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THE K-THEORY OF THE COTANGENT SPHERE
BUNDLE OF RP"

BY
VICTOR SNAITH

ABSTRACT. We calculate the topological K-theory of the cotangent
sphere bundle of RP" and show the manner in which it is detected by the
eta invariant.

1. Introduction. Throughout this paper K-theory will mean Z/2-graded, complex
topological K-theory [1].

If Tppr denotes the tangent bundle of RP" and 755,» denotes the cotangent bundle we
will denote by Y, and X,, respectively, the associated sphere bundles,

(1.1) Y, = S(1gpr) and X, = S(7%.m).

Being homeomorphic, Y, and X, have isomorphic K-theory.

Using (pseudo-) differential operators, Gilkey [2, 3] has constructed a homo-
morphism, the eta invariant, defined on K*(S (1)), for M a smooth, closed manifold.
The computations given below arose in order to understand the eta invariant when
M = RP".

Before stating our result, we gather some well-known facts.

1.2. Let W, denote either X, or Y, of (1.1) and let 7w : W, — RP" denote the bundle
projection. Let H denote the (complex) Hopf bundle on RP" and 0 = H — 1 €
K°(RP™). From [1, p. 107] we have

KYRPY =2Z/2", ifn=2mor2m +1,
generated by o (where 20 + ¢* = 0) and
Z if n is odd
K'(RP") = { ]
0 if n is even.

If Hy is the real Hopf bundle we have bundle isomorphisms.

(13) ’TRP"@IRE (l’l + I)HRET§PA®R.
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The second isomorphism in (1.3) results from the isomorphism of Hy and H s IfTE
denotes the Thom space of a vector bundle, E, then (1.3) yields homeomorphisms.

(1.4) 3T(1rpr) = T(n + 1)Hg) = ZT(14pm).
We have a spherical (W, = X, or Y,,) fibration

(1.5) s> W, —> RP".
Using (1.3)—(1.5) we will prove the following
THEOREM 1.6. Let W, = X, or Y, of (1.1) (n = 1).

(i) w*:K'(RP") — K'(W,) is injective.

(i) KWy, )=Z/2"DZ/2"DZ
KWy =Z®Z

Z/4ifn=1

Z/2"@DZ/2"ifn=2

K'(W,) =2

(iii) K°(Wa,) = {

REMARK 1.7. §1.6(iii) is the more subtle of these calculations and, in fact, we derive
a little of the ring structure in that case (see (3.8) and (3.9)). We prove §1.6(ii) in §2
and §1.6(iii) in §3.

We close this section with a proof (included for the reader’s convenience) of a
well-known property of (1.5).

PrOPOSITION 1.8. In (1.1), if n = 2, the action of
m(RP"Y)Y =Z/20onZ = m,_, (S ")y = H* '(§* ") = K'(§*" ")
is non-trivial if and only if n is even.

PrOOF. Let u(t) = (cos(mt), sin(wt),0,0,...) € §"(n = 2). Then u induces
i:1/31 — RP" which generates w,(RP"). If f(z,z) = ii(¢) we must find a lifting H
in the diagram

0) X §"7' =¥,
(1.9 VH Tl
[ %8> RP"
f

Now Y, = {(a,b) € S" X §"|a L b}/~ where (a,b) = (—a, —b).
Define H:1 X §"' — §" x R""! by

H(t, (x1, - %)) = (D), (=sin(m)x, cos(mX1, %, - - %))
Then H induces the required H. However

H(l’(-xl9~-‘axn)) = [(_17070)-~-)7(07_xl9x29"'7xn))]
= [(1’0’0’ .. ')7 (07-xl7_-x2’—x3’- L] —xn)]
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in terms of the tangent space of (1,0, ...,0). On "' the map which changes the sign
of all but one coordinate has degree (—1)"~', as required.

2. Proof of Theorem 1.6(ii). From (1.5) we have a spectral sequence, with simple
coefficients,

ES' = HRP™ 5 K'(S™) 2 K (Wau1).
This spectral sequence collapses since E5' = 0 if t = 1(2) and

YAOYA ifs=0o0rs=2n+1
E’=32Z/2@Z/2ifs=2,4,6,...,2n
0 otherwise.

If F°K' = ker (K'(Wy,11) = K' (7w '(RP*™")) then E5'™* = F*K'/F*"'K"' from which
it is clear that the 2-primary torsion is killed by 2". However if D, is the disc bundle
of Tppn Or Tgpn then, by (1.4), we have

K*(Dayns1, Wansr) = K**'((n + 1DH)
— K(!+I(RP2n+I)

by the Thom isomorphism. The exact sequence of (D,,+, W,,+) easily yields an exact
sequence

_ ¥
0__> KO(RP2n+l) ’T_l') KO(WZnJrl)_) KO(RP2n+l)—> 0
= =
z/2" Z@2z/2"

From this we see that Tors (K*(Wans))) = Z/2" @ Z/2" and, from the spectral
sequence, Theorem 1.6(ii) and half of §1.6(i) follows immediately.

3. The proof of Theorem 1.6(iii). Let W,, be X, or V,,.
LEmMMA 3.1.

Z/4ifj=2n

Zifj=0o0rd4n — 1
Z/2if2=sj=4n— 2;jeven;j # 2n
0 otherwise.

H/(W,;2Z) =

ProoF. Consider the Serre spectral sequence for H*(—;/\) of (1.5),
E3'(N\) = HY(RP™;H'(S*" ", /\)) = H (W, /).
When N\ = Z,E7" = 0 except for

Zifs=0

ES°(Z E{
2 (2) Z/2if2=<s=<2n,seven
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and, by §1.8,

a1 _[(Zifs=2n,
E57" (2) =

Z/2if 1l =5=2n-—1,sodd.
For dimensional reasons {E*'(Z)} collapses, so that we have only to determine the
extension Z /2 — H>"(W,,;Z) —> Z/2. However this extension is resolved by showing

that H*'~'(W,,;Z/2) = Z/2. This is seen as follows. We have a classifying diagram
for sphere bundles

- T
SZn 1 N WZH = RPZN

| Ip - Vs
§71 5 BO(2n — ) S BO2n).

Hence if 0 # x € H'(RP*";Z/2),

wE(X) = wEE(wy,), by (1.3),
pE(m)* (w2,)
= p*(0) = 0.

I

Therefore d5," ™' ES"'(2/2)— E>°(Z2/2) = H*(RP*";Z/2) is an isomorphism
and from {E}'(Z/2)} we see that H*"~'(W,,;Z/2) = Z/2.

LEMMA 3.2. There is an epimorphism
K°(Wa,) /m (RO (RP*™) —> Z/2".

PRrOOF. First proof: The eta invariant [2, 3] is surjective, K°(W,,) — Z/2", and
annihilates the image of m*.

Second proof: The sphere bundle, S(2n + 1)Hy), is (5" X §*")/(Z/2) (with the
antipodal involution on each factor).

We have a Mayer-Vietoris diagram of the following form.

(DZn"rI X SZIr)/(Z/z)
c/’
3.3) S((2n + 1)Hg) % Rp4t!

J
(SZn X D2n+l)/(z/2)

Also, from the homeomorphism of sphere bundles in (1.3), we have another Mayer-
Vietoris diagram.

Wz,, X 1
S
(3.4) W,, X 9l S(2n + 1)Hy)
N A

D,, X a1

i =
RP> x a8l
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Here D,, is the disc bundle associated to W,,, as in §2.
The Mayer-Vietoris K-theory sequences of (3.3) and (3.4) easily establish that

(a) m* : K°(RP*) — K°(W,,) is injective (which is §1.6(i)) and that

(b) K°(Wy,) /im(m¥) = Z/2".

3.5. COMPLETION OF THE PROOF OF THEOREM 1.6. The Atiyah-Hirzebruch spectral
sequence (in which E3* = 0) E5° = H*(W,,; Z) = K*(W,,) collapses, by §3.1. Let
G*K' be the associated filtration of K'(W,,) so that G*'K'/G**'K' = E'°.

We also have the K-theory Serre spectral sequence of (1.5)

E5' = H(RPY; K'(S™ ) 2 K*''(Wa).

The E,-term of this spectral sequence (remembering that t € Z/2) is the same as E*'(Z)
in §3.1. By §3.2 this spectral sequence also collapses and if z C K°(W,,) is represented
by a generator [z] € E}! then z has 2-primary order which is at least 2". From the
K°(RP*")-module structure on this spectral sequence ¢’z is represented by the gener-

A

ator of EY™"". Since 2"~'z € im(m*) each non-zero 2°z must be represented in EX'.
This means that 2"z is either zero or it lies in the lowest filtration (=E3"°) so that either

3.6) 2"z =0 or 2"z = w*(ag").

We can rule out the second alternative in (3.6) by inspecting G’-filtrations, except
in the case n = 1 when §1.6(iii) is clear from the Atiyah-Hirzebruch spectral sequence.
Since o is represented in E3"° 6" € G¥"K° — G*'*'K°. However z is represented by
a generator of E5"" = Z/4 so that 2"z € G*'K°. If n > 1, G~ C G**', so that
2"z = w*(a") is impossible.

3.7. From Theorem 1.6 we see that the exact sequence for (D,,, W,,) yields an

* _
exact sequence of K°(RP*")-modules. 0 — K°(RP*") T, KO(W,,) E K°(RP?™)— 0.
Therefore B(2z + oz) = 0 and from the Atiyah-Hirzebruch spectral sequence there
is an equation of the form

mH(o") = 2z + 2 Nz,

1=
Since Bw*(o") = 0 and B(oz + 2z) = 0 we must have
0=2-=2\+4N,— ... EZ/2"
Hence we obtain the following relation
(3.8) m*¥(0)" = 2z + w¥(0)z € KOY(W,,).
Note that z € G*"K° so that
3.9) 22 =0 € K'(W,,),

Since it lies in G*"K° = 0.
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