. We say that the pair (
∑
0∈[=] U0G0,

∑
0∈[A ] V0H0) has

an (B, ;)-partition if the sets &1, . . . ,&; ⊆ [=] and '1, . . . , '; ⊆ [A] can be chosen to partition [=] and

[A], respectively.

We say that the pair (
∑
0∈[=] U0G0,

∑
0∈[A ] V0H0) is reducible if there exist subsets & ⊆ [=] and

' ⊆ [A] for which |& | > |' | and
∑
0∈& U0G0 =

∑
0∈' V0H0. We say that the pair is irreducible if it is

not reducible.

(Technically, the linear combinations appearing in the pair (
∑
0∈[=] U0G0,

∑
0∈[A ] V0H0) should be

regarded formally so that they contain the data of the decompositions, and the linear combinations

appearing elsewhere should be regarded as standard linear combinations in V .)

For brevity, we will often abuse notation and say that
∑
0∈[=] U0G0 =

∑
0∈[A ] V0H0 has an (B, ;)-

subpartition (or is reducible) to mean that (
∑
0∈[=] U0G0,

∑
0∈[A ] V0H0) has an (B, ;)-subpartition (or is

reducible). Note that the properties of (B, ;)-subpartitions and reducibility are not symmetric with respect

to permutation of the first and second decompositions. Typically, the first decomposition
∑
0∈[=] U0G0

will be known, and the second decomposition
∑
0∈[A ] V0H0 will be some unknown decomposition that

we want to control.

An immediate consequence of Corollary 10 is that if
∑
0∈[=] G0 =

∑
0∈[A ] H0 for some A ≤ =, and

the inequality (9) holds for B = = − 1 and R(=) = A , then this pair of decompositions has an (= − 1, 1)-

subpartition (see Corollary 20 for a slight extension of this statement). By comparison, our generalization

of Kruskal’s theorem states that if A ≤ =, and equation (9) holds for B = 1 and R = 1, then A = = and this

pair of decompositions has a (1, =)-subpartition. In Section 6.1, we prove statements on the existence

of (B, ;)-subpartitions for A ≤ =, which interpolate between these two statements by trading stronger

assumptions for stronger notions of uniqueness. In Section 6.2, we prove a similar family of statements

for A ≥ = + 1, obtaining novel uniqueness results for nonrank decompositions.

We conclude the introduction to this section by making a few notes about our definitions of (B, ;)-

subpartitions and reducibility. It may seem a bit strange at first that the inequality |'? | ≤ |&? | appears

in our definition of an (B, ;)-subpartition. We have chosen to include this inequality because we typically

want to reduce the number of product tensors that appear a decomposition. Our definition of reducibility

captures a similar idea: If = ≤ A and (
∑
0∈[=] U0G0,

∑
0∈[A ] V0H0) is reducible, then these decompositions

can easily be combined to produce a decomposition into fewer than n product tensors. (When A ≤ =,

reducibility of (
∑
0∈[A ] V0H0,

∑
0∈[=] U0G0) captures a similar idea.) Assuming irreducibility will allow

us to avoid certain pathological cases. Note that if
∑
0∈[=] U0G0 is a tensor rank decomposition, then

(
∑
0∈[=] U0G0,

∑
0∈[A ] V0H0) is automatically irreducible.

Note that when (
∑
0∈[=] U0G0,

∑
0∈[A ] V0H0) is irreducible, the existence of an (B, ;)-subpartition is

equivalent to the existence of pairwise disjoint subsets &1, . . . ,&; ⊆ [=] and pairwise disjoint subsets

'1, . . . , '; ⊆ [A] for which

1 ≤ |'? | = |&? | ≤ B

and
∑
0∈&?

U0G0 =
∑
0∈'?

V0H0 for all ? ∈ [;]. When B = 1, these statements are equivalent even

without the irreducibility assumption.

6.1. Low-rank tensors in the span of a set of product tensors

In this subsection, we prove statements about low-rank tensors in span{G0 : 0 ∈ [=]}. Most of our

results in this section are consequences of Theorem 15, which is a somewhat complicated statement

on the existence of (B, ;)-partitions. For B = 1, and any A ∈ {0, 1, . . . , =}, we obtain a condition on

{G0 : 0 ∈ [=]} for which the only rank ≤ A tensors in span{G0 : 0 ∈ [=]} are those that can be written

(uniquely) as a linear combination of ≤ A elements of {G0 : 0 ∈ [=]}. For B = 1, A = 0, we obtain a

sufficient condition for linear independence of {G0 : 0 ∈ [=]}. For B = 1, A = 1, we obtain a sufficient

condition for the only product tensors in span{G0 : 0 ∈ [=]} to be scalar multiples of G1, . . . , G=. These

generalize Proposition 3.1 and Theorem 3.2 in [HK15], respectively. The case B = 1, A = = reproduces

https://doi.org/10.1017/fms.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.20


Forum of Mathematics, Sigma 15

our generalization of Kruskal’s theorem. For B = =− 1, we strengthen recent results in [BBCG18, Bal20]

on circuits of product tensors.

Most of the statements in this subsection are consequences of the following theorem, which is

complicated to state but easy to prove with our splitting theorem.

Theorem 15. Let B ∈ [= − 1], and A ∈ {0, 1, . . . , =} be integers. Suppose that for every subset ( ⊆ [=]

with B + 1 ≤ |( | ≤ =, it holds that

min{2|( |, |( | + A} ≤

<∑

9=1

(3(9 − 1) + 1. (10)

Then for any E ∈ span{G0 : 0 ∈ [=]} with rank(E) ≤ A , and any decomposition E =
∑
0∈[Ã ] H0 of v

into Ã ≤ A product tensors {H0 : 0 ∈ [Ã]} ⊆ Prod(V1 : · · · : V<), the following holds: For any subset

( ⊆ [=] for which |( | ≥ B + 1, and nonzero scalars {U0 : 0 ∈ (} ⊆ F× for which it holds that

∑

0∈(

U0G0 =

∑

0∈[Ã ]

H0

and (
∑
0∈[Ã ] H0,

∑
0∈( U0G0) is irreducible, the pair of decompositions (

∑
0∈[=] U0G0,

∑
0∈[Ã ] H0) has

an (B, ;)-partition, for ; = ⌈|( |/B⌉.

Proof. For each 0 ∈ [Ã], let G=+0 = −H0, and let � = ( ∪ ([= + Ã] \ [=]) ⊆ [= + Ã]. Let )1 ⊔ · · · ⊔)C = �

be a partition of E into index sets corresponding to the connected components of {G0 : 0 ∈ �}. Since

(
∑
0∈[Ã ] H0,

∑
0∈( U0G0) is irreducible, it must hold that

��)? ∩ (
�� ≥

��)? ∩ (� \ ()
��

for all ? ∈ [C], and hence

|)? | ≤ min
{
2
��)? ∩ (

��,
��)? ∩ (

�� + A
}
.

If |)? ∩ ( | ≥ B + 1, then {G0 : 0 ∈ )?} splits by equation (10) and Corollary 10, a contradiction. So it

must hold that |)? ∩ ( | ≤ B for all ? ∈ [C]. It follows that C ≥ ⌈|( |/B⌉ by the pigeonhole principle, and

one can take &? = )? ∩ ( and

'? = {0 ∈ [Ã] : = + 0 ∈ )? ∩ (� \ ()}

for all ? ∈ [C] to conclude. �

6.1.1. B = 1 case of Theorem 15

The B = 1 case of Theorem 15 gives a sufficient condition for which the only tensor rank ≤ A elements

of span{G0 : 0 ∈ [=]} are those which can be written (uniquely) as a linear combination of ≤ A elements

of span{G0 : 0 ∈ [=]}. In this subsection, we state this case explicitly and observe several consequences

of this case. In particular, we observe a lower bound on tensor rank and a sufficient condition for a set

of product tensors to be linearly independent.

Corollary 16 (B = 1 case of Theorem 15). Let A ∈ {0, 1, . . . , =} be an integer. Suppose that for every

subset ( ⊆ [=] such that 2 ≤ |( | ≤ =, it holds that

|( | +min{|( |, A} ≤

<∑

9=1

(3(9 − 1) + 1. (11)
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16 B. Lovitz and F. Petrov

Then any nonzero linear combination of more than r elements of {G0 : 0 ∈ [=]} has tensor rank greater

than r, and every tensor E ∈ span{G0 : 0 ∈ [=]} of tensor rank at most r has a unique tensor rank

decomposition into a linear combination of elements of {G0 : 0 ∈ [=]}.

Note that a sufficient condition for the inequality (11) to hold is that

= + A ≤

<∑

9=1

(: 9 − 1) + 1,

where : 9 = k-rank(G1, 9 , . . . , G=, 9 ) for all 9 ∈ [<]. This recovers Proposition 3.1 and Theorem 3.2 in

[HK15] in the A = 0 and A = 1 cases, respectively, and interpolates between Kruskal’s theorem and

these results. For clarity, we will explicitly state the A = 0 and A = 1 cases of Corollary 16 at the end of

this subsection.

Proof of Corollary 16. Let ( ⊆ [=] be a subset, let {U0 : 0 ∈ (} ⊆ F× be a multiset of nonzero scalars,

let Ã = rank[
∑
0∈( U0G0] and let {H0 : 0 ∈ [Ã]} ⊆ Prod(V1 : · · · : V<) be such that

∑
0∈( U0G0 =∑

0∈[Ã ] H0. If Ã ≤ A , then by the B = 1 case of Theorem 15, this pair of decompositions has a

(1, |( |)-partition. It follows that |( | = Ã . Hence, every linear combination of more than r elements of

{G0 : 0 ∈ [=]} has tensor rank greater than r.

Let E ∈ span{G0 : 0 ∈ [=]} have tensor rank Ã ≤ A . Then E =
∑
0∈& U0G0 for some set & ⊆ [=] of

size |& | = Ã and nonzero scalars {U0 : 0 ∈ &}. It follows from equation (11) and Theorem 2 that this is

the unique tensor rank decomposition of v. �

Corollary 16 immediately implies the following lower bound on rank[
∑
0∈[=] G0].

Corollary 17. If for every subset ( ⊆ [=] for which 2 ≤ |( | ≤ =, it holds that

|( | +min{|( |, A} ≤

<∑

9=1

(3(9 − 1) + 1, (12)

then rank[
∑
0∈[=] G0] ≥ A + 1.

In particular, Corollary 17 implies that

rank

[ ∑

0∈[=]

G0

]
≥ min

{
=,

<∑

9=1

(: 9 − 1) + 2 − =

}
. (13)

In Section 7, we prove that when the Kruskal ranks are sufficiently balanced, two of the k-ranks :8 , : 9
appearing in the bound (13) can be replaced with standard ranks 38 , 3 9 (Theorem 28). Our Theorem 28

is independent of the bound in Corollary 17 (see Example 29).

We close this subsection by stating the A = 0 and A = 1 cases of Corollary 16, which generalize

Proposition 3.1 and Theorem 3.2 in [HK15], respectively. We remark that the < = 2 subcase of

Corollary 18 was proven by Pierpaola Santarsiero in unpublished work, using a different proof technique.

Corollary 18 (B = 1, A = 0 case of Theorem 15). If for every subset ( ⊆ [=] for which 2 ≤ |( | ≤ =, it

holds that

|( | ≤

<∑

9=1

(3(9 − 1) + 1,

then {G0 : 0 ∈ [=]} is linearly independent.
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Corollary 19 (B = 1, A = 1 case of Theorem 15). If for every subset ( ⊆ [=] for which 2 ≤ |( | ≤ =, it

holds that

|( | ≤

<∑

9=1

(3(9 − 1),

then

span{G0 : 0 ∈ [=]} ∩ Prod(V1 : · · · : V<) = C×G1 ⊔ · · · ⊔ C×G=.

6.1.2. B = = − 1 case of Theorem 15

In this subsection, we state a slight adaptation of the B = =− 1 case of Theorem 15, which gives sufficient

conditions for a pair of decompositions to have an (= − 1, 1)-subpartition. After stating this case, we

observe that the subcase A = 1 improves recent results in [BBCG18, Bal20] concerning circuits of

product tensors. We then remark on applications of this special case in quantum information theory.

Corollary 20 (B = = − 1 case of Theorem 15). Let A ∈ {0, 1, . . . , =} be an integer. If

= + A ≤
∑<
9=1 (3 9 − 1) + 1, then for any nonnegative integer Ã ≤ A and multiset of product tensors

{H0 : 0 ∈ [Ã]} for which
∑
0∈[=] G0 =

∑
0∈[Ã ] H0, the pair of decompositions (

∑
0∈[=] G0,

∑
0∈[Ã ] H0)

has an (= − 1, 1)-subpartition.

Moreover, if = + A ≤
∑<
9=1 (3 9 − 1) + 1, Ã = rank[

∑
0∈[=] G0], and 1 ≤ Ã ≤ min{A , = − 1}, then there

exists a subset ( ⊆ [=] with Ã ≤ |( | ≤ = − 1 for which

rank

[ ∑

0∈(

G0

]
< Ã .

Proof. The statement of the first paragraph is slightly different from the B = = − 1 case of Theorem 15,

and it follows easily from Corollary 10. To prove the statement of the second paragraph, let {I0 : 0 ∈

[Ã]} ∈ Prod(V1 : · · · : V<) be any multiset of product tensors for which
∑
0∈[=] G0 =

∑
0∈[Ã ] I0, and let

& ⊆ [=], ' ⊆ [Ã] be subsets for which

max{|' |, 1} ≤ |& | ≤ = − 1

and
∑
0∈& G0 =

∑
0∈' I0. If |' | < |& | and |& | ≥ Ã , then we can take ( = &. If |' | < |& | and |& | ≤ Ã − 1,

then we can take ( ⊆ [=] to be any subset for which ( ⊇ & and |( | = Ã . It remains to consider the case

|' | = |& |. In this case, it must hold that
��[Ã] \ '

�� <
��[=] \&

��, so we can find S using the same arguments

as in the case |' | < |& |. �

A special case of the A = 1 case of Corollary 20 gives an upper bound of = − 2 on the number of

subsystems 9 ∈ [<] for which a circuit of product tensors can have 3 9 > 1. This bound improves those

obtained in [Bal20, Theorem 1.1] and [BBCG18, Lemma 4.5], and is sharp (see Section 5).

Corollary 21. If {G0 : 0 ∈ [=]} forms a circuit, then 3 9 > 1 for at most = − 2 indices 9 ∈ [<].

Proof. This follows immediately from Corollary 10 since circuits are connected. Alternatively, this

follows from the second paragraph in the statement of Corollary 20 since for any circuit it holds that∑
0∈( G0 ≠ 0 for all ( ⊆ [=] with 1 ≤ |( | ≤ = − 1. �

As an immediate consequence of Corollary 21, a sum of two product tensors is again a product tensor

if and only if 3 9 > 1 for at most a single subsystem index 9 ∈ [<] (see Corollary 15 in [Lov20]). This

statement is well known. In particular, it was used in [Wes67, Joh11] to characterize the invertible linear

operators that preserve the set of product tensors. In [Lov21, Lov20], the first author used this statement

to study decomposable correlation matrices and observed that it directly provides an elementary proof

of a recent result in quantum information theory [BLM17] (see Corollary 16 in [Lov20]).
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6.2. Uniqueness results for nonrank decompositions

In this subsection, we prove uniqueness results for decompositions of
∑
0∈[=] G0 into A ≥ = + 1 product

tensors. Namely, we provide conditions on {G0 : 0 ∈ [=]} for which whenever
∑
0∈[=] G0 =

∑
0∈[A ] H0 for

some multiset of product tensors {H0 : 0 ∈ [A]}, this pair of decompositions has an (B, ;)-subpartition.

In particular, for B = 1 we obtain sufficient conditions for the existence of subsets & ⊆ [=], ' ⊆ [A]

of size |& | = |' | = ; for which {G0 : 0 ∈ &} = {H0 : 0 ∈ '}. We refer the reader also to Section 8,

in which we prove uniqueness results on non-Waring rank decompositions of symmetric tensors and

identify applications of our nonrank uniqueness results.

In Theorem 22, we give sufficient conditions for which whenever (
∑
0∈[=] G0,

∑
0∈[A ] H0) is irre-

ducible, it has an (B, ;)-subpartition. We then observe that for B = 1 we can drop the irreducibility

assumption and obtain the result described in the previous paragraph. We then prove a modified version

of Theorem 22, which drops the irreducibility assumption for arbitrary B ∈ [= − 1]. At the end of this

subsection, we review these statements in the B = = − 1 case.

Theorem 22. Let = ≥ 2, @ ∈ [= − 1], B ∈ [@] and r be positive integers for which

= + 1 ≤ A ≤ = +
⌈= − @

B

⌉
, (14)

and let ; = ⌊@/B⌋. If for every subset ( ⊆ [=] for which B + 1 ≤ |( | ≤ =, it holds that

2|( | +max

{
0, (A − =) −

⌈
= − @ + B

|( |

⌉
+ 1

}
≤

<∑

9=1

(3(9 − 1) + 1, (15)

then for any multiset of product tensors {H0 : 0 ∈ [A]} ⊆ Prod(V1 : · · · : V<) for which∑
0∈[=] G0 =

∑
0∈[A ] H0 and (

∑
0∈[=] G0,

∑
0∈[A ] H0) is irreducible, this pair of decompositions has an

(B, ;)-subpartition.

One may be concerned about whether the complicated collection of inequalities (15) can ever be

satisfied. The answer is yes, simply because the right-hand side can depend on m, whereas the left-hand

side does not. So for m large enough, one can always find {G0 : 0 ∈ [=]} that satisfies these inequalities.

In fact, they can even be satisfied nontrivially for < = 3, as we observe in Example 26.

Proof of Theorem 22. For each 0 ∈ [A], let G=+0 = −H0, and let )1 ⊔ · · · ⊔)C = [= + A] be the index sets

of the decomposition of {G0 : 0 ∈ [= + A]} into connected components. Note that for each ? ∈ [C], it

must hold that

��)? ∩ [= + A] \ [=]
�� ≥

��)? ∩ [=]
��,

otherwise we would contradict irreducibility. For each ? ∈ [C], if

��)? ∩ [= + A] \ [=]
�� =

��)? ∩ [=]
��,

then
��)? ∩ [=]

�� ≤ B, otherwise {G0 : 0 ∈ )?} would split by equation (15) and Corollary 10. Assume

without loss of generality that

��)1 ∩ [=]
�� −

��)1 ∩ [= + A] \ [=]
�� ≥

��)2 ∩ [=]
�� −

��)2 ∩ [= + A] \ [=]
��

...

≥
��)C ∩ [=]

�� −
��)C ∩ [= + A] \ [=]

��.

If

��)1 ∩ [=]
�� =

��)1 ∩ [= + A] \ [=]
��,

https://doi.org/10.1017/fms.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.20


Forum of Mathematics, Sigma 19

then let ;̃ ∈ [C] be the largest integer for which

��);̃ ∩ [=]
�� =

��);̃ ∩ [= + A] \ [=]
��. (16)

Otherwise, let ;̃ = 0. Then for all ? ∈ [C] \ [;̃] it holds that

|)? ∩ [=] | < |)? ∩ [= + A] \ [=] | (17)

(recall that we define [0] = {}). To complete the proof, we will show that ;̃ ≥ ;, for then we can take

&? = )? ∩ [=] and '? = )? ∩ [= + A] \ [=] for all ? ∈ [;] to conclude.

Suppose toward contradiction that ;̃ < ;. We require the following two claims.

Claim 23. It holds that ;̃ < C,
⌈
=−B;̃
C−;̃

⌉
≥ B + 1, and there exists ? ∈ [C] \ [;̃] for which

��)? ∩ [=]
�� ≥

⌈
= − B;̃

C − ;̃

⌉
. (18)

Claim 24. For all ? ∈ [C] \ [;̃], it holds that

��)? ∩ [= + A] \ [=]
�� ≤

��)? ∩ [=]
�� + A − = + ;̃ − C + 1 (19)

Before proving these claims, we first use them to complete the proof of the theorem. Let ? ∈ [C] \ [;̃]

be as in Claim 23. Then,

|)? | =
��)? ∩ [=]

�� +
��)? ∩ [= + A] \ [=]

��

≤ 2
��)? ∩ [=]

�� + A − = + ;̃ − C + 1

≤ 2
��)? ∩ [=]

�� + A − = −
⌈
= − B;̃��)? ∩ [=]

��

⌉
+ 1

≤ 2
��)? ∩ [=]

�� + A − = −
⌈
= − @ + B��)? ∩ [=]

��

⌉
+ 1

≤

<∑

9=1

(3
)?∩[=]

9
− 1) + 1,

where the first line is obvious, the second follows from Claim 24, the third follows from Claim 23, the

fourth follows from ;̃ < ; and the fifth follows from equation (15) and the fact that
��)? ∩ [=]

�� ≥ B + 1.

So {G0 : 0 ∈ )?} splits, a contradiction. This completes the proof, modulo proving the claims.

Proof of Claim 23. To prove the claim, we first observe that = > BC. Indeed, if = ≤ BC, then

A =

C∑

?=1

��)? ∩ [= + A] \ [=]
��

≥ = + C − ;̃

≥ = +
= − @

B
+ 1,

where the first line is obvious, the second follows from equations (16) and (17) and the third follows

from = ≤ BC and ;̃ < ;. This contradicts equation (14), so it must hold that = > BC.

Note that ;̃ < C, for otherwise we would have = ≤ BC by the fact that
��)? ∩ [=]

�� ≤ B for all ? ∈ [;̃]. To

verify that
⌈
=−B;̃
C−;̃

⌉
≥ B + 1, it suffices to prove =−B;̃

C−;̃
> B, which follows from = > BC. To verify equation
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(39), since
��)? ∩ [=]

�� ≤ B for all ? ∈ [;̃], by the pigeonhole principle there exists ? ∈ [C] \ [;̃] for which

��)? ∩ [=]
�� ≥

⌈
= − B;̃

C − ;̃

⌉
.

This proves the claim. �

Proof of Claim 24. Suppose toward contradiction that the inequality (19) does not hold for some ?̃ ∈

[C] \ [;̃]. Then

A =

C∑

?=1

��)? ∩ [= + A] \ [=]
��

≥
∑

?≠ ?̃

��)? ∩ [= + A] \ [=]
�� +

��)?̃ ∩ [=]
�� + (A − =) + ;̃ − C + 2

≥ A + 1,

where the first two lines are obvious, and the last line follows from equations (16) and (17), a

contradiction.△ �

The proofs of Claims 23 and 24 complete the proof of the theorem. �

6.2.1. B = 1 case of Theorem 22

In the B = 1 case of Theorem 22, we can drop the assumption that the pair of decompositions is

irreducible. This is because the other assumptions already imply that
∑
0∈[=] G0 constitutes a (unique)

tensor rank decomposition by Theorem 2, so
∑
0∈[=] G0 =

∑
0∈[A ] H0 will automatically be irreducible

(see the discussion at the beginning of Section 6).

Corollary 25 (B = 1 case of Theorem 22). Let @ ∈ [= − 1] and r be positive integers for which

= + 1 ≤ A ≤ 2= − @. If for every subset ( ⊆ [=] with 2 ≤ |( | ≤ = it holds that

2|( | +max

{
0, (A − =) −

⌈
= − @ + 1

|( |

⌉
+ 1

}
≤

<∑

9=1

(3(9 − 1) + 1, (20)

then for any multiset of product tensors {H0 : 0 ∈ [A]} ⊆ Prod(V1 : · · · : V<) for which∑
0∈[=] G0 =

∑
0∈[A ] H0, there exist subsets & ⊆ [=] and ' ⊆ [A] of size |& | = |' | = @ for which

{G0 : 0 ∈ &} = {H0 : 0 ∈ '} (in other words, this pair of decompositions has a (1, @)-subpartition).

It is worth noting that although the assumptions of Corollary 25 require
∑
0∈[=] G0 to constitute a

unique tensor rank decomposition, this result can also be applied to arbitrary decompositions
∑
0∈[=] G0,

provided that
∑
0∈( G0 constitutes a unique tensor rank decomposition for some subset ( ⊆ [=] with

2 ≤ |( | ≤ =, as one can simply apply Corollary 25 to the pair of decompositions (
∑
0∈( G0,

∑
0∈[A ] H0 −∑

0∈[=]\( G0). It is not difficult to produce explicit examples in which Corollary 25 can be applied in

this way (for instance, by modifying Example 26).

As an example, we now use Corollary 25 to prove uniqueness of nonrank decompositions of the

identity tensor
∑
0∈[=] 4

⊗3
0 .

Example 26. Let = ≥ 2, @ ∈ [= − 1], and r be positive integers for which = + 1 ≤ A ≤ 2= − @ and

@ ≤ = + 1 −
1

4

(
(A − = + 2)2 + 1

)
.

https://doi.org/10.1017/fms.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.20


Forum of Mathematics, Sigma 21

If

∑

0∈[=]

4⊗3
0 =

∑

0∈[A ]

H0

for some multiset of product tensors {H0 : 0 ∈ [A]} ⊆ Prod(V1 : V2 : V3), then there exist subsets

& ⊆ [=] and ' ⊆ [= + A] of sizes |& | = |' | = @ such that {G0 : 0 ∈ &} = {H0 : 0 ∈ '}. For example, if

A = = + 1, then we can take @ = = − 2 for any = ≥ 3.

To verify Example 26, it suffices to show that the inequality (20) holds for all ( ⊆ [=] with 2 ≤ |( | ≤ =.

This reduces to proving that

|( | (A − = + 2 − |( |) − (= − @ + 1) < 0,

which occurs whenever the polynomial in |( | on the lefthand side has no real roots, that is, whenever

(A − = + 2)2 ≤ 4(= − @ + 1) − 1.

6.2.2. Modifying Theorem 22 to apply to reducible pairs of decompositions

A drawback to Theorem 22 is that it only applies to irreducible pairs of decompositions. We now present

a modification of this result, which can certify the existence of an (B, ;)-subpartition even for reducible

decompositions, at the cost of stricter assumptions. We defer this proof to the appendix, as it is very

similar to that of Theorem 22.

Theorem 27. Let @ ∈ [= − 1], B ∈ [@] and r be positive integers for which

= + 1 ≤ A ≤

⌈(
B + 1

B

)
(= − @ + B)

⌉
− 1,

and let ; = ⌊@/B⌋. If for every subset ( ⊆ [=] for which B + 1 ≤ |( | ≤ =, it holds that

2|( | +max

{
0, (A − = + @ − B) −

⌈
= − @ + B

|( |

⌉
+ 1

}
≤

<∑

9=1

(3(9 − 1) + 1,

then for any multiset of product tensors {H0 : 0 ∈ [A]} ⊆ Prod(V1 : · · · : V<) for which
∑
0∈[=] G0 =∑

0∈[A ] H0, this pair of decompositions has an (B, ;)-subpartition.

6.2.3. B = = − 1 case of Theorem 27

When B = = − 1, then it necessarily holds that A = = + 1 and @ = = − 1 and Theorem 27 simply says that

if 2= + 1 ≤
∑<
9=1 (3 9 − 1) + 1, then

∑
0∈[=] G0 =

∑
0∈[=+1] H0 has an (= − 1, 1)-subpartition. Theorem 22

yields a weaker statement.

7. A lower bound on tensor rank

In Section 6.1.1, we saw that for a multiset of product tensors {G0 : 0 ∈ [=]} with k-ranks : 9 =

k-rank(G0, 9 : 0 ∈ [=]), it holds that

rank

[ ∑

0∈[=]

G0

]
≥ min

{
=,

<∑

9=1

(: 9 − 1) + 2 − =

}
. (21)

In this section, we prove that when the k-ranks are sufficiently balanced, two of the k-ranks :8 , : 9
appearing in this bound can be replaced with standard ranks 38 , 3 9 , which improves this bound when

the k-ranks and ranks are not equal and specializes to Sylvester’s matrix rank inequality when < = 2.
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We prove that this improved bound is independent of a different lower bound on tensor rank that we

observed in Corollary 17. We furthermore observe that this improved bound is sharp in a wide parameter

regime. As a consequence, we obtain a lower bound on Waring rank, which we also prove is sharp.

Theorem 28 (Tensor rank lower bound). Let = ≥ 2 and < ≥ 2 be integers, let V = V1 ⊗ · · · ⊗ V< be a

vector space over a field F and let

� = {G0 : 0 ∈ [=]} ⊆ Prod(V1 : · · · : V<)

be a multiset of product tensors. For each index 9 ∈ [<], let : 9 = k-rank(G0, 9 : 0 ∈ [=]) and

3 9 = dim span{G0, 9 : 0 ∈ [=]}. Define

` = max
8, 9∈[<]
8≠ 9

{38 − :8 + 3 9 − : 9 }. (22)

If for every index 8 ∈ [<] it holds that

:8 ≤
∑

9∈[<]
9≠8

(: 9 − 1) + 1, (23)

then

rank

[ ∑

0∈[=]

G0

]
≥ min

{
=, ` +

<∑

9=1

(: 9 − 1) + 2 − =

}
. (24)

Intuitively, the condition (23) ensures that the k-ranks are sufficiently balanced. This inequality is

satisfied, for example, when the product tensors are symmetric. While we are unaware whether the

precise inequality (23) is necessary for the lower bound (24) to hold, the following example illustrates

that some inequality of this form must hold.

Example 29. The set of product tensors

� = {4⊗3
1

, 4⊗3
2

, 4⊗3
3

, 4⊗3
4

, 45 ⊗ (41 + 42)
⊗2, 46 ⊗ (41 − 42)

⊗2}

does not satisfy equation (24). Indeed,

rank[Σ(�)] = 5

< @ + :1 + :2 + :3 − 1 − =

= 32 + 33 − 1

= 7.

This example illustrates that in order for the bound (24) to hold, the k-ranks must be sufficiently

‘balanced’ in order to avoid cases such as this. In particular, some inequality resembling equation (23) is

necessary. We remark that this example can be extended to further parameter regimes using Derksen’s

example [Der13], and similar arguments as in Sections 7.1 and 8.1.

Note that when < = 2, Theorem 28 states that

rank

[ ∑

0∈[=]

G0

]
≥ 31 + 32 − =,

provided that :1 = :2. This is Sylvester’s matrix rank inequality (although Sylvester’s result holds also

when :1 ≠ :2) [HJ13].
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The following example demonstrates that our two lower bounds on tensor rank in Theorem 28 and

Corollary 17 are independent.

Example 30. By Theorem 28, the sum of the set of product tensors

{4⊗3
1

, 4⊗3
2

, (41 + 42)
⊗2 ⊗ 43, 4⊗2

3
⊗ (41 + 42 + 43)}

has tensor rank 4. Note that this bound cannot be achieved with the flattening rank lower bound, nor

with Corollary 17, as the first three vectors do not satisfy equation (12). Many more such examples can

be obtained using the construction in Section 7.1.

Conversely, the sum of the set of product tensors

{4⊗3
1

, 4⊗3
2

, 4⊗3
3

, 4⊗3
4

, (42 + 43) ⊗ (42 + 44) ⊗ (41 + 44)}

has tensor rank 5 by Corollary 17, while Theorem 28 only certifies that this sum has tensor rank at least 4.

Now, we prove Theorem 28.

Proof of Theorem 28. Let A = rank[
∑
0∈[=] G0], and let {H0 : 0 ∈ [A]} ⊆ Prod(V1 : · · · : V<) be a

multiset of product tensors for which
∑
0∈[=] G0 =

∑
0∈[A ] H0 is a tensor rank decomposition. We need to

prove that r satisfies the inequality (24). For each 0 ∈ [A], let G=+0 = −H0, and let )1 ⊔ · · · ⊔)C = [= + A]

be the index sets of the connected components of {G0 : 0 ∈ [= + A]}, so that
∑
0∈)9 G0 = 0 for all 9 ∈ [C].

For each subset ( ⊆ [=] and index 9 ∈ [<], let

3(9 = dim span{G0, 9 : 0 ∈ (}.

We first consider the case C = 1, that is, {G0 : 0 ∈ [= + A]} is connected. By the splitting theorem, it

holds that

= + A ≥

<∑

9=1

(3 9 − 1) + 2

≥ ` +

<∑

9=1

(: 9 − 1) + 2,

completing the proof in this case.

We proceed by induction on t. Suppose the theorem holds whenever the number of connected

components is less than t. Assume without loss of generality that

��)1 ∩ [=]
�� −

��)1 ∩ [= + A] \ [=]
�� ≥

��)2 ∩ [=]
�� −

��)2 ∩ [= + A] \ [=]
��

...

≥
��)C ∩ [=]

�� −
��)C ∩ [= + A] \ [=]

��

≥ 0,

where the last line follows from
∑
0∈)C G0 = 0 and the fact that

∑
0∈[A ] H0 is a tensor rank decomposition

(so in particular,
∑
0∈)C∩[=+A ]\[=] G0 is a tensor rank decomposition). If

��)1 ∩ [=]
�� =

��)1 ∩ [= + A] \ [=]
��,

then A = = and we are done. Otherwise,

��)[C−1] ∩ [=]
�� >

��)[C−1] ∩ [= + A] \ [=]
��,

where )[C−1] = )1 ⊔ · · · ⊔)C−1.
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Observe that : 9 <
��)[C−1] ∩ [=]

�� for all 9 ∈ [<]. Indeed, since

rank

[ ∑

0∈)[C−1]∩[=]

G0

]
<

��)[C−1] ∩ [=]
��,

it must hold that

2
��)[C−1] ∩ [=]

�� − 1 ≥

<∑

9=1

(
min

{��)[C−1] ∩ [=]
��, : 9

}
− 1

)
+ 2,

by equation (21). If :8 ≥
��)[C−1] ∩ [=]

�� for some 8 ∈ [<], then this inequality implies that

: 9 <
��)[C−1] ∩ [=]

�� for all 9 ≠ 8, and hence

:8 ≥
��)[C−1] ∩ [=]

�� ≥
∑

9∈[<]
9≠8

(: 9 − 1) + 2,

contradicting equation (23). So : 9 <
��)[C−1] ∩ [=]

�� for all 9 ∈ [<].

Since : 9 <
��)[C−1] ∩ [=]

�� for all 9 ∈ [<], the k-ranks of {G0 : 0 ∈ )[C−1] ∩ [=]} satisfy equation (23),

so by the induction hypothesis,

��)[C−1]

�� ≥ `)[C−1]∩[=] +

<∑

9=1

(: 9 − 1) + 2, (25)

where

`)[C−1]∩[=] = max
8, 9∈[<]
8≠ 9

{
3
)[C−1]∩[=]

8
− :8 + 3

)[C−1]∩[=]

9
− : 9

}
.

To complete the proof, we will show that

��)[C−1]

�� + |)C | ≥ ` +

<∑

9=1

(: 9 − 1) + 2.

Let 8, 8′ ∈ [<] be such that ` = 38 − :8 + 38′ − :8′ . Then

��)[C−1]

�� + |)C | ≥ 3
)[C−1]∩[=]

8
− :8 + 3

)[C−1]∩[=]

8′
− :8′ +

<∑

9=1

(: 9 − 1) +

<∑

9=1

(3
)C∩[=]
9

− 1) + 4

≥ 3
)[C−1]∩[=]

8
− :8 + 3

)[C−1]∩[=]

8′
− :8′ +

<∑

9=1

(: 9 − 1) + 3
)C∩[=]
8

+ 3
)C∩[=]
8′

+ 2

≥ 38 − :8 + 38′ − :8′ +

<∑

9=1

(: 9 − 1) + 2

= ` +

<∑

9=1

(: 9 − 1) + 2,

where the first line follows from equation (25) and the fact that {G0 : 0 ∈ )C } is connected, the second

is obvious, the third is easy to verify (in matroid-theoretic terms, this is submodularity of the rank

function), and the fourth is by definition. This completes the proof. �
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As an immediate corollary to Theorem 28, we obtain the following lower bound on the Waring rank

of a symmetric tensor in terms of a known symmetric decomposition.

Corollary 31 (Waring rank lower bound). Let = ≥ 2, and < ≥ 2 be integers, let W be a vector space

over a field F with Char(F) = 0 or Char(F) > < and let {E0 : 0 ∈ [=]} ⊆ W \ {0} be a multiset of

nonzero vectors. Let

: = k-rank(E0 : 0 ∈ [=])

and

3 = dim span{E0 : 0 ∈ [=]}.

Then for any multiset of nonzero scalars

{U0 : 0 ∈ [=]} ⊆ F×,

it holds that

WaringRank

[ ∑

0∈[=]

U0E
⊗<
0

]
≥ min{=, 23 + (< − 2) (: − 1) − =}. (26)

7.1. Our tensor rank lower bound is sharp

In this subsection, we observe that, in a wide parameter regime, the inequalities (24) and (26) appearing

in Theorem 28 and Corollary 31 cannot be improved.

Let F be a field with Char(F) = 0, let = ≥ 2, < ≥ 2,

2 ≤ 31, . . . , 3< ≤ =,

and

:1 ≤ 31, . . . , :< ≤ 3<

be positive integers and let

_ =

<∑

9=1

(: 9 − 1) + 2.

Suppose that the following conditions hold:

1. ` = 2(38 − :8) for some index 8 ∈ [<], where ` is defined as in equation (22).

2. max{: 9 : 9 ∈ [<]} + 38 − :8 + 1 ≤ = ≤ 38 − :8 + _.

3. The inequality (23) is satisfied.

Then there exists a multiset of product tensors E corresponding to these choices of parameters that

satisfies equation (24) with equality. Indeed, the bound rank[Σ(�)] ≥ = is trivial to attain with equality,

and the bound

rank[Σ(�)] ≥ 2(38 − :8) + _ − = (27)

can be attained with equality as follows. Let

{G0 : 0 ∈ [_]} ⊆ Prod
(
F31 : · · · : F3<

)
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be a multiset of product tensors that forms a circuit and satisfies

dim span{G0, 9 : 0 ∈ [_]} = k-rank(G0, 9 : 0 ∈ [_]) = : 9 (28)

for all 9 ∈ [<]. An example of such a circuit is presented in [Der13] and reviewed in Section 5. Now, let

{G0 : 0 ∈ [_ + 38 − :8] \ [_]} ⊆ Prod
(
F31 : · · · : F3<

)

be any multiset of product tensors for which

dim span{G0, 9 : 0 ∈ [_ + 38 − :8]} = 3 9 (29)

and

k-rank(G0, 9 : 0 ∈ [_ + 38 − :8]) = : 9

for all 9 ∈ [<], which is guaranteed to exist since F is infinite. Let

� = {G0 : 0 ∈ [= − 38 + :8]} ⊔ {G0 : 0 ∈ [_ + 38 − :8] \ [_]}

and

� = {G0 : 0 ∈ [_] \ [= − 38 + :8]} ⊔ {G0 : 0 ∈ [_ + 38 − :8] \ [_]}.

Recall that = ≤ 38 − :8 + _ by assumption, so the set [_] \ [= − 38 + :8] that appears in the definition

of F is well defined. Since = − 38 + :8 ≥ : 9 + 1 for all 9 ∈ [<], E has k-ranks :1, . . . , :<, as desired.

It is also clear that E has ranks 31, . . . , 3<, by equations (28) and (29). Since {G0 : 0 ∈ [_]} forms a

circuit, some nonzero linear combination of E is equal to a nonzero linear combination of F. Since |� |

is equal to the right-hand side of equation (27), this completes the proof.

Out of the three conditions required for our construction, ` = 2(38 − :8) seems the most restrictive.

Unfortunately, our methods appear to require this condition. A nearly identical construction shows that

the inequality (26) appearing in Corollary 31 cannot be improved (and our restrictive condition on `

is automatically satisfied in this case). The only difference in the construction is to choose the product

tensors {G0 : 0 ∈ [_ + 38 − :8]} to be symmetric in this case, which can always be done (in particular,

the product tensors appearing in Derksen’s example can be taken to be symmetric).

8. A uniqueness result for non-Waring rank decompositions

In this section, we prove a sufficient condition on a symmetric decomposition

E =
∑

0∈[=]

U0E
⊗<
0

under which any distinct decomposition E =
∑
0∈[A ] V0D

⊗<
0 must have r lower bounded by some quantity,

which we call Amin for now. When Amin ≤ =, this yields a lower bound on WaringRank(E) that is contained

in Corollary 31. When Amin = = + 1, this yields a uniqueness criterion for symmetric decompositions that

is contained in Theorem 2 but improves Kruskal’s theorem in a wide parameter regime. The main result

in this section is the case Amin > = + 1, where we obtain an even stronger statement than uniqueness:

Every symmetric decomposition of v into less than Amin terms must be equal to
∑
0∈[=] U0E

⊗<
0 (in the

language introduced in Section 2,
∑
0∈[=] U0E

⊗<
0 is the unique symmetric decomposition of v into less
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thanAmin terms). In Section 8.1, we prove that our bound Amin cannot be improved. In Section 8.2, we

identify potential applications of our nonrank uniqueness results.

Our results in this section were inspired by, and generalize, Theorem 6.8 and Remark 6.14 in [Chi19].

Our results in this section should be compared with those of Section 6.2 on uniqueness of nonrank

decompositions of tensors that are not necessarily symmetric.

Theorem 32. Let = ≥ 2 and < ≥ 2 be integers, let W be a vector space over a field F with

Char(F) = 0 or Char(F) > <, let � = {E0 : 0 ∈ [=]} ⊆ W \ {0} be a multiset of nonzero vectors

with k-rank(E0 : 0 ∈ [=]) ≥ 2 and let

3 = dim span{E0 : 0 ∈ [=]}.

Then for any nonnegative integer A ≥ 0, multiset of nonzero vectors � = {D0 : 0 ∈ [A]} ⊆ W \ {0} with

k-rank(D0 : 0 ∈ [A]) ≥ min{2, A}, and multisets of nonzero scalars

{U0 : 0 ∈ [=]}, {V0 : 0 ∈ [A]} ⊆ F×

for which

{U0E
⊗<
0 : 0 ∈ [=]} ≠ {V0D

⊗<
0 : 0 ∈ [A]} (30)

and

∑

0∈[=]

U0E
⊗<
0 =

∑

0∈[A ]

V0D
⊗<
0 , (31)

it holds that

= + A ≥ < + 23 − 2. (32)

In the language of the introduction to this section, Amin = < + 23 − 2 − =. For comparison, the result

we have referred to in [Chi19] asserts that, under the condition = ≤ <, it holds that = + A ≥ < + 3, which

is weaker than our bound (32).

Proof of Theorem 32. By subtracting terms from both sides of equation (31), and combining parallel

product tensors into single terms (or to zero), it is clear that it suffices to prove the statement when E is

linearly independent (so 3 = =).

Note that A ≥ = by Kruskal’s theorem. For each 0 ∈ [A], let E=+0 = D0, and let )1 ⊔ · · · ⊔)C = [= + A]

be the index sets of the connected components of {E⊗<0 : 0 ∈ [= + A]}. Assume without loss of generality

that
��)1 ∩ [=]

�� ≥ · · · ≥
��)C ∩ [=]

��, and let C̃ ∈ [C] be the largest integer for which
��)C̃ ∩ [=]

�� ≥ 1. By

equation (30), there must exist ?̃ ∈ [C̃] for which |)?̃ | ≥ 3. Note that

dim span{E0 : 0 ∈ )?̃} ≥ max
{
2,

��)?̃ ∩ [=]
��}.

Since {E⊗<0 : 0 ∈ )?̃} is connected, it follows from our splitting theorem that

|)?̃ | ≥ <(max
{
2,

��)?̃ ∩ [=]
��} − 1) + 2. (33)

https://doi.org/10.1017/fms.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.20


28 B. Lovitz and F. Petrov

Now,

= + A ≥
∑

?∈[C̃ ]

|)? |

≥
∑

?≠ ?̃

[
<

(��)? ∩ [=]
�� − 1

)
+ 2

]
+<

(
max

{
2,

��)?̃ ∩ [=]
��} − 1

)
+ 2

= <
(
= − |)?̃ ∩ [=] |

)
− (< − 2) (C̃ − 1) +<

(
max

{
2,

��)?̃ ∩ [=]
��} − 1

)
+ 2

≥ <
(
= − |)?̃ ∩ [=] |

)
− (< − 2)

(
= −

��)?̃ ∩ [=]
��) +<

(
max

{
2,

��)?̃ ∩ [=]
��} − 1

)
+ 2

= 2= − 2
��)?̃ ∩ [=]

�� +<
(
max

{
2,

��)?̃ ∩ [=]
��} − 1

)
+ 2

≥ 2= +< − 2.

The first line is obvious, the second follows from equation (33) and the fact that every multiset {E⊗<0 :

0 ∈ )?} is connected, the third is algebra, the fourth uses the fact that
��)? ∩ [=]

�� ≥ 1 for all ? ∈ [C̃] and

the rest is algebra. This completes the proof. �

Theorem 32 immediately implies the following uniqueness result for non-Waring rank decomposi-

tions.

Corollary 33 (Uniqueness result for non-Waring rank decompositions). Let = ≥ 2 and< ≥ 2 be integers,

let W be a vector space over a field F with Char(F) = 0 or Char(F) > <, let {E0 : 0 ∈ [=]} ⊆ W \ {0}

be a multiset of nonzero vectors with k-rank(E0 : 0 ∈ [=]) ≥ 2, let {U0 : 0 ∈ [=]} ⊆ F× be a multiset of

nonzero scalars and let 3 = dim span{E0 : 0 ∈ [=]}. If

2= + 1 ≤ < + 23 − 2,

then
∑
0∈[=] U0E

⊗<
0 constitutes a unique Waring rank decomposition. More generally, if

= + A + 1 ≤ < + 23 − 2,

for some A ≥ =, then
∑
0∈[=] U0E

⊗<
0 is the unique symmetric decomposition of this tensor into at most r

terms.

Note that the A = = case of Corollary 33 improves Kruskal’s theorem for symmetric decompositions

as soon as 23 > <(: − 2) + 4, where : = k-rank(E0 : 0 ∈ [=]). This case of Corollary 33 is in fact

contained in our generalization of Kruskal’s theorem (Theorem 2), since for every subset ( ⊆ [=] with

2 ≤ |( | ≤ =, it holds that

2|( | = 2= − 2
��[=] \ (

��

≤ < + 23 − 2
��[=] \ (

�� − 3

≤ < + 23( − 3

≤ <(3( − 1) + 1,

where 3( = dim span{E0 : 0 ∈ (}. This demonstrates that our generalization of Kruskal’s theorem is

stronger than Kruskal’s theorem, even for symmetric tensor decompositions.

Our main result in this section is the A > = case of Corollary 33, which yields uniqueness results

for non-Waring rank decompositions of
∑
0∈[=] U0E

⊗=
0 . The following example illustrates this case in

practice.

Example 34. It follows from Corollary 33 that for any positive integers < ≥ 3 and = ≥ 2,
∑
0∈[=] 4

⊗<
0

is the unique symmetric decomposition of this tensor into at most < + = − 3 terms.

It is natural to ask if Corollary 33 can be improved under further restrictions on k-rank(E0 : 0 ∈ [=]).

At the end of Section 8.1, we prove that this cannot be done, at least in a particular parameter regime.
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8.1. The inequality appearing in our uniqueness result is sharp

In this subsection, we prove that the inequality (32) that appears in Theorem 32 cannot be improved, by

constructing explicit multisets of symmetric product tensors that satisfy this bound with equality.

Let F be a field with Char(F) = 0. We will prove that, for any choice of positive integers < ≥ 2,

3 ≥ 2, A ≥ 3 − 2, and = ≥ 3 for which = + A = < + 23 − 2, there exist multisets of nonzero vectors

E and F that satisfy the assumptions of Theorem 32. Note that the inequality A ≥ 3 − 2 automatically

holds when A ≥ =, so this assumption does not restrict the parameter regime in which the inequality

appearing in our uniqueness result (Corollary 33) is sharp as a consequence.

We first consider the case 3 = 2. Let {E⊗<0 : 0 ∈ [< + 2]} ⊆ Prod
(
F2

: · · · : F2
)

be a circuit of

symmetric product tensors for which

k-rank(E0 : 0 ∈ [< + 2]) = 2.

An example of such a circuit is given in [Der13] and reviewed in Section 5. So there exist nonzero

scalars {U0 : 0 ∈ [< + 2]} ⊆ F× for which
∑
0∈[<+2] U0E

⊗<
0 = 0, and we can take the multisets

� = {E0 : 0 ∈ [=]} and � = {E0 : 0 ∈ [< + 2] \ [=]} to conclude.

For 3 ≥ 3, let {E⊗<0 : 0 ∈ [< + 2]} ⊆ Prod
(
F3 : · · · : F3

)
be the same multiset of symmetric product

tensors as above, embedded in a larger space. Let

{E0 : 0 ∈ [3 +<] \ [< + 2]} ⊆ F3 \ {0}

be any multiset of nonzero vectors for which

dim span{E0 : 0 ∈ [3 +<]} = 3

and

k-rank{E0 : 0 ∈ [3 +<]} ≥ 2,

which is guaranteed to exist since F is infinite. Since A ≥ 3 − 2, we can take the multisets

� = {E0 : 0 ∈ [= − 3 + 2]} ⊔ {E0 : 0 ∈ [3 +<] \ [< + 2]}

and

� = {E0 : 0 ∈ [< + 2] \ [= − 3 + 2]} ⊔ {E0 : 0 ∈ [3 +<] \ [< + 2]}

to conclude.

Somewhat surprisingly, the inequality (32) is very nearly sharp even when the k-rank condition

is tightened to k-rank(E0 : 0 ∈ [=]) ≥ : for some : ≥ 3 under certain parameter constraints. More

specifically, for any : ∈ {3, 4, . . . , 3 − 1}, it is almost sharp under the choice = = 3 + 1 and A = < + 3 − 1.

Let

� = {E0 : 0 ∈ [3 +<] \ [<]} ⊔

{ ∑

0∈[: ]

E0

}
,

and

� = {E0 : 0 ∈ [<]} ⊔ {E0 : 0 ∈ [3 +<] \ [< + 2]} ⊔

{ ∑

0∈[: ]

E0

}
.

Here, |� | + |� | = 23 +<, exceeding our lower bound by 2. When : = 3, take the same multisets E and

F, with
∑
0∈[3 ] E0 removed, to observe that our bound is sharp under the choice = = 3 and A = < + 3 − 2.

https://doi.org/10.1017/fms.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.20


30 B. Lovitz and F. Petrov

Note that the k-rank is brought down to k because of a single vector in the multiset. This is a concrete

demonstration of the fact that the k-rank is a very crude measure of genericity. We emphasize that this

construction relies on the particular choice of parameters = = 3 + 1, and A = < + 3 − 1. It is possible

that the inequality (32) could be significantly strengthened for other choices of n and r. Indeed, we have

exhibited such an improvement for A ≤ = in Corollary 31.

8.2. Applications of nonrank uniqueness results

In this subsection, we identify potential applications of our results on uniqueness of nonrank decompo-

sitions. For concreteness, we focus on the symmetric case and our non-Waring rank uniqueness result

in Corollary 33; however, similar comments can be applied to our analogous results in Section 6.2 in

the nonsymmetric case.

We say a symmetric tensor v is identifiable if it has a unique Waring rank decomposition. For the

purposes of this discussion, we will say that v is r-identifiable for some A ≥ rank(E) if the Waring rank

decomposition of v is the unique symmetric decomposition of v into at most r terms (see Section 2).

Corollary 33 provides a sufficient condition for a symmetric tensor v to be r-identifiable for A >

rank(E), and Example 34 demonstrates the existence of symmetric tensors satisfying this condition.

We can thus define a hierarchy of identifiable symmetric tensors (of some fixed rank), where those that

are r-identifiable for larger r can be thought of as ‘more identifiable’. We suggest that studying this

hierarchy could be a useful tool for studying symmetric tensor decompositions. For example, although

most symmetric tensors of subgeneric rank are identifiable, it is notoriously difficult to find the rank

decomposition of such tensors [Lan12, BCMV14, COV17b]. Perhaps one can leverage the additional

structure of r-identifiable symmetric tensors to find efficient decompositions.

In applications, one often has a symmetric decomposition of a tensor and wants to control the possible

symmetric decompositions with fewer terms. Uniqueness results for nonrank decompositions can be

turned around to apply in this setting: Suppose we know that if a symmetric decomposition into n terms

satisfies some condition, call it C, then it is the unique symmetric decomposition into at most r terms,

for some A > =. Then if one starts with a symmetric decomposition of a symmetric tensor v into r terms,

one knows that there are no symmetric decompositions of v into = < A terms that satisfies condition C. In

this way, one can use a nonrank uniqueness result to control the possible decompositions of v into fewer

than r symmetric product tensors. Applying this reasoning to our Corollary 33 simply yields a special

case of Theorem 32. However, applying analogous reasoning to Corollary 25 in the nonsymmetric case

seems to produce new results.

9. Comparing our generalization of Kruskal’s theorem to the uniqueness criteria of Domanov,

De Lathauwer and Sørensen

In this section, we compare our generalization of Kruskal’s theorem to uniqueness criteria obtained

by Domanov, De Lathauwer and Sørensen (DLS) in the case of three subsystems [DL13a, DL13b,

DL14, SL15, SDL15], which are the only previously known extensions of Kruskal’s theorem that

we are aware of. A drawback to the uniqueness criteria of DLS is that, similarly to Kruskal’s theo-

rem, they require the k-ranks to be above a certain threshold. In Section 9.1, we make this statement

precise and show by example that our generalization of Kruskal’s theorem can certify uniqueness

below this threshold. Moreover, in Section 9.2 we observe that our generalization of Kruskal’s the-

orem contains many of the uniqueness criteria of DLS. The uniqueness criteria of DLS are spread

across five papers and can be difficult to keep track of. For clarity and future reference, in The-

orem 37 we combine all of these criteria into a single statement. In Section 9.3, we use insight

gained from this synthesization and our Theorem 2 as evidence to support a conjectural unique-

ness criterion that would contain and unify every uniqueness criteria of DLS into a single, elegant

statement.
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For the remainder of this section, we fix a vector space V = V1 ⊗ V2 ⊗ V3 over a field F and a multiset

of product tensors

{G0 : 0 ∈ [=]} ⊆ Prod(V1 : V2 : V3)

with k-ranks : 9 = k-rank(G0, 9 : 0 ∈ [=]) for each 9 ∈ [3]. For each subset ( ⊆ [=] with 2 ≤ |( | ≤ =

and index 9 ∈ [3], we let

3(9 = dim span{G0, 9 : 0 ∈ [=]}.

We also let 3 9 = 3
[=]
9

for all 9 ∈ [3].

9.1. Uniqueness below the k-rank threshold of DLS

All of the uniqueness criteria of DLS require the k-ranks to be above a certain threshold. In this

subsection, we show by example that our generalization of Kruskal’s theorem can certify uniqueness

below this threshold.

Making this threshold precise, the uniqueness criteria of DLS cannot be applied whenever

min{:2, :3} ≤ = − 31 + 1,

and min{:1, :3} ≤ = − 32 + 1,

and min{:1, :2} ≤ = − 33 + 1. (34)

For example, if :2 = :3 = 2, then the uniqueness criteria of DLS can only certify uniqueness if 31 = =.

The following example shows that our generalization of Kruskal’s theorem (Theorem 2) can certify

uniqueness even if equation (34) holds.

Example 35. Consider the multiset of product tensors

{U14
⊗3
1

,U24
⊗3
2

,U34
⊗3
3

,U44
⊗3
4

,U5 (42 + 43) ⊗ (42 + 44) ⊗ (41 + 44)} for U1, . . . ,U5 ∈ F×.

In this example, :1 = :2 = :3 = 2, 31 = 32 = 33 = 4, and =− 3 9 + 2 = 3 for all 9 ∈ [3], so equation (34)

holds. Nevertheless, for arbitrary U1, . . . ,U5 ∈ F×, our generalization of Kruskal’s theorem certifies

that the sum of these product tensors constitutes a unique tensor rank decomposition. We note that

uniqueness for U2 = · · · = U5 = 1 was proven in [DL13b, Example 5.2], using a proof specific to this

case, in order to demonstrate that their uniqueness criteria are not also necessary for uniqueness.

Example 35 shows that Theorem 2 is strictly stronger than Kruskal’s theorem and is independent of

the uniqueness criteria of DLS. It is natural to ask if Theorem 2 is stronger than Kruskal’s theorem even

for symmetric tensor decompositions. We have observed in Section 8 that this is indeed the case.

9.2. Extending several uniqueness criteria of DLS

In this subsection, we observe that several of the uniqueness criteria of DLS are contained in our gen-

eralization of Kruskal’s theorem and prove a further, independent uniqueness criterion. The uniqueness

criteria of DLS are numerous and can be difficult to keep track of. To more easily analyze these criteria,

in Theorem 37 we combine them all into a single statement.

9.2.1. Conditions U, H, C and S

Here, we introduce several different conditions on multisets of product tensors, which will make the

uniqueness criteria of DLS easier to state and also make them easier to relate to our generalization

of Kruskal’s theorem. We first recall Conditions U, H and C from [DL13a, DL13b]. For notational

convenience, we have changed these definitions slightly from [DL13a, DL13b]. For example, our
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Condition U is their Condition*=−31+2, with the added condition that :1 ≥ 2. After reviewing Conditions

U, H and C, we introduce Condition S, which captures the conditions of our generalization of Kruskal’s

theorem in the case < = 3. Unlike Conditions U, H and C, our Condition S does not appear in [DL13a,

DL13b] nor anywhere else that we are aware of.

For a vector U ∈ F=, we let l(U) denote the number of nonzero entries in U.

Condition U. It holds that :1 ≥ 2, and for all U ∈ F=,

rank
[ ∑

0∈[=]

U0G0,2 ⊗ G0,3

]
≥ min{l(U), = − 31 + 2}. (35)

Condition H. It holds that :1 ≥ 2, and

3(2 + 3
(
3 − |( | ≥ min{|( |, = − 31+ 2}

for all ( ⊆ [=] with 2 ≤ |( | ≤ =.

Condition C takes a bit more work to describe. We use coordinates for this condition in order to avoid

having to introduce further multilinear algebra notation. For positive integers @, A , and t and matrices

. = (H1, . . . , HC ) ∈ Hom(FC , F@)

/ = (I1, . . . , IC ) ∈ Hom(FC , FA ),

let

. ⊙ / = (H1 ⊗ I1, . . . , HC ⊗ IC ) ∈ Hom(FC , F@A )

denote the Khatri–Rao product of Y and Z. SupposeV 9 = F3 9 for each 9 ∈ [3], and consider the matrices

- 9 = (G1, 9 , . . . , G=, 9 ) ∈ Hom(F=, F3 9 )

for 9 ∈ [3]. For a positive integer B ≤ 3 9 , let CB (- 9 ) be the
(3 9

B

)
×

(=
B

)
matrix of B × B minors of - 9 , with

rows and columns arranged according to the lexicographic order on the size s subsets of [3 9 ] and [=],

respectively. Define the matrix

�B = CB (-2) ⊙ CB (-3) ∈ Hom(F(=B) , F@),

where @ =
(
32
B

) (
33
B

)
. Now, we can state Condition C.

Condition C. It holds that :1 ≥ 2, min{32, 33} ≥ = − 31 + 2, and

rank(�=−31+2) =
( =
=−31+2

)
.

To more easily compare our generalization of Kruskal’s theorem to the uniqueness criteria of DLS,

we give a name (Condition S) to the condition of our Theorem 2 in the case < = 3.

Condition S. It holds that

2|( | ≤ 3(1 + 3(2 + 3(3 − 2

for all ( ⊆ [=] with 2 ≤ |( | ≤ =.
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These conditions are related to each other as follows:

Condition H

Condition C

Condition U

Condition S

(36)

All of the implications in equation (36) except (Condition H ⇒ Condition S) were proven in [DL13a].

To see that Condition H⇒Condition S, note that, for any subset ( ⊆ [=] with 2 ≤ |( | ≤ =, the condition

:1 ≥ 2 implies

3(1 ≥ max{2, 31 − (= − |( |)},

so by Condition H,

3(1 + 3(2 + 3(3 ≥ max{2, 31 − (= − |( |)} + |( | +min{|( |, = − 31 + 2}

≥ 2|( | + 2,

and Condition S holds. The following example shows that Condition C; Condition S.

Example 36. Let {G0,1 ⊗ G0,2 ⊗ G0,3 : 0 ∈ [9]} ⊆ Q7 ⊗ Q6 ⊗ Q6 be the set of product tensors defined by

-1 = (G1,1, . . . , G9,1) =



1 2 1 1 2 −1 1 1 −2

0 2 0 −1 2 0 1 2 −1

−2 −2 −1 −1 0 −1 −2 2 1

0 2 2 1 −2 2 1 0 2

0 −1 0 −1 −2 −2 2 −2 −2

1 0 −1 0 0 −2 2 0 2

0 2 −2 1 2 −1 −2 −1 1



,

-2 = (G1,2, . . . , G9,2) =



0 −2 0 −1 2 −1 0 −1 1

2 −1 0 0 2 0 −2 0 1

1 0 −2 2 1 1 2 1 0

2 0 2 −2 0 2 −1 2 −1

1 1 1 0 2 −1 1 1 0

1 −2 2 −1 −2 2 −1 0 2



,

-3 = (G1,3, . . . , G9,3) =



2 −1 1 1 1 1 −1 −2 −1

−2 1 1 0 0 1 1 2 −2

2 1 1 1 −1 2 1 −2 −1

1 2 1 0 −2 −1 −1 1 −2

0 2 1 2 2 2 1 1 0

2 −1 2 1 0 −1 2 −1 −2



.

Condition C holds for this set of product tensors, but Condition S does not. In fact, it also holds that

:1 = 7 and :2 = :3 = 6, so
∑
0∈[9] G0,1 ⊗ G0,2 ⊗ G0,3 is a unique tensor rank decomposition by Theorem

37.1 below. Together, this example and Example 35 demonstrate that our generalization of Kruskal’s
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theorem is independent of the uniqueness criteria of DLS (it is neither weaker nor stronger). This

example was generated by randomly picking three matrices -1, -2, -3 with entries in {−2,−1, 0, 1, 2}.

By Example 35, Condition S ; Condition U. In [DL13a], it is asked whether Condition H ⇒

Condition C. Condition U is theoretically computable, as it can be phrased as an ideal membership

problem; however, we are unaware of an efficient implementation. By comparison, Conditions C, H,

and S are easy to check.

In the case of three subsystems, our Theorem 2 states that Condition S implies uniqueness. Since

Condition H ⇒ Condition S, then a corollary to Theorem 2 is that Condition H implies uniqueness.

Similarly, Theorem 37 below states that Condition U + extra assumptions implies uniqueness. By

equation (36), this implies that Condition H + the same extra assumptions implies uniqueness, and

similarly, Condition C + the same extra assumptions implies uniqueness. Since we have proven that

Condition H alone implies uniqueness, it is natural to ask whether Conditions C or U alone imply

uniqueness. We reiterate this line of reasoning in Section 9.3 and pose this question formally.

9.2.2. Synthesizing the uniqueness criteria of DLS

The following theorem contains every uniqueness criterion of DLS for which we are aware of an efficient

implementation. This theorem is stated in terms of Condition U to maintain generality; however, only

the implied statements in which Condition U is replaced by Conditions H or C have an efficient

implementation. Note that our Theorem 2 generalizes the Condition H version of this theorem to the

statement that Condition S alone implies uniqueness (so, in particular, Condition H alone implies

uniqueness).

Theorem 37. Suppose that Condition U holds and any one of the following conditions holds:

1. :1 +min{:2, :3 − 1} ≥ = + 1.

2. It holds that :2 ≥ 2 and for all U ∈ F=,

rank



∑

0∈[=]

U0G0,1 ⊗ G0,3


≥ min{l(U), = − 32 + 2}.

(Note that this is just Condition U with the first subsystem replaced by the second.)

3. There exists a subset ( ⊆ [=] with 0 ≤ |( | ≤ 31 such that the following three conditions hold:

(a) 3(
1
= |( |.

(b) 3
[=]\(

2
= = − |( |.

(c) For any linear mapΠ ∈ End(V1) with ker(Π) = span{G0,1 : 0 ∈ (}, scalars U1, . . . ,U= ∈ F,

and index 1 ∈ [=] \ ( such that

∑

0∈[=]\(

U0ΠG0,1 ⊗ G0,3 = ΠG1,1 ⊗ I

for some I ∈ Vf (3) , it holds that l(U) ≤ 1.

4. There exists a permutation g ∈ (= for which the matrix

- g1 = (Gg (1) ,1, . . . , Gg (=) ,=)

has reduced row echelon form

. =



1

. . .

1

/



,
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where / ∈ Hom(F=−31 , F31) and the blank entries are zero. Furthermore, for each 0 ∈ [31 − 1], the

columns of the submatrix of Y with row index {0, 0 + 1, . . . , 31} and column index {0, 0 + 1, . . . , =}

have k-rank at least two.

5. :1 = 31.

6. For all U ∈ F=,

rank



∑

0∈[=]

U0G0,2 ⊗ G0,3


≥ min{l(U), = − :1 + 2}.

(Note that this is a stronger statement than Condition U, as it replaces the quantity = − 31 + 2 with

the possibly larger quantity = − :1 + 2.)

Then
∑
0∈[=] G0 constitutes a unique tensor rank decomposition.

For each 8 ∈ [5], we will refer to Theorem 37.i as the statement that Condition U and the i-th

condition appearing in Theorem 37 imply uniqueness. Theorems 37.1 and 37.2 are Corollary 1.23 and

Proposition 1.26 in [DL13b, DL14]. The Condition C version of Theorem 37.3 is stated in Theorem

2.2 in [SDL15], although the proof is contained in [DL13a, DL13b, SL15]. Condition 3b in Theorem

37 can be formulated as checking the rank of a certain matrix (see [SDL15]). Theorem 37.4 is a new

result that we will prove (see Proposition 38 for a coordinate-free statement). The Condition C version

of Theorems 37.5 and 37.6 are Theorems 1.6 and 1.7 in [DL14]. It is easy to see that our Theorem 37.4

contains Theorem 37.5, which in turn contains Theorem 37.6, by the arguments used in [DL14].

Most of these statements have previously only been formulated for F = R or F = C; however, in

all of these cases the proof can be adapted to hold over an arbitrary field. The first step in proving

all of these statements is to show that Condition U implies uniqueness in the first subsystem. This is

Proposition 4.3 in [DL13a], and it is proven using Kruskal’s permutation lemma [Kru77] (the proof of

the permutation lemma in [Lan12] holds word-for-word over an arbitrary field). In fact, uniqueness in

the first subsystem holds even with the assumption :1 ≥ 2 removed from Condition U [DL13a].

A less-restrictive condition than Condition U, which we would call Condition W, also appears in

[DL13a, DL13b] and is the same as Condition U except that it only requires equation (35) to hold

when U = ( 5 (G1,1), . . . , 5 (G=,1)) for some linear functional 5 ∈ V∗
1
. We note that Theorem 37 also

holds with Condition U replaced by Condition W. Although the Condition W version of Theorem 37 is

slightly stronger than the Condition U version, we are not aware of an efficient algorithm to check either

Condition U or Condition W, and the existence of such an algorithm seems unlikely.

We conclude this subsection by proving Theorem 37.4. For this, we require the following proposition,

which restates Condition 4 in a coordinate-free manner.

Proposition 38. Condition 4 in Theorem 37 holds if and only if there exists a permutation g ∈ (= such

that for each 0 ∈ [31 − 1] there is a linear operator Π0 ∈ End(V1) for which

Π0 (Gg (1) ,1) = 0

for all 1 ∈ [0 − 1], and

k-rank(Π0Gg (0) ,1, . . . ,Π0Gg (=) ,1) ≥ 2. (37)

Proof. Assume without loss of generality that V1 = F31 . To see that the first statement implies the

second, for each 0 ∈ [31 − 1] let Π0 = �0%, where % ∈ End(F31 ) is the invertible matrix for which

%- g
1
= . , and �0 ∈ End(F31 ) is the diagonal matrix with the first 0 − 1 entries zero and the remaining

entries 1. It is easy to verify that equation (37) holds.

Conversely, suppose that the reduced row echelon form of - g
1

, given by %- g
1

for some invertible

matrix % ∈ End(F31 ), does not have the specified form. Then there exists 0 ∈ [31 − 1] for which the
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columns of �0%-
g
1

have k-rank at most one. Any matrix Π0 ∈ End(F31) for which Π0 (Gg (1) ,1) = 0 for

all 1 ∈ [0 − 1] satisfies

Π0 = Π0%
−1�0%.

Since the k-rank is nonincreasing under matrix multiplication from the left, equation (37) does not

hold. �

With Proposition 38 in hand, we can now prove Theorem 37.4.

Proof of Theorem 37.4. The question of whether or not the decomposition
∑
0∈[=] G0 constitutes a

unique tensor rank decomposition is invariant under permutations g ∈ (= of the tensors, so it suffices to

prove the statement under the assumption that the permutation g appearing in Condition 4 is trivial. We

prove the statement by induction on 31. If 31 = 2, then Condition U implies :2 = :3 = =, so uniqueness

follows from Kruskal’s theorem. For 31 > 2, suppose
∑
0∈[=] G0 =

∑
0∈[A ] H0 for some nonnegative

integer A ≤ = and multiset of product tensors

{H0 : 0 ∈ [A]} ⊆ Prod(V1 : V2 : V3).

By Proposition 4.3 in [DL13a] (or rather, the extension of this result to an arbitrary field), A = =, and

there exists a permutation f ∈ (= and nonnegative scalars U1, . . . ,U= ∈ F× such that U0G0,1 = Hf (0) ,1

for all 0 ∈ [=]. Let Π1 ∈ End(V1) be any operator for which ker(Π1) = span{G0,1} and equation (37)

holds (recall that g is trivial). Then

∑

0∈[=]\{1}

(Π1G0,1) ⊗ G0,2 ⊗ G0,3 =

∑

0∈[=]\{1}

(U0Π1G0,1) ⊗ Hf (0) ,2 ⊗ Hf (0) ,3.

Now, dim span{Π1G0,1 : 0 ∈ [=] \ {1}} = 31 − 1, and Condition U again holds for the multiset of

product tensors

{(Π1G0,1) ⊗ G0,2 ⊗ G0,3 : 0 ∈ [=] \ {1}}.

Furthermore, these product tensors again satisfy Condition 4 of Theorem 37, so by the induction

hypothesis

(Π1G0,1) ⊗ G0,2 ⊗ G0,3 = (U0Π1G0,1) ⊗ Hf (0) ,2 ⊗ Hf (0) ,3 for all 0 ∈ [=] \ {1}.

It follows that G0 = Hf (0) for all 0 ∈ [=] \ {1}, so G1 = Hf (1) . This completes the proof. �

9.3. Conjectural generalization of all uniqueness criteria of DLS

In the case of three subsystems, our generalization of Kruskal’s theorem states that Condition S implies

uniqueness. Since Condition H ⇒ Condition S, then a corollary to Theorem 2 is that Condition H

implies uniqueness. Similarly, Theorem 37 above states that Condition U + extra assumptions implies

uniqueness, which implies that Condition H + the same extra assumptions implies uniqueness. Since

we have proven that Condition H alone implies uniqueness, it is natural to ask whether Condition U

alone implies uniqueness. We now state this question formally. A positive answer to Question 39 would

generalize and unify all of the uniqueness criteria of DLS (synthesized in Theorem 37) into a single,

elegant statement.

Question 39. Does Condition U imply that
∑
0∈[=] G0 constitutes a unique tensor rank decomposition?
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10. Appendix

In this appendix, we prove Theorem 27. The proof is very similar to that of Theorem 22.

Proof of Theorem 27. For each 0 ∈ [A], let G=+0 = −H0, and let )1 ⊔ · · · ⊔)C = [= + A] be the index sets

of the decomposition of {G0 : 0 ∈ [= + A]} into connected components. Note that for each ? ∈ [C], if

��)? ∩ [= + A] \ [=]
�� ≤

��)? ∩ [=]
��,

then
��)? ∩ [=]

�� ≤ B, otherwise {G0 : 0 ∈ )?} would split. Assume without loss of generality that

��)1 ∩ [=]
�� −

��)1 ∩ [= + A] \ [=]
�� ≥

��)2 ∩ [=]
�� −

��)2 ∩ [= + A] \ [=]
��

...

≥
��)C ∩ [=]

�� −
��)C ∩ [= + A] \ [=]

��,

If

��)1 ∩ [=]
�� ≥

��)1 ∩ [= + A] \ [=]
��,

then let ;̃ ∈ [C] be the largest integer for which

��);̃ ∩ [=]
�� ≥

��);̃ ∩ [= + A] \ [=]
��. (38)

Otherwise, let ;̃ = 0. Then for all ? ∈ [C] \ [;̃] it holds that

��)? ∩ [=]
�� <

��)? ∩ [= + A] \ [=]
��.

To complete the proof, we will show that ;̃ ≥ ;, for then we can take &? = )? ∩ [=] and '? =

)? ∩ [= + A] \ [=] for all ? ∈ [;] to conclude.

Suppose toward contradiction that ;̃ < ;. We will require the following two claims.

Claim 40. It holds that ;̃ < C,
⌈
=−B;̃
C−;̃

⌉
≥ B + 1, and there exists ? ∈ [C] \ [;̃] for which

��)? ∩ [=]
�� ≥

⌈
= − B;̃

C − ;̃

⌉
. (39)

Claim 41. For all ? ∈ [C] \ [;̃], it holds that

��)? ∩ [= + A] \ [=]
�� ≤

��)? ∩ [=]
�� + (A − =) + (B + 1) ;̃ − C + 1. (40)

Before proving these claims, we first use them to complete the proof of the theorem. Let ? ∈ [C] \ [;̃]

be as in Claim 40. Then,

|)? | =
��)? ∩ [=]

�� +
��)? ∩ [= + A] \ [=]

��

≤ 2
��)? ∩ [=]

�� + A − = + (B + 1) ;̃ − C + 1

≤ 2
��)? ∩ [=]

�� + A − = + B;̃ −
⌈
= − B;̃��)? ∩ [=]

��

⌉
+ 1

≤ 2
��)? ∩ [=]

�� + (A − = + @ − B) −

⌈
= − @ + B��)? ∩ [=]

��

⌉
+ 1

≤

<∑

9=1

(3
)?∩[=]

9
− 1) + 1,
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where the first line is obvious, the second follows from Claim 41, the third follows from Claim 40, the

fourth follows from ;̃ < ; and the fifth follows from the assumptions of the theorem and the fact that

|)? ∩ [=] | ≥ B + 1. So {G0 : 0 ∈ )?} splits, a contradiction. This completes the proof, modulo proving

the claims.

Proof of Claim 23. To prove the claim, we first observe that = > BC. Indeed, if = ≤ BC, then

A ≥

C∑

?=;̃+1

��)? ∩ [= + A] \ [=]
��

≥

C∑

?=;̃+1

(��)? ∩ [=]
�� + 1

)

= = −
��()1 ⊔ · · · ⊔);̃) ∩ [=]

�� + C − ;̃

≥ = + C − (B + 1) ;̃

≥ = +

⌈
=

B
− (B + 1) (@/B − 1)

⌉

=

⌈(
B + 1

B

)
(= − @ + B)

⌉
,

where the first line is obvious, the second follows from equation (17), the third is obvious, the fourth

follows from |)? ∩ [=] | ≤ B for all ? ∈ [;̃], the fifth follows from = ≤ BC and ;̃ < ; and the sixth is

algebra. This contradicts the assumptions of the theorem, so it must hold that = > BC.

Note that ;̃ < C, for otherwise we would have = ≤ BC by the fact that
��)? ∩ [=]

�� ≤ B for all ? ∈ [;̃]. To

verify that
⌈
=−B;̃
C−;̃

⌉
≥ B + 1, it suffices to prove =−B;̃

C−;̃
> B, which follows from = > BC. To verify equation

(39), since |)? ∩ [=] | ≤ B for all ? ∈ [;̃], by the pigeonhole principle there exists ? ∈ [C] \ [;̃] for which

��)? ∩ [=]
�� ≥

⌈
= − B;̃

C − ;̃

⌉
.

This proves the claim. �

Proof of Claim 41. Suppose toward contradiction that the inequality (40) does not hold for some ?̃ ∈

[C] \ [;̃]. Then

A ≥

C∑

?=;̃+1

��)? ∩ [= + A] \ [=]
��

≥
∑

?≠ ?̃

(��)? ∩ [=]
�� + 1

)
+
��)?̃ ∩ [=]

�� + (A − =) + (B + 1) ;̃ − C + 2

=

C∑

?=;̃+1

��)? ∩ [=]
�� + (A − =) + B;̃ + 1

≥ A + 1,

where the first three lines are obvious, and the fourth follows from equation (38), a contradiction.△ �

The proofs of Claims 40 and 41 complete the proof of the theorem. �
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