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THE ^-THEORY OF THE COTANGENT SPHERE 
BUNDLE OF UP" 

BY 

VICTOR SNAITH 

ABSTRACT. We calculate the topological /f-theory of the cotangent 
sphere bundle of UP" and show the manner in which it is detected by the 
eta invariant. 

1. Introduction. Throughout this paper AT-theory will mean Z/2-graded, complex 
topological K-theory [1]. 

If 7UPn denotes the tangent bundle of MP" and T ĵ »< denotes the cotangent bundle we 
will denote by Yn and Xn, respectively, the associated sphere bundles, 

(1.1) yn = S(TRp«)andXn = S(T;k«). 

Being homeomorphic, Yn and Xn have isomorphic AT-theory. 
Using (pseudo-) differential operators, Gilkey [2, 3] has constructed a homo-

morphism, the eta invariant, defined on K*(S(TM)), for M a smooth, closed manifold. 
The computations given below arose in order to understand the eta invariant when 
M = UP". 

Before stating our result, we gather some well-known facts. 

1.2. Let Wn denote either Xn or Yn of (1.1) and let TT : W„ -> UP" denote the bundle 
projection. Let H denote the (complex) Hopf bundle on UP" and a = H - 1 E 
K°(UPn). From [1, p. 107] we have 

K°(UPn) =Z/2m, if n = 2m or 2m + 1 , 

generated by o- (where 2CT + CT2 = 0) and 

[Z if n is odd 
K\UPn) = 

l 0 if n is even. 

If Hu is the real Hopf bundle we have bundle isomorphisms. 

(1.3) TRP. 0 U = (n + l)HR = T*P« 0 R. 
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The second isomorphism in (1.3) results from the isomorphism of Hu and H^. If TE 
denotes the Thorn space of a vector bundle, E, then (1.3) yields homeomorphisms. 

(1.4) STXTR,») = T(n + l)HR) = XT(T^Pn). 

We have a spherical (Wn = Xn or Yn) fibration 

(1.5) S"-l->Wn^>RPn. 

Using (1.3)-(1.5) we will prove the following 

THEOREM 1.6. Let Wn = Xn or Yn 0/(1.1) (n > 1). 

(i) TT* : K'(RP") -> K\W„) is injective. 
(ii) K°(W2n+])^Z/r®Z/2"@Z 

K\W2n+l)=Z@Z. 
rZ/4 if n = 1 

(iii) £°(W2J 
lZ/2" © Z/2" if n > 2 

^ ! (W 2 J=Z 

REMARK 1.7. §1.6(iii) is the more subtle of these calculations and, in fact, we derive 
a little of the ring structure in that case (see (3.8) and (3.9)). We prove §1.6(ii) in §2 
and §1.6(iii) in §3. 

We close this section with a proof (included for the reader's convenience) of a 
well-known property of (1.5). 

PROPOSITION 1.8. In (1.1), if n > 2, the action of 

Tt,{UPn) = Z/2 on Z = TT2n-i(S2n~]) = H2n~\S2n~l) = A^S2" - 1) 

w non-trivial if and only if n is even. 

PROOF. Let u(t) = (cos(irf), sin(irf),0,0,.. .) E S"(A2 > 2). Then u induces 
u:l/dl-+ MP" which generates TT,(IRP"). If/(f,z) = u(t) we must find a lifting / / 
in the diagram 

(0) xr'y„ 
(1.9) 4 # / ITT 

/ 
Now yn = {(a,b) G S" X Sn|a 1 6} /« where (a,è) « ( - a , - f c ) . 

Define # : / x Sn~l-^ S" x R^ 1 by 

H(t,(x]9. . . ,JC„)) = (M(0?(
—sin('7Tr)jci,cos(7Tr)jt1,^25 • • •-O). 

Then H induces the required H. However 

/ / ( l , (x , , . • • ,*„)) = [ ( - 1 , 0 , 0 , . . .),(0, -xl9x2,. . . ,xn))] 

= [(1,0,0,. . .),(P,xl,-x2,-x3,. . . , -*„) ] 
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in terms of the tangent space of ( 1 , 0 , . . . , 0). On Sn~l the map which changes the sign 
of all but one coordinate has degree (—l)"-1, as required. 

2. Proof of Theorem 1.6(H). From (1.5) we have a spectral sequence, with simple 
coefficients, 

Es
2' = Hs(RP2n+l\ K'(S2n)) => Ks+t(W2n+l). 

This spectral sequence collapses since E2'' = 0 if t = 1(2) and 

f Z@Z if s = Oor s = 2n + I 
Ef = \ Z / 2 © Z / 2 i f s = 2,4,6,...,2n 

t 0 otherwise. 

If FSK* = ker (Kt(W2n+l)-^ A''(ir"I(RP5"1)) thenEs
2'~

s = F'K'/F^'K1 from which 
it is clear that the 2-primary torsion is killed by 2". However if Dn is the disc bundle 
of TUP" or T^P" men> by (1.4), we have 

Ka(D2n+l,W2n+l) = Ka+l((n + l)H) 

= Ka+l(UP2n+l) 

by the Thorn isomorphism. The exact sequence of (D2n+ \, W2n+ j ) easily yields an exact 
sequence 

0 -> K°(UP2n+l) ^ K°(W2n+l) -> K°(RP2n+l) -» 0 
i s i s 

Z/2" Z © Z/2" 

From this we see that Tors (K°(W2n+\)) = Z/2" © Z/2n and, from the spectral 
sequence, Theorem 1.6(H) and half of §1.6(i) follows immediately. 

3. The proof of Theorem 1.6(Hi). Let W2n be X2n or Y2n. 

LEMMA 3.1. 

HJ(W2n;Z) = < 

Z/4 if j = In 
Zifj = 0or4/z - 1 
Z/2 if 2 < 7 < 4/i - 2; 7 even; 7 =£ 2n 

L0 otherwise. 

PROOF. Consider the Serre spectral sequence for / / * ( - ; A) of (1.5), 

£5
2''(A) = Hs(UP2n',H\S2n-l',A)) ^Hs+t(W2n;A). 

When A = Z , ^ ' ' = 0 except for 

v 0 r z if 5 = 0 
E2°(Z) = 

t Z/2 if 2 < 5 < 2/i, s even 
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and, by §1.8, 

v ?„-i [ Z if s = 2n, 

Es
2

2n \z)m\ , 
t Z/2if 1 < s < 2M - 1, s odd. 

For dimensional reasons {£V'(Z)} collapses, so that we have only to determine the 
extension Z/2 —» #2"( W2„ ; Z) —•» Z/2. However this extension is resolved by showing 
that H2n~\W2n\Z/2) = Z/2. This is seen as follows. We have a classifying diagram 
for sphere bundles 

I P , 1 T 
7T 

52,-1 _^ B ( 9 ( 2 M - 1) -^ BO(2n). 

Hence if 0 * x G //'([RP2,î;Z/2), 

Tr*(jc2") = TT*r*(w2J, by (1.3), 

= P * ( T T ' ) * ( W 2 J 

= p*(0) - 0. 

Therefore d ^ 2 " - 1 : ^ 
and from {Es;\Z/2)} we see that H2n~\W2n\Z/2) = Z/2. 

LEMMA 3.2. 77î£re /s aw epimorphism 

K0(W2n)/^*(K°(UP2n)) -» Z/2". 

PROOF. First proof: The eta invariant [2, 3] is surjective, K°(W2n) —» Z/2", and 
annihilates the image of u *. 

Second proof: The sphere bundle, S(2w + 1)//R), is (S2n x S2n)/(Z/2) (with the 
antipodal involution on each factor). 

We have a Mayer-Vietoris diagram of the following form. 

(D2n+l x S2")/(Z/2) 

(3.3) S((2n + 1)//R) [R/>4"+1 

(S2n x D2n+])/(Z/2) 

Also, from the homeomorphism of sphere bundles in (1.3), we have another Mayer-
Vietoris diagram. 

W2n x / 

(3.4) W2n x dl S((2n + \)HU) 
\ ^ 

D2n x dl 

RP2" x dl 
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Here D2n is the disc bundle associated to W2n9 as in §2. 
The Mayer-Vietoris AT-theory sequences of (3.3) and (3.4) easily establish that 

(a) TT* :K°(UP2n) -> K\W2„) is injective (which is §1.6(i)) and that 
(b)K°(W2n)/im(TT*)=Z/T. 

3.5. COMPLETION OF THE PROOF OF THEOREM 1.6. The Atiyah-Hirzebruch spectral 
sequence (in which Es

2
odd = 0) Es

2° = Hs(W2n; Z) ^> Ks(W2n) collapses, by §3.1. Let 
GsKl be the associated filtration of K\W2n) so that G'K'/G'^K1 = Es

2
l~s. 

We also have the ^f-theory Serre spectral sequence of (1.5) 

Es
2 = Hs(UP2n; K'(S2"-])) => Ks+t(W2n). 

The ̂ 2-term of this spectral sequence (remembering that t E Z/2) is the same as Es \Z) 
in §3.1. By §3.2 this spectral sequence also collapses and if z C K°(W2„) is represented 
by a generator [z] E E2 then z has 2-primary order which is at least 2". From the 
A^°(IRP2n)-module structure on this spectral sequence vJz is represented by the gener
ator of E2

2
 ;+1A. Since 2n~xz E im(Tr*) each non-zero 2az must be represented in E2

,{. 
This means that 2"z is either zero or it lies in the lowest filtration (=£2" ) s o m a t either 

(3.6) 2"z = 0 or 2nz = 7T*(a"). 

We can rule out the second alternative in (3.6) by inspecting G'-filtrations, except 
in the case n — 1 when §1.6(iii) is clear from the Atiyah-Hirzebruch spectral sequence. 
Since CTW is represented in E2

2
n,° a" E G2nK° - G2n+lK°. However z is represented by 

a generator of E2
2 '° = Z/4 so that 2"z E G4"-]K°. If n > 1, G4n'2 C G2n+\ so that 

2"z = 7T*(an) is impossible. 

3.7. From Theorem 1.6 we see that the exact sequence for (D2n, W2n) yields an 

exact sequence of A^RP2n)-modules. 0->K°(RP2") ^ K°(W2n)-^ K°(UP2n)-+ 0. 
Therefore P(2z 4- vz) = 0 and from the Atiyah-Hirzebruch spectral sequence there 

is an equation of the form 

7T*(a") - 2z + £ \jVJz. 

Since PIT* (a") = 0 and P(az + 2z) = 0 we must have 

0 = 2 - 2X, + 4X2 - . . . E Z / 2 \ 

Hence we obtain the following relation 

(3.8) 7T*(crr = 2z + TT*(O-)Z E £0(W2„). 

Note that z E G2nK° so that 

(3.9) z2 - 0 E K\W2n), 

Since it lies in G4nK° = 0. 
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