BULL. AUSTRAL. MATH. SOC. 30C45
VOL. 30 (1984), 395-410

MEROMORPHIC STARLIKE UNIVALENT FUNCTIONS
V.V, ANH anD P.D. Tuan

Let B be the class of functions w(3) reqular in |z| < I
lw(z)] <1 in Jz| <1 . We

and satisfying w(0) =0 ,
< B <A <1, the class of functions

denote by P(A4,B) , -1

p(z) = 1+py3+... regular in |z| <1 and such that
p(z) = [ 1+Aw(=2)1 /1 1+Bw(z)] for some w(z) € B . This paper
establishes sharp lower and upper bounds on |z| =r < 1 for

the functional

14
E@{yp(z) - §§7£§L}, y<1,

where p(z) varies in P(4,B) . The results are then used
to study certain geometric properties of the corresponding

class of meromorphic starlike univalent functions
Y*(4,B)
{f(z) =

N~

taytagt ... ;- zf'(z)/f(z) € P(A,B), lz| < 1} .
1. Introduction

Let B be the class of functions w(z) regular in the unit disc
A =1{z;]|z] <1} and satisfying the conditions w(0) = 0 , lwez)| < 1
in A . We denote by P(A,B} , -1 £ B< A <1, the class of functions

p(z) =1+ pz+ p222 ...
defined by
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_ 1+ 4wz
(1.1) p(z) = T+ Bwlz) ° z €A

for some w(z3) € B . The definition of this class is a generalisation of
the classical result that any reqular function p(z) =1 + P42 + pZzZ + ..

such that Re{p(z)} > 0 in A can be written in the form

In [ 2], Janowski introduced the following general class of starlike

univalent functions:

S*(4,B) = {f(z) =z + ag® + ... ; zf'(z)/f(z) e P(4,B], 2 €A} .

*
Given particular values for A, B, S (A,B) reduces to known subclasses

of starlike functions such as (see [2])

st im- 1),

m

* * *
Sy = S (1 - 20, -1) R S (M)

*(B) _ oF * _ ot
S =S (B, - B , S(B)_S(B,O).

*
In this paper we study the meromorphic counterpart of S (4,B) ,

namely, the class
Z*(A,B) = {f(z) =%+ ay, + a;z + ... ; -2f'(z)/f(z) € P(A,B), z € A} .

Replacing A4 , B by appropriate values, we obtain special cases

*
corresponding to those for S (4,B) ; in particular,

z;Ez*(l-Za,-Z)={f(z)=1/z+ao+a 2t...; Re{-éﬂé)—}>a, 0<a<l, z ¢ A} »

1 f(z)
z*[ ol = 2‘(&,—00 = {f(z) = 1/z+ao+a1z+...,- (5%2—7) + 1] E% -1] <a,
0<ac<l, 3 € A} s
o =Y 1 me1) = {f(z) = ztayragzt... ; 5-}7% + Mj<w,m>1, zeA},

zf’(z)+1

Fz) <a,0<asl,zeA}.

* *
z(or.) = Z (a,0) = {f(z) = 1/z+a0+azz+...;
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% * %
The classes Za , z [o] and z (M) were investigated by Pommerenke [ 5},
Padmanabhan [ 4] and Wiatrowski [ 6] respectively.

*
Karunakaran [ 3] recently considered Z (A,B) where A , B are

restricted by the conditions -1 < B < 0 , B <A< -B. These conditions

* R
are not general enough to cover such cases as z (M) in which B > 0 for

* *
% <M< 1, and X(a ) defined above. This paper deals with Y (4,B) where
A , B vary in the complete range -1 < B <A =< 1.

*
Problems over Z (A,B) such as distortion bounds, radius of

convexity may be transformed into the extremal problems

(1.2) min min Re{Y plz) - 59—22—7-)-}
p(z)eP(4,B)  |z|=r<I p s
max max Re{Y p(z) - EE%!?l} s
(1.3) p(2)eP(A,B) |z|=r<1 piz

where Y <1 . Problems (1.2) and (1.3), which are of interest in their
own right, will be solved in Section 2. The results obtained will then be

*
used to derive the radius of convexity for z (A,B) and the distortion

* %
bounds for za and z [a] .

2. The extremal problems

From the definition of P(4,B) we have that

1+ Az

p(z) < 1 + Bz 2

z2edh,

for every p(2) ¢ P(A,B) . Thus, an application of the Subordination
Principle yields that the image of |z| < r under every p(z) ¢ P(4,B)

is contained in the disc
(2.1) Ip(z) - al sd,

where
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2
(2.2) a:% R d=Lér2_
l1-Br 1-B'r

From (2.1) and (2.2), it follows immediately that if p(2) € P(A,B) , then,

on |zl =r<1,

1 - A 1+4
(2.3) T8 < Relp(2)} = |pt2)| < = B; ’

The bounds are attained for the function p(z) = (1+4z)/(1+Bz) .

The basic tool which we rely upon to handle problems (1.2) and (1.3)

over P(A,B) is the following inequality known as Dieudonné's Lemma (see

puren [ 1, p. 25]).

LEMMA 2.1, If w(z) € B, then for lz| <1,

1212 - Jwia)i?

(2.4) law’(z) - w(z)| < 5
1 - |z}

THEOREM 2.2. If pl(z) ¢ P(A,B) , -(1+B)/(A-B) < Yy £ 1 , then on

|z]| =r<1,

r y-[ (1-2yJ}A-B] r+yA2r2

(1#A7) (1#Br) ’ Ry 2 Ry,
ap'(z)y .
Re{yp(z) - p(z) z {
A+B 2 % 2
-——+ — [ (L,K,)°-(1-ABr")1, R, 2 R, ,
| 4-B (a-B)(1-r%) 11 2

%
where R, = (D,/K)% , Ry = (1t4r)/(14Br) , L = (1#4) (1-Ar°) ,
K, = Y(A-B) (1-r2) + (1+B) (1-Br2) . The result is sharp.

Proof. From the representation (1.1) of p(z) we deduce that

- B 2w'(z)
[ 1+Aw (2)1{ 1+Bw(z2 )]

zp'(z)

_ 1+ Aw(z)
Wiz - Ty =Y T Buta)

+ Bwlz) ~ (4

Applying Dieudonné's Lemma to the second term of the right hand side we

find
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ap'(z)y  _A+B , 1 i 4
Re{yp(z) - () } 2 - 7= + =g Rell Y(4-B)+Blp(z) + p(z)}

(2.5) _ PZIBp(z)—AIZ - ll—p(z)(2 .
(4-B) (1-r%) |p(2) |

Put p(z) = re*® , where Rela-d, a+d with a, d given by (2.2)

and denote the right-hand side of (2.5) by S(R,6), then

2
S(R,0) = - ME 4 L (yu-p)en)r+4 - 2B ) §oogp
A-B A-B R 1-r
2 2 2 2
(2.6) +ﬂ—§—.1+1'312’ . R} .
1-r R 1-r
Now,
95 _ sinb
5 = A-B T(R) ,
where
1 ABPZ A
T(R) = 2 —— - = - [Y(A-B)+BIR
l1-r R
1 ABr2 1
2 2 /= - [—-+ E) as A <1 and Yy <1.
1-r R

Denote the right-hand side by F(R) ; then dF/dR = J/RZ - 1 . since
Rela-d,a+d and a-d< 1, a+d>1, the minimum of F(R) is
attained at either R=a-d or R=a+d . Now,

1—ABr2 _ 1-Br _ 1-Ar

Fla-d) = 2 5
1-r 1-Ar 1-Br
_ L 1-0%) (1-Br)*r 185 1-am®y
(1-v2) (1-Ar) (1-Br)
Also,
2
Flatd) = 2 1-ABr _ 1+Br _ 1+Ar

1 - r2 1+Ar 1+Br
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_ 221142 (148r) %4 (1-B%) (10ar)?y
(1-r%) (1+4r) (1+Br)

Thus T(R) > 0 . BAnd so, the minimum of S(R,0) on the disc
|p(z)-a|] < d is attained when 6 = 0 and R € [a-d,a+d] . Setting
® =0 in (2.6) we get

2 2 22 2
S(r,0) = - 4B 4 i{[y(A-B)+B+i’2'—1 R+ (a+1AT 1 ARy
A-B A-B 1-r 1-r"R 1-r
which yields
ds(r,0) _ 1 1-B%p%  (144) (1-49%) 1
=== —~Avy(A-B) + B + 5 - 5 -
dr A-B l1-» 1-»r R

In the above expression we have that

1-32r2

1- r2

Y(A-B) + B + 2 Y(A-B) + B+ 1 20

if Yy 2 -(1+B)/(A-B) . Thus for -(1+BJ/(A-B) sy s 1 , the minimum of

S(R,0) occurs at R = R, if Rj ¢ [a-d,a+d] , its value being

S(R;,0) = - A4B | 2

— 1 (1:11(1)]5 - (1-4Br%))
A-B  (A-B)(1-r")
We next want to show that Rl > a-d . Indeed, for Y in the range
~-(1+B)/(A-B) Sy £ 1 , we have
(1+4) (1-4r) 1-4r°

>
Y(A-B) (1-v°2)+(14B) (1-Br®)  1-Br®

2

if and only if 1-Br"~ > Y(l—rg) , that is, if and only if

1> (B-Y)PZ/(Z-Y) , which is always true as (B-yJ)/(1-y) <1 for y s 1.
Consequently,

2
R2 S 1-Ar N 1-Ar S (Z-Ar)2 - (a-d)2 .

1-Br2 1-Br 1-Br
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In other words, RJ > a-d . However, R; is not always less than a+td .

For R1 2 a+td = R the minimum of S(R,0) occurs at R = R2 , its

2 ’
value being

Y - [(1-2y)A-Blr + yA°r®

S(R 0) = (1+4r) (1+Br)

The result is sharp for the function pl(z) (1+4z)/(1+Bz) for
R; 2 R, and the function pylz) = [1+Aw2(z)]/[1+Bw2(z)] for R, 2 R, ,
where w2(z) = z(z—cz)/(l-czz) with ¢, being determined from the

equation Re{[ 1+Aw, (2)1/1 1+Bw2(z)]} =R, at z=1r.

1

THEOREM 2.3. If p(z) € P(A,B) , Y< 1, thenon lz| =r <1

Y + [ (1-2y)A-Blr + yA2r2
(1-Ar) (1-Br) 2

R, <R

3~ 47

Re{yp(z) - —P—(;)i)} <
- A8 +—————2—[1ABr - (Lz"z%] , Ry SRy,
A-B (A-B) (1-r")

where Ry = (L/K)® , Ry = (1-Ar)/(1-Br) , L, = (1-A) (1+ar%)

2

= (1-B)(1+Br®) - y(A-B)(1-r%) . The result is sharp.

Proof. The same argument as in the proof of Theorem 2.2 yields

_3p'(a) _ /ﬂ = A
Re{yp(z) 5T2) b -7+ Ref[y(A -B)+Blp(z) + e )}
[Bp(z)—A[ - l]—p(z)l

(2.7)
(4-B) (1-v%) |p(2) |

put p(z) = atut+iv and denote the right-hand side of (2.7) by S(u,v)
then

2.2 2 2
_ A+B + [[Y(A B)+B] (a+u)+A(a-§u) + 1-B rz ) d"-u“-v

A-B  A-B R I-r R

2

(2.8) Slu,v) =
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so that
. —1—- %—T(u,v) s
v A-B R
where
1-B%r° 2 2 2
T(u,v) = 24(a+u) + —————2—[2}? +(d ~u“-v°)R]
1-p
1- Bzr
> 2(atul[A + (a-d) ] .
1- r
Now,
2 2
22 2B 2 4 (geq)? o (14B) (1-4r)% + (A B) (1-ABr%)
1-r (1-Br)
>0 .

Hence T(u,v) > 0 and the maximum of S(u,v) on the disc |p(z)-a| <

is attained when v =0 and u € [-d,d] . Putting v =0 in (2.8) gives
A+B 1 1—.421"2 1 1- B r 1- ABI'
S(u,0) = - ==+ {(4 - 5 + [y(A-B)+B - —] (at+u)+2—"" }
A-B A-B I1-r atu 1- r

which yields

d5(u,0) _ L[ y(4-B) (1-2%)-(1-B) (14B2E) £ (1-0) (1) —L— .
du (A-B)(1-r") (a+u)

Now (1-B) (1+Br'2) - Y(A-B) (1—1'2) >0 if and only if

y < LB 14Bp°
A-B 1-p°

Since 1-B 2 A-B and (1+Br2)/(1-r2) 2 1 , the restriction Y £ 1 shows

that the above condition is satisfied. Hence with Y < 1 , we see that
dS(u,0)/du vanishes at U, = (LZ/KZ)%-a . Thus the maximum of S(u, @)

occurs at u = u, if u, e {-d,dl , its value being

= -4, 2 2 %
S(upy,0) = + [2-4Br" - (L X,)7%] .

A-B  (A-B) (1-v%)
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Now, an easy calculation shows that

(1-4) (1+4r°) . Itar’
(1-B) (14Br%)-y(A-B) (1-v%) 14Br®

if and only if Y(1-r2) < 1+Br2 , which holds for Y £ 1 . Hence

2
(aruy? < A < (a10)%
1+Br
that is, u, < d . However, it is not necessary that u, > -d . For
U < -d , that is, R3 < R4 , the maximum of S(u,0) occurs at Uy = -d ,

its value being

Y + [(1-2Y)A-Bl» + yA°r®

5(-d,0) = (1-Ar) (1-Br)

The result is sharp for the function p,(2) = (1+Az)/(1+Bz) for
Rz < R, and the function pz(Z) = [ 144w ()11 I+Bu,s(2)] for R, < Ry,
where wg,(z) = 3(z-cg)/(1-czz) with cg such that

Re{l 1+Aw3(z)]/[1+Bw3(z)1} =R; at z=-r.

#
3. The class } (4,B)
This section establishes the radius of convexity and the bounds for
* %
|f(z)| for J (4,B) . The bounds for |f'(z)| over Y (A,B) are not
known. However, we shall determine these bounds for two special cases of
* * *
Y (4,B) , namely, Za and } [o] .

THEOREM 3.1. The radius of comvexity of | (A,B) is given by the
smallest root in (0,11 of

(i) A%+ (#B)r + 1 =0, for Ry <R,

(i) (24%+34+B)7% - 2 2(1+4)%44-B1 12 + 443848 = 0 , for R, S Ry,

R, , Ry being as given in Theorem 2.2 with Yy =1 .
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#
Proof. For f(z) € J (A,B) , we deduce

(3.1) -[1+§-J§%1 = plz) - %)—, p(z) € P(4,B) .

The result now follows from Theorem 2.2 with Y = 1 and is sharp for the

functions fﬁ(z) for R, < R, and fé(z) for R; < R, , where f}(Z) ’

fé(z) are given by
zf%(z)
SR T i=lo2,
7
pl(z), p2(z) being extremal for Theorem 2.2.
As a special case of Theorem 3.1, we determine the radius of
1

*
convexity of the class z(a) of functions f(z) = 1/z+a0+a z2+... for

which

|§§¥é%l-+ Il <o, 0<as<1, zeb.

COROLLARY 3.2. The radius of comvexity of Z;a) is

o=l 2+5a+2a2-2(1+a) (1+a2)25] Ja(4a+3) }% .

Proof. For f(z) € z;a) we may write

- 2 = pta)

s, 2 €,
where p(z) satisfies the condition

lp(z) - 1] <a,0<a<1,z¢€b.

Put w(z) =[p(z)-11/a ; then w(z) ¢ B and p(z) = I+aw(z) . Hence
p(z) € P(0,0) . Theorem 3.1 with A =0a, B=0 gives, for R; <R, ,

the radius of convexity of f(z) to be the smallest root in (0,1] of
the equation

a(4a+3)r4 - 2(2+5a+2a2)r2 + 4430 = 0 .

It is clear that the only root in (0,1) of this equation is O . Now,
the condition R2 < R1 with A=a, B=0 , y=1 1is equivalent to

-2(1+0) - a(2+a)r + 2ar2 + a2r3 <0,
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which always holds for 0 <a <1, 0 <r <1 . Hence the case R2 < Rl
*
does not exist for the class Z(a) . The proof is therefore completed.
%
To obtain bounds for |f(z)| over [ (4,B), we observe that

% #
f(z) € } (A,B) if and only if 1/f(z) ¢ S (4,B) . Hence an application

of Theorem 4 of [2] gives

COROLLARY 3.3. Let f(z) e J (A,B) ; thenon |zl =» <1,

v (14pp) (B-A)/B rl1-pe)BAB | ir BRo,

1A
IA

| £=2)|

r_lexp(Ar) s if B=20.

A
IA

[£(z)]

The function f(z) defined by

af'(z) _ 1+4z 2 €A
f(z) 1+Bz °

»l exp(-Ar)

shows that the bounds are sharp.
We next derive bounds for |f'(3}| for two subclasses of 2*(,4,3)

namely, Z; = Z*(l-Za,—J) and Z*[a] = Z*(a,-a)

THEOREM 3.4 TILet f(z) € Z; , B=1-20; thenon |zl =r<1
r ity a=o0,
2 2.% 2.%
|£7(2)] s {1 1 AE2 )5 2 (BN (1-r")*- /B ) By

a? 1P (1-/B) (1-8r2)%+/B(1-r) )

A
o]
A
QR

2 2)% 2%
—%{.‘H(ﬂg——)%] Zexp{Z/——B_tan-l/:ﬁl- (1-r") ;1-81” ) ]} . &
r 1-r 1+B-Br

\

<1

where 4/5 < %) s
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,

/7% - 1 , a=0,

2)8/(1-a) 14 (142 ) (r 2N*-20/(1-0)

X

(lr

exp{za\/é .-l VBl 1-(1-» )}5(1+Br )15]}
I-a 2a+6r

If'(z)| 2 {

0<ac<¥k%,

%
2 (1.p2)B/ (1-0) (1A (1+2° )/(l-r N*y-20/(1-0)

s ¥<a<1.

(1=VB)L (148r%)% + VB(1-220%| o/7B/ (1-0)
(1+/BI (1+807)% - /B(1-r2)8)
The results are sharp.

Proof. From the expression

log (22F"(2)) = 1og |22F'(2)| + iarglz®f'(2)} ,
we derive

2+ Re{—% = r— log |z f’(z)l

This together with (3.1) give, for f(z) € Za N

3 '(Z)}

(3.2) 1r~i log Izgf'(z)l = 1-Relp(z) - p(z)

" s p(2) € Pol'
The condition Rl < R2 of Theorem 2.2 with A =1-200 , B= -1, y=1
is equivalent to

-2r(1+r)a2+(r2+5r+2)a-2 (1+r) < 0

(3.3) F(a)

Now, F(0) = -2(1+r) < 0, F(1) = r(1-r) > 0, F(4/5) = -2(6P2—9P+5)/25<0
for 0 <r <1 . Hence F(a) has a zero in [4/5,1) . It may be

checked that this is the only zero, denoted by %5 less than 1 of

F(a) . Thus for o S a, , we have FP(a) <0 for 0 <r <1 . Aand so

A

the case R2 < R1 does not exist for 0 < o a, when we consider the

*
class 20‘ . Theorem 2.2 with A =1-20 , B= -1 , y=1 applied to
(3.2) yields
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2 2. %
PjL log |z2fr(z)l < 2{1—[(1-Br )gl-p N -
or .

Hence

1A

log Izzf'(z)l

Zrz-[(z-stz) (1-t2)1% s
2
0 t(1-t")

1]

r A 2(1-a)-Bt2) dt
2 2 2 F) 7 5"
0 (1-t°){1+(1-t°)[ (1-Bt") /(1-t°)]1 %}

With the substitution u = [(1—Bt2)/(1—t2)]% , the integration may be

carried out to give the upper bound for |f'(z)| . To obtain the lower
bound for |f’(z)} , we note first of all that the condition Ry < Ry of

Theorem 2.3 with 4 = 1-20 , B= -1, Yy =1 is equivalent to the
inequality

2 + (142a)r + (1-20)7° 2 0 ,

which always holds for 0 <r <1, 0 <a <1 . Hence there is only one

case, R, s Ry , for the upper bound of Relp(z)-2p'(2)/p(2)} with

p(z) € Pa . This result applied to (3.2) gives

r2 log |a¥f1(a)| 2 B - — L (asr®ozal (14pr?) (167 0%)
ar I-a (1-a)(1-r°)

Hence

log |a2f'(2)| = -

T 2 20k
1 J (2288 _ pol- U2+BE7) (1-tT)1%y

1-aj, 1%  t(1-%)
r 2
(3.4) =B 1og (1-4%) - 2o f 2 tmwgt aat 2 2% "
I-a 1-aJ0 (1-t°){21+(1-t°)[ (1+Bt°) /(1-t“)} ?}

It follows at once from (3.4) that, for a =0, |f'(z)| 2 1/r2 -1 . For

0 <a <1, with the substitution u = [(1+Bt2)/(1-t2)]Jf and carrying out

the integration, we get the lower bound for |f'(z)| .

The upper bound for |f’(z)| is attained for the function f(z)
defined by
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_af'(a) _
frz) = Pal®)

while the lower bound for |f'(z)| occurs for the function f(z)
defined by

_af'(z) _
21~ P3l#)

where p2(z) s ps(z) are extremal for Theorems 2.2 and 2.3 respectively.
* *
Padmanabhan [ 4] in his work on S [a]l and ) [0o] derived the radius

* .
of convexity of Z [o] , while the distortion theorem for this class was

not given. Here we prove

THEOREM 3.5. If f(z) € Z*[a] s thenon |z| =r <1

2,0
(1-r°)— If'(z)| < -1
p2 PZ(I-Pz)a

The results are sharp.
Proof. Denote by M o] the class of functions p(z) = 1+plz+...

which satisfy the condition

|Ei§l:ld <a,0<as<1,zeh,

p(z)+1
*
that is, Pla] = P(a,-a) . For f(z) € z [a) , we may write
3 2., _ zp'(z)
(3.5) o log |2°F1(z)| = 1 - Relp(z) - o(z) }
as in the proof of Theorem 3.4, where now p(z) € Pla] . The condition

R1 > RZ of Theorem 2.2 with A =0, B=-00, Y=1 is equivalent to

-2(1+a)(1-ar2) < 0 , which is always true for 0 < r< 1, O0<oa<1.

Hence the case R, < R; does not exist for p(z) € P[a] . Consequently,

an application of Theorem 2.2 to (3.5) yields

2
ro log |zzf'(z)| < 2925 .

or 1-r

and so,
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r
log |22f"(z)| < J 2atdt2= -0 log (l—rz) R
01-~-t
R ’ -2 2.,-0 L.
that is, |f (z)l < r “(1-r°) . Similarly, we can show that the case

Rz < R, of Theorem 2.3 does not exist for p(z) € P[al and the lower

bound for lf’(z)l can be derived from Theorem 2.3 with A =a , B =-a ,

Yy =1 and (3.5).

The upper bound for f’(2) is attained for the function f(2)
defined by

3f'(z) _
Flz) = Pal?

while its lower bound is attained for the function f(z) defined by

_af'(a) _
Frz) - P3® .

pz(z) R ps(z) being extremal for Theorems 2.2 and 2.3 respectively.
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