THE K-THEORY OF THE COTANGENT SPHERE BUNDLE OF $\mathbb{R} P^{n}$

BY
VICTOR SNAITH

Abstract

We calculate the topological K-theory of the cotangent sphere bundle of $\mathbb{R} P^{n}$ and show the manner in which it is detected by the eta invariant.

1. Introduction. Throughout this paper K-theory will mean $Z / 2$-graded, complex topological K-theory [1].

If $\tau_{\mathbb{R} P^{n}}$ denotes the tangent bundle of $\mathbb{R} P^{n}$ and $\tau_{\mathbb{R} P^{n}}^{*}$ denotes the cotangent bundle we will denote by Y_{n} and X_{n}, respectively, the associated sphere bundles,

$$
\begin{equation*}
Y_{n}=S\left(\tau_{\mathbb{R} P^{n}}\right) \text { and } X_{n}=S\left(\tau_{\mathbb{R} P^{n}}^{*}\right) . \tag{1.1}
\end{equation*}
$$

Being homeomorphic, Y_{n} and X_{n} have isomorphic K-theory.
Using (pseudo-) differential operators, Gilkey [2, 3] has constructed a homomorphism, the eta invariant, defined on $K^{*}\left(S\left(\tau_{M}^{*}\right)\right)$, for M a smooth, closed manifold. The computations given below arose in order to understand the eta invariant when $M=\mathbb{R} P^{n}$.

Before stating our result, we gather some well-known facts.
1.2. Let W_{n} denote either X_{n} or Y_{n} of (1.1) and let $\pi: W_{n} \rightarrow \mathbb{R} P^{n}$ denote the bundle projection. Let H denote the (complex) Hopf bundle on $\mathbb{R} P^{n}$ and $\sigma=H-1 \in$ $\tilde{K}^{0}\left(\mathbb{R} P^{n}\right)$. From [1, p. 107] we have

$$
\tilde{K}^{0}\left(\mathbb{R} P^{n}\right) \cong Z / 2^{m}, \quad \text { if } n=2 m \text { or } 2 m+1,
$$

generated by σ (where $2 \sigma+\sigma^{2}=0$) and

$$
K^{1}\left(\mathbb{R} P^{n}\right)=\left\{\begin{array}{l}
Z \text { if } n \text { is odd } \\
0 \text { if } n \text { is even. }
\end{array}\right.
$$

If $H_{\mathbb{R}}$ is the real Hopf bundle we have bundle isomorphisms.

$$
\begin{equation*}
\tau_{\mathbb{R} P^{n}} \oplus \mathbb{R} \cong(n+1) H_{\mathbb{R}} \cong \tau_{\mathbb{R} P^{n}}^{*} \oplus \mathbb{R} \tag{1.3}
\end{equation*}
$$

Received by the editors December 10, 1984 and, in revised form, February 8, 1985.
Research partially supported by NSERC Grant No. A4633.
AMS Subject Classification 55N20, 18F25.
(C) Canadian Mathematical Society 1985.

The second isomorphism in (1.3) results from the isomorphism of $H_{\mathbb{R}}$ and $H_{\mathbb{R}}^{*}$. If $T E$ denotes the Thom space of a vector bundle, E, then (1.3) yields homeomorphisms.

$$
\begin{equation*}
\left.\Sigma T\left(\tau_{\mathbb{R} P^{n}}\right) \cong T(n+1) H_{R}\right) \cong \Sigma T\left(\tau_{\mathbb{R} P^{n}}^{*}\right) \tag{1.4}
\end{equation*}
$$

We have a spherical ($W_{n}=X_{n}$ or Y_{n}) fibration

$$
\begin{equation*}
S^{n-1} \rightarrow W_{n} \rightarrow \mathbb{R} P^{n} \tag{1.5}
\end{equation*}
$$

Using (1.3)-(1.5) we will prove the following
Theorem 1.6. Let $W_{n}=X_{n}$ or Y_{n} of (1.1) $(n \geq 1)$.
(i) $\pi^{*}: K^{t}\left(\mathbb{R} P^{n}\right) \rightarrow K^{t}\left(W_{n}\right)$ is injective.
(ii) $\tilde{K}^{0}\left(W_{2 n+1}\right) \cong Z / 2^{n} \oplus Z / 2^{n} \oplus Z$

$$
\tilde{K}^{1}\left(W_{2 n+1}\right) \cong Z \oplus Z
$$

(iii) $\tilde{K}^{0}\left(W_{2 n}\right)=\left\{\begin{array}{l}Z / 4 \text { if } n=1 \\ Z / 2^{n} \oplus Z / 2^{n} \text { if } n \geq 2\end{array}\right.$

$$
\tilde{K}^{1}\left(W_{2 n}\right) \cong Z
$$

Remark 1.7. §1.6(iii) is the more subtle of these calculations and, in fact, we derive a little of the ring structure in that case (see (3.8) and (3.9)). We prove §1.6(ii) in §2 and $\S 1.6$ (iii) in $\S 3$.

We close this section with a proof (included for the reader's convenience) of a well-known property of (1.5).

Proposition 1.8. In (1.1), if $n \geq 2$, the action of

$$
\pi_{1}\left(\mathbb{R} P^{n}\right) \cong Z / 2 \text { on } Z \cong \pi_{2 n-1}\left(S^{2 n-1}\right) \cong H^{2 n-1}\left(S^{2 n-1}\right) \cong K^{1}\left(S^{2 n-1}\right)
$$

is non-trivial if and only if n is even.
Proof. Let $u(t)=(\cos (\pi t), \sin (\pi t), 0,0, \ldots) \in S^{n}(n \geq 2)$. Then u induces $\hat{u}: I / \partial I \rightarrow \mathbb{R} P^{n}$ which generates $\pi_{1}\left(\mathbb{R} P^{n}\right)$. If $f(t, z)=\hat{u}(t)$ we must find a lifting H in the diagram

Now $Y_{n}=\left\{(a, b) \in S^{n} \times S^{n} \mid a \perp b\right\} / \approx$ where $(a, b) \approx(-a,-b)$.
Define $\hat{H}: I \times S^{n-1} \rightarrow S^{n} \times \mathbb{R}^{n+1}$ by

$$
\hat{H}\left(t,\left(x_{1}, \ldots, x_{n}\right)\right)=\left(u(t),\left(-\sin (\pi t) x_{1}, \cos (\pi t) x_{1}, x_{2}, \ldots x_{n}\right)\right) .
$$

Then \hat{H} induces the required H. However

$$
\begin{aligned}
H\left(1,\left(x_{1}, \ldots, x_{n}\right)\right) & \left.=\left[(-1,0,0, \ldots),\left(0,-x_{1}, x_{2}, \ldots, x_{n}\right)\right)\right] \\
& =\left[(1,0,0, \ldots),\left(0, x_{1},-x_{2},-x_{3}, \ldots,-x_{n}\right)\right]
\end{aligned}
$$

in terms of the tangent space of $(1,0, \ldots, 0)$. On S^{n-1} the map which changes the sign of all but one coordinate has degree $(-1)^{n-1}$, as required.
2. Proof of Theorem 1.6(ii). From (1.5) we have a spectral sequence, with simple coefficients,

$$
E_{2}^{s, t}=H^{s}\left(\mathbb{R} P^{2 n+1} ; K^{t}\left(S^{2 n}\right)\right) \Rightarrow K^{s+t}\left(W_{2 n+1}\right) .
$$

This spectral sequence collapses since $E_{2}^{s, t}=0$ if $t \equiv 1(2)$ and

$$
E_{2}^{s, 0}= \begin{cases}Z \oplus Z & \text { if } s=0 \text { or } s=2 n+1 \\ Z / 2 \oplus Z / 2 & \text { if } s=2,4,6, \ldots, 2 n \\ 0 & \text { otherwise }\end{cases}
$$

If $F^{s} K^{t}=\operatorname{ker}\left(K^{t}\left(W_{2 n+1}\right) \rightarrow K^{t}\left(\pi^{-1}\left(\mathbb{R} P^{s-1}\right)\right)\right.$ then $E_{2}^{s, t-s} \cong F^{s} K^{t} / F^{s+1} K^{t}$ from which it is clear that the 2-primary torsion is killed by 2^{n}. However if D_{n} is the disc bundle of $\tau_{\mathbb{R} P^{n}}$ or $\tau_{\mathbb{R} P^{n}}^{*}$ then, by (1.4), we have

$$
\begin{aligned}
K^{\alpha}\left(D_{2 n+1}, W_{2 n+1}\right) & \cong K^{\alpha+1}((n+1) H) \\
& =K^{\alpha+1}\left(\mathbb{R} P^{2 n+1}\right)
\end{aligned}
$$

by the Thom isomorphism. The exact sequence of ($D_{2 n+1}, W_{2 n+1}$) easily yields an exact sequence

$$
\begin{gathered}
0 \rightarrow \tilde{K}^{0}\left(\mathbb{R} P^{2 n+1}\right) \xrightarrow{\pi^{*}} \tilde{K}^{0}\left(W_{2 n+1}\right) \rightarrow K^{0}\left(R P^{2 n+1}\right) \rightarrow 0 \\
\downarrow \cong \\
Z / 2^{n} \\
Z \oplus Z / 2^{n}
\end{gathered}
$$

From this we see that $\operatorname{Tors}\left(\tilde{K}^{0}\left(W_{2 n+1}\right)\right) \cong Z / 2^{n} \oplus Z / 2^{n}$ and, from the spectral sequence, Theorem 1.6(ii) and half of $\S 1.6(\mathrm{i})$ follows immediately.
3. The proof of Theorem 1.6(iii). Let $W_{2 n}$ be $X_{2 n}$ or $Y_{2 n}$.

Lemma 3.1.

$$
H^{j}\left(W_{2 n} ; Z\right) \cong\left\{\begin{array}{l}
Z / 4 \text { if } j=2 n \\
Z \text { if } j=0 \text { or } 4 n-1 \\
Z / 2 \text { if } 2 \leq j \leq 4 n-2 ; j \text { even } ; j \neq 2 n \\
0 \text { otherwise }
\end{array}\right.
$$

Proof. Consider the Serre spectral sequence for $H^{*}(-; \wedge)$ of (1.5),

$$
E_{2}^{s, t}(\wedge)=H^{s}\left(\mathbb{R} P^{2 n} ; H^{t}\left(S^{2 n-1} ; \wedge\right)\right) \Rightarrow H^{s+t}\left(W_{2 n} ; \wedge\right) .
$$

When $\wedge=Z, E_{2}^{s, t}=0$ except for

$$
E_{2}^{s, 0}(Z) \cong\left\{\begin{array}{l}
Z \text { if } s=0 \\
Z / 2 \text { if } 2 \leq s \leq 2 n, s \text { even }
\end{array}\right.
$$

and, by $\S 1.8$,

$$
E_{2}^{s, 2 n-1}(Z) \cong\left\{\begin{array}{l}
Z \text { if } s=2 n \\
Z / 2 \text { if } 1 \leq s \leq 2 n-1, s \text { odd }
\end{array}\right.
$$

For dimensional reasons $\left\{E^{s . t}(Z)\right\}$ collapses, so that we have only to determine the extension $Z / 2 \rightarrow H^{2 n}\left(W_{2 n} ; Z\right) \rightarrow Z / 2$. However this extension is resolved by showing that $H^{2 n-1}\left(W_{2 n} ; Z / 2\right) \cong Z / 2$. This is seen as follows. We have a classifying diagram for sphere bundles

$$
\begin{array}{rlr}
S^{2 n-1} \rightarrow W_{2 n} & \xrightarrow{\pi} \mathbb{R} P^{2 n} \\
\| & \downarrow \rho & \downarrow \tau \\
S^{2 n-1} \rightarrow B O(2 n-1) & \xrightarrow{\pi^{\prime}} B O(2 n)
\end{array}
$$

Hence if $0 \neq x \in H^{1}\left(\mathbb{R} P^{2 n} ; Z / 2\right)$,

$$
\begin{aligned}
\pi^{*}\left(x^{2 n}\right) & =\pi^{*} t^{*}\left(w_{2 n}\right), \quad \text { by }(1.3) \\
& =\rho^{*}\left(\pi^{\prime}\right)^{*}\left(w_{2 n}\right) \\
& =\rho^{*}(0)=0
\end{aligned}
$$

Therefore $d_{2 n}^{0,2 n-1}: E_{2 n}^{0,2 n-1}(Z / 2) \rightarrow E_{2 n}^{2 n, 0}(Z / 2) \equiv H^{2 n}\left(\mathbb{R} P^{2 n} ; Z / 2\right)$ is an isomorphism and from $\left\{E_{r}^{s, t}(Z / 2)\right\}$ we see that $H^{2 n-1}\left(W_{2 n} ; Z / 2\right) \equiv Z / 2$.

Lemma 3.2. There is an epimorphism

$$
\tilde{K}^{0}\left(W_{2 n}\right) / \pi^{*}\left(\tilde{K}^{0}\left(\mathbb{R} P^{2 n}\right)\right) \rightarrow Z / 2^{n} .
$$

Proof. First proof: The eta invariant $[2,3]$ is surjective, $\tilde{K}^{0}\left(W_{2 n}\right) \rightarrow Z / 2^{n}$, and annihilates the image of π^{*}.

Second proof: The sphere bundle, $S(2 n+1) H_{\mathbb{R}}$), is $\left(S^{2 n} \times S^{2 n}\right) /(Z / 2)$ (with the antipodal involution on each factor).

We have a Mayer-Vietoris diagram of the following form.

Also, from the homeomorphism of sphere bundles in (1.3), we have another MayerVietoris diagram.

Here $D_{2 n}$ is the disc bundle associated to $W_{2 n}$, as in $\S 2$.
The Mayer-Vietoris K-theory sequences of (3.3) and (3.4) easily establish that
(a) $\pi^{*}: \tilde{K}^{0}\left(\mathbb{R} P^{2 n}\right) \rightarrow \tilde{K}^{0}\left(W_{2 n}\right)$ is injective (which is $\S 1.6(\mathrm{i})$) and that
(b) $\tilde{K}^{0}\left(W_{2 n}\right) / \operatorname{im}\left(\pi^{*}\right) \cong Z / 2^{n}$.
3.5. Completion of the proof of Theorem 1.6. The Atiyah-Hirzebruch spectral sequence (in which $\left.E_{2}^{s, \text { odd }}=0\right) E_{2}^{s, 0}=H^{s}\left(W_{2 n} ; Z\right) \Rightarrow K^{s}\left(W_{2 n}\right)$ collapses, by $\S 3.1$. Let $G^{s} K^{t}$ be the associated filtration of $K^{t}\left(W_{2 n}\right)$ so that $G^{s} K^{t} / G^{s+1} K^{t} \cong E_{2}^{s, t-s}$.

We also have the K-theory Serre spectral sequence of (1.5)

$$
\hat{E}_{2}^{s, t}=H^{s}\left(\mathbb{R} P^{2 n} ; K^{t}\left(S^{2 n-1}\right)\right) \Rightarrow K^{s+t}\left(W_{2 n}\right) .
$$

The E_{2}-term of this spectral sequence (remembering that $t \in Z / 2$) is the same as $E^{s, t}(Z)$ in $\S 3.1$. By $\S 3.2$ this spectral sequence also collapses and if $z \subset \tilde{K}^{0}\left(W_{2 n}\right)$ is represented by a generator $[z] \in \hat{E}_{2}^{1,1}$ then z has 2-primary order which is at least 2^{n}. From the $K^{0}\left(\mathbb{R} P^{2 n}\right)$-module structure on this spectral sequence $\sigma^{j} z$ is represented by the generator of $\hat{E}_{2}^{2 j+1,1}$. Since $2^{n-1} z \in \operatorname{im}\left(\pi^{*}\right)$ each non-zero $2^{\alpha} z$ must be represented in $\hat{E}_{2}^{*, 1}$. This means that $2^{n} z$ is either zero or it lies in the lowest filtration $\left(\cong \hat{E}_{2}^{2 n, 0}\right)$ so that either

$$
\begin{equation*}
2^{n} z=0 \quad \text { or } \quad 2^{n} z=\pi^{*}\left(\sigma^{n}\right) \tag{3.6}
\end{equation*}
$$

We can rule out the second alternative in (3.6) by inspecting G^{s}-filtrations, except in the case $n=1$ when $\S 1.6$ (iii) is clear from the Atiyah-Hirzebruch spectral sequence. Since σ^{n} is represented in $E_{2}^{2 n, 0} \sigma^{n} \in G^{2 n} K^{0}-G^{2 n+1} K^{0}$. However z is represented by a generator of $E_{2}^{2 n, 0} \cong Z / 4$ so that $2^{n} z \in G^{4 n-1} K^{0}$. If $n>1, G^{4 n-2} \subset G^{2 n+1}$, so that $2^{n} z=\pi^{*}\left(\sigma^{n}\right)$ is impossible.
3.7. From Theorem 1.6 we see that the exact sequence for $\left(D_{2 n}, W_{2 n}\right)$ yields an exact sequence of $K^{0}\left(\mathbb{R} P^{2 n}\right)$-modules. $0 \rightarrow K^{0}\left(R P^{2 n}\right) \xrightarrow{\pi^{*}} K^{0}\left(W_{2 n}\right) \xrightarrow{\beta} \tilde{K}^{0}\left(\mathbb{R} P^{2 n}\right) \rightarrow 0$.

Therefore $\beta(2 z+\sigma z)=0$ and from the Atiyah-Hirzebruch spectral sequence there is an equation of the form

$$
\pi^{*}\left(\sigma^{n}\right)=2 z+\sum_{1 \leq j} \lambda_{j} \sigma^{j} z
$$

Since $\beta \pi^{*}\left(\sigma^{n}\right)=0$ and $\beta(\sigma z+2 z)=0$ we must have

$$
0=2-2 \lambda_{1}+4 \lambda_{2}-\ldots \in Z / 2^{n}
$$

Hence we obtain the following relation

$$
\begin{equation*}
\pi^{*}(\sigma)^{n}=2 z+\pi^{*}(\sigma) z \in K^{0}\left(W_{2 n}\right) \tag{3.8}
\end{equation*}
$$

Note that $z \in G^{2 n} K^{0}$ so that

$$
\begin{equation*}
z^{2}=0 \in K^{0}\left(W_{2 n}\right), \tag{3.9}
\end{equation*}
$$

Since it lies in $G^{4 n} K^{0}=0$.

References

1. M. F. Atiyah, K-theory, Benjamin (1968).
2. P. B. Gilkey, The eta invariant and the K-theory of odd-dimensional spherical space forms, Inventiones Math. 76 (1984), pp. 421-453.
3. P. B. Gilkey, The eta invariant for even-dimensional Pinc-manifolds, U. of Oregon preprint (1983).

The University of Western Ontario
London, Ontario
Canada N6A 5B7

