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Asymptotics of the centre-mode instability
in viscoelastic channel flow: with and
without inertia
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Motivated by the recent numerical results of Khalid et al. (Phys. Rev. Lett., vol. 127, 2021,
134502), we consider the large-Weissenberg-number (W) asymptotics of the centre mode
instability in inertialess viscoelastic channel flow. The instability is of the critical layer type
in the distinguished ultra-dilute limit where W(1 − β) = O(1) as W → ∞ (β is the ratio
of solvent-to-total viscosity). In contrast to centre modes in the Orr–Sommerfeld equation,
1 − c = O(1) as W → ∞, where c is the phase speed normalised by the centreline speed
as a central ‘outer’ region is always needed to adjust the non-zero cross-stream velocity
at the critical layer down to zero at the centreline. The critical layer acts as a pair of
intense ‘bellows’ which blows the flow streamlines apart locally and then sucks them back
together again. This compression/rarefaction amplifies the streamwise-normal polymer
stress which in turn drives the streamwise flow through local polymer stresses at the critical
layer. The streamwise flow energises the cross-stream flow via continuity which in turn
intensifies the critical layer to close the cycle. We also treat the large-Reynolds-number
(Re) asymptotic structure of the upper (where 1 − c = O(Re−2/3)) and lower branches
of the Re–W neutral curve, confirming the inferred scalings from previous numerical
computations. Finally, we remark that the viscoelastic centre-mode instability was actually
first observed in viscoelastic Kolmogorov flow by Boffetta et al. (J. Fluid Mech., vol. 523,
2005, pp. 161–170).
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1. Introduction

It is well known that the addition of long-chain polymers to a Newtonian fluid
introduces elasticity which can give rise to fascinating new ‘viscoelastic’ flow phenomena.
Prime examples of this are a new form of spatio-temporal chaos – dubbed ‘elastic’
turbulence (ET) (Groisman & Steinberg 2000) – which exists in inertialess curvilinear
flows and ‘elasto-inertial’ turbulence (EIT) (Samanta et al. 2013) which can occur in
two-dimensional rectilinear flows (Sid, Terrapon & Dubief 2018) where inertia and
elasticity balance each other. While ET is assumed triggered by a linear ‘hoop stress’
instability of curved streamlines (Larson, Shaqfeh & Muller 1990; Shaqfeh 1996), the
origin of EIT remains unclear (Datta et al. 2022; Dubief, Terrapon & Hof 2023) as does
any possible relationship to ET.

The breakdown of viscoelastically modified Tollmien–Schlichting modes has been
suggested as a cause of EIT (Shekar et al. 2019, 2021) at least at high Reynolds number,
Re, and low Weissenberg number, W. At low Re and high W, however, the recent
discovery of a new linear instability of rectilinear viscoelastic shear flow seems more
viable (Garg et al. 2018; Chaudhary et al. 2021; Khalid et al. 2021a). This instability
occurs at higher W than generally associated with EIT but has been shown to be subcritical
(Page, Dubief & Kerswell 2020; Wan, Sun & Zhang 2021; Buza, Page & Kerswell 2022b;
Buza et al. 2022a). In particular, travelling wave solutions, which have a distinctive
‘arrowhead’ structure, originating from the neutral curve reach down in W to where EIT
exists in parameter space (Page et al. 2020; Buza et al. 2022a; Dubief et al. 2022).
This instability is of centre-mode type, being localised either at the centre of a pipe
(Garg et al. 2018; Chaudhary et al. 2021) or midplane of a channel (Khalid et al. 2021a;
Khalid, Shankar & Subramanian 2021b), but is notably absent in plane-Couette flow (Garg
et al. 2018). Perhaps most intriguingly, the instability can be traced down to Re = 0
in channel flow (Khalid et al. 2021b) in the ultra-dilute limit of the solvent-to-total
viscosity ratio approaching 1 while a minimum Re ≈ 63 exists in pipe flow (Chaudhary
et al. 2021). Subsequently, travelling wave solutions have been numerically computed in
two dimensions and at Re = 0 (Buza et al. 2022a; Morozov 2022) and their instability
examined (Lellep, Linkmann & Morozov 2023, 2024).

Apart from numerically inferred scaling relationships (Garg et al. 2018; Chaudhary
et al. 2021; Khalid et al. 2021a,b), the only work to unpick the asymptotic structure of
the centre-mode instability is that of Dong & Zhang (2022) in pipe flow. They identify the
asymptotic structure on the upper branch of the neutral curve characterised by W ∼ Re1/3

as Re → ∞ and consider the long-wavelength limit but stop short of treating the lower
branch of the neutral curve. Here, we do both for the channel and go further to examine
the inertialess regime in channel flow which is absent in pipe flow. Unravelling the Re = 0
situation asymptotically is actually our main motivation here as it differs fundamentally
from all the classical Orr–Sommerfeld work performed for Newtonian shear flows (Drazin
& Reid 1981). In particular, the regularising feature of the critical layer formed (e.g.
figure 3 of Khalid et al. 2021b and figure 4 below) is the presence of elastic relaxation
rather than viscosity. The ‘outer’ relaxation-free solutions also satisfy a fourth-order
differential equation rather than the classical, inviscid, second-order Rayleigh equation in
Newtonian flows. This means that matching conditions across the critical layer need to be
sought down to the third-order derivative in the cross-stream velocity (or streamfunction)
and, due to a logarithmic singularity in the first-order derivative, computations need to
go beyond double precision accuracy to achieve a convincing correspondence between
numerical results and the asymptotic predictions; see table 4. A particularly interesting
feature of this viscoelastic centre-mode instability is that the critical layer does not
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Asymptotics of the centre-mode instability

approach the midplane as W → ∞, that is, the phase speed of the instability approaches
a non-trivial value very close to but distinct from 1, the maximum speed of the base flow.
Ultimately, however, the point of the asymptotic analysis is to identify the mechanism of
the instability and to understand, if possible, why it does not manifest in plane-Couette
flow.

The plan of this paper is first to introduce the channel flow problem in § 2 and
the viscoelastic model (Oldroyd-B) used by Khalid et al. (2021a,b). The first results
section, § 3, then examines the large Re-asymptotics of the upper (§ 3.1) and lower
branches (§ 3.2) of the neutral curve in the Re–W plane for fixed β, the ratio of
solvent-to-total viscosity: see figure 1. Reduced eigenvalue problems based only on
O(1) quantities (relative to Re) can be straightforwardly derived for both upper and
lower branches. Interestingly, if β � 0.9905, Khalid et al. (2021b) showed that the
lower branch crosses the Re = 0 axis and the appropriate (mathematical) limit is then
Re → −∞. Figure 3 indicates that nothing mathematically unusual happens as the
neutral curve swings around from pointing at Re → ∞ to Re → −∞ although, of
course, negative Re makes little physical sense. The special case of Re = 0 or vanishing
inertia, however, does and the asymptotics as W → ∞ is studied in § 4. The work of
Khalid et al. (2021b) has already indicated that the appropriate distinguished limit is that
in which β simultaneously approaches 1 such that W(1 − β) stays finite. Section 5 goes
on to use the asymptotic solution to discuss the mechanics of the inertialess instability and
§ 6 describes some numerical experiments to understand how the instability responds to
the problem becoming a bit more plane-Couette like. A brief § 7 presents evidence that the
centre-mode instability was actually found first in viscoelastic Kolmogorov flow (Boffetta
et al. 2005) before a final discussion follows in § 8.

2. Formulation

We consider pressure-driven, incompressible channel flow between two walls y = ±h in
the x-direction. Using the half-channel height, h, and the base centreline speed Umax to
non-dimensionalise the problem, the governing equations become

Re
(

∂u
∂t

+ u · ∇u
)

= −∇P + β∇2u + ∇ · T , (2.1)

∇ · u = 0, (2.2)

∂T
∂t

+ u · ∇T − 2 sym(T · ∇u) = − 1
W

T + 1 − β

W
(∇u + ∇uT), (2.3)

where u is the velocity field, P the pressure and T the polymer stress following Khalid
et al. (2021a). Here, an Oldroyd-B fluid has been assumed so

T = 1 − β

W
(C − I), (2.4)

where C is the conformation tensor and I the identity 2nd rank tensor. The parameters
of the problem are the Reynolds number, Weissenberg number and the solvent-to-total
viscosity ratio

Re := Umaxh
ν

, W := λUmax

h
and β := νs

ν
, (2.5a–c)

respectively, where λ is the microstructural relaxation time, νs is the solvent kinematic
viscosity and ν is the total kinematic viscosity (following Khalid et al. 2021a,b). The
scaling of the pressure has been done in anticipation of setting Re = 0 in § 4.

991 A13-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

50
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.500


R.R. Kerswell and J. Page

The one-dimensional base state is

U = U(y)x̂ := (1 − y2)x̂, ∇P = −2x̂, (2.6)

T =
[

T11 T12
T12 T22

]
= (1 − β)

[
2WU′2 U′
U′ 0

]
, (2.7)

where U′ := dU/dy and, henceforth, the analysis is entirely two-dimensional. The
linearised equations for small perturbations

v = ux̂ + vŷ := u − U, p := P − P and τ =
[
τ11 τ12
τ12 τ22

]
:= T − T , (2.8a–c)

which are all assumed proportional to eik(x−ct), where k ∈ R is a real wavenumber but the
frequency c = cr + ici ∈ C can be complex (ci > 0 indicates instability; cr, ci ∈ R), are
the momentum and incompressibility equations

Re
[
ik(U − c)u + U′v

] = −ikp + β(D2 − k2)u + ikτ11 + Dτ12, (2.9)

Re [ik(U − c)v ] = −Dp + β(D2 − k2)v + ikτ12 + Dτ22, (2.10)

iku + Dv = 0, (2.11)

for the velocity field and[
1
W

+ ik(U − c)
]

τ11 = −vDT11 + 2ikT11u + 2T12Du + 2U′τ12 + 2ik(1 − β)

W
u,

(2.12)[
1
W

+ ik(U − c)
]

τ12 = −vDT12 + ikT11v + U′τ22 + 1 − β

W
(Du + ikv), (2.13)[

1
W

+ ik(U − c)
]

τ22 = 2ikT12v + 2(1 − β)

W
Dv, (2.14)

for the polymer field, where D := d/dy, T11 = 2ΛU′2, T12 = ΛU′/W, T22 = 0 and Λ :=
W(1 − β) (see (2.7)) in preparation for § 4. The pressure p can be eliminated between (2.9)
and (2.10) to produce the vorticity equation

β(D2 − k2)2v = −k2D(τ11 − τ22) + ik(D2 + k2)τ12

+ ikRe
[
(U − c)(D2 − k2)v − U′′v

]
. (2.15)

This equation is good for (asymptotic) analysis but not for a numerical solution where
discretising two second-order equations rather than one fourth-order equation is a far better
conditioned process.

3. The Re → ∞ asymptotics for channel flow

A natural starting point for examining the centre-mode instability is to consider the neutral
curve in the Re–W plane for fixed β (e.g. figure 2 of Page et al. (2020), figure 1 here for
β ∈ {0.9, 0.98, 0.994} and figure 1 in Dong & Zhang (2022) for pipe flow). The upper and
lower branches of this neutral curve have |Re| → ∞ limits which are now explored.
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Figure 1. The centre-mode neutral curve (black dashed line) for β = 0.9 and the asymptotic predictions
(upper/lower branch – red/blue solid lines) for W (a), k (b) and 1 − c (c). Panel (d) shows how the lower
branch of the neutral curve rotates around and crosses the inertialess limit of Re = 0 as β increases from
β = 0.9 (black again) through β = 0.98 (green) to β = 0.994 (dark red). The solid blue lines indicate the
asymptotic prediction for the various lower branches (the β = 0.994 prediction is reached for Re → −∞; note
only Re = O(10) is shown here). The dark red dot at (W, Re) = (973.8, 0) is the lowest point reached by the
neutral curve for Re = 0 for an Oldroyd-B fluid (Khalid et al. 2021b). The W–Re neutral curve in (a) is the
channel flow equivalent of the pipe flow curve shown on the left in figure 1 of Dong & Zhang (2022).

3.1. Upper branch in Re vs W plane at fixed β

Numerical calculations by Khalid et al. (2021a) on the upper branch neutral curve suggest
the scaling behaviour

(W, k, y, 1 − c) =
(

Ŵ
δ

,
k̂
δ
, δŶ, âδ2

)
, (3.1)

where all hatted variables are O(δ0) and δ → 0 as Re → ∞ (the numerical data indicate
δ = Re−1/3 but it is worth temporarily ignoring this to reveal a scaling property of the
equations). This is the channel flow equivalent of the short-wavelength scalings for pipe
flow studied by Dong & Zhang (2022) in their § 4.1. Rescaling the variables (2.8a–c) as
follows:

(u, v, p, τ11, τ12, τ22) =
(

û, v̂,
p̂
δ
,
τ̂11

δ
,
τ̂12

δ
,
τ̂22

δ

)
(3.2)
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converts (2.9)–(2.14) into

Reδ3
[
ik̂(â − Ŷ2)û − 2Ŷ v̂

]
= −ik̂p̂ + β(D̂2 − k̂2)û + ik̂τ̂11 + D̂τ̂12, (3.3)

Reδ3
[
ik̂(â − Ŷ2)v̂

]
= −D̂p̂ + β(D̂2 − k̂2)v̂ + ik̂τ̂12 + D̂τ̂22, (3.4)

ik̂û + D̂v̂ = 0, (3.5)[
1

Ŵ
+ ik̂(â − Ŷ2)

]
τ̂11 = −16(1 − β)ŴŶ v̂ + 16ik̂(1 − β)ŴŶ2û

− 4(1 − β)ŶD̂û − 4Ŷ τ̂12 + 2ik(1 − β)

Ŵ
û, (3.6)[

1

Ŵ
+ ik̂(â − Ŷ2)

]
τ̂12 = 2(1 − β)v̂ + 8ik̂(1 − β)ŴŶ2v̂ − 2Ŷ τ̂22

+ 1 − β

Ŵ
(D̂û + ik̂v̂), (3.7)[

1

Ŵ
+ ik̂(â − Ŷ2)

]
τ̂22 = −4ik̂(1 − β)Ŷ v̂ + 2(1 − β)

Ŵ
D̂v̂, (3.8)

where D̂ := ∂/∂Ŷ = δD and no terms have been dropped. The polymer equations are
therefore invariant under this scaling regardless of δ but δ := Re−1/3 is forced by the
momentum equation if inertia and viscous effects are to be balanced in the usual
Newtonian way near a critical layer (where Re(c) = U(y)). With this choice, no terms
are also dropped in the momentum equation so the scaling transformation is exact here for
a parabolic base profile. The one change going from the original eigenvalue problem to this
scaled version is the position of the boundary which is transformed to Ŷ = ±∞. Solving
the asymptotic eigenvalue problem on the neutral curve is then one of finding a neutral
eigenfunction which decays away at infinity. In their pipe flow analysis, Dong & Zhang
(2022) showed that the decay outside of their central layer is in fact exponential (see their
equation (4.8)) so what they analyse as a three-layer structure is actually just one. Another
way of seeing this is that the full system (3.3)–(3.8) has only O(1) coefficients.

Given the symmetry of the centre mode (Khalid et al. 2021a)

(u, v, p, τ11, τ12, τ22)(−y) = (u, −v, p, τ11, −τ12, τ22)(y), (3.9)

it is sufficient to just solve across the lower half-channel, imposing the appropriate
symmetry across y = 0 and û = v̂ = 0 at some large distance Ŷ = −L (L 	 1 with L = 15
to 50 used to explore convergence at β = 0.9); see eigenfunctions in figure 2.

The asymptotic properties (Ŵ, k̂, Re(â)) of the upper branch neutral curve are given by
seeking

min
k̂

{Ŵ(k̂) | Im[â(k̂, Ŵ)] = 0}, (3.10)

in the eigenvalue problem (3.3)–(3.8), that is, by finding the smallest value of Ŵ for which
there are no unstable eigenfunctions (the growth rate kci = −Im(â)/Re). The required
k̂ and â are defined by the neutral eigenfunction at this maximum. The results of this
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Figure 2. The (asymptotic) eigenfunction on the upper branch neutral curve for β = 0.9: û (red) and v̂ (blue) in
(a); τ̂11 (blue), τ̂12 (red) and τ̂22 (black) in (b) (in both real/imaginary parts are solid/dashed). The eigenfunction
has been normalised so that û(0) = 1. The calculation has been done over the domain Ŷ ∈ [−15, 0] for clarity
but larger domains (e.g. [−50, 0]) were used for convergence purposes.

Re Ŵ k̂ â

100 8.9409 0.4912 0.1018
200 9.1809 0.5010 0.0908
1000 9.1730 0.5020 0.0909
10 000 9.1727 0.5022 0.0908

∞ 9.1725 0.5023 0.0908

Table 1. Upper branch neutral curve characteristics for β = 0.9 as Re → ∞. At a given finite Re,
Ŵ = W/Re1/3, k̂ = k/Re1/3 and â = (1 − c)Re2/3. The bottom line shows the values given in (3.11a–c) found
by solving the asymptotic problem in (3.10).

procedure for β = 0.9 are that

W ∼ 9.1725Re1/3, k ∼ 0.5023Re1/3, cr ∼ 1 − 0.0908Re−2/3, (3.11a–c)

on the upper branch neutral curve as Re → ∞. Table 1 and figure 1 show that this
asymptotic result is useful (the curves overlap) down to at least Re = 150. Using the
elasticity number E := W/Re as in Khalid et al. (2021a), these scalings are equivalent
to Re ∼ O(E−3/2), k ∼ O(E−1/2) and 1 − c ∼ O(E) as E → 0 which is consistent with
figure 11 in Khalid et al. (2021a).

3.2. Lower branch in Re vs W plane at fixed β

Numerical calculations on the lower branch neutral curve (Khalid et al. 2021a) suggest a
long-wavelength limit scaling of the following form:

(u, v, p, τ11, τ12, τ22, W, k) =
(

û,
v̂

Re
, Re p̂0 + p̂1 + O(Re−1), Re τ̂11, τ̂12,

τ̂22

Re
, Re Ŵ,

k̂
Re

)
,

(3.12)

where all hatted variables are O(1) as Re → ∞, p̂0 is a constant (Dp̂0 = 0) and c stays
O(1) and bounded away from 0 (the wall advection speed) and 1 (the centreline advection
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β Ŵ k̂ c

0.9 1.058 62.17 0.999553
0.98 17.60 13.32 0.998788
0.994 −128.1 −5.97 0.999198

Table 2. Lower branch neutral curve characteristics for β = 0.9 and 0.98 as Re → ∞ and for β = 0.994 as
Re → −∞ (hence Ŵ and k̂ are both negative). A comparison with results from finite Re calculations is shown
in figure 1(d).

speed); see figure 1(c). In their long-wavelength analysis for pipe flow (their § 3), Dong &
Zhang (2022) only consider 1/Re 
 k 
 1 and so do not treat the lower branch neutral
curve where again k = O(1/Re) is found numerically (Garg et al. 2018). With these
rescalings, (2.9)–(2.14) become, to leading order,

ik̂(1 − y2 − c)û − 2yv̂ = −ik̂p̂0 + βD2û + ik̂τ̂11 + Dτ̂12 (3.13)

ik̂(1 − y2 − c)v̂ = −Dp̂1 + βD2v̂ + ik̂τ̂12 + Dτ̂22, (3.14)

ik̂û + Dv̂ = 0, (3.15)

for the velocity field and, for the polymer stress,[
1

Ŵ
+ ik̂(1 − y2 − c)

]
τ̂11 = −16(1 − β)Ŵy v̂ + 16ik̂(1 − β)Ŵy2 û − 4y τ̂12

− 4(1 − β)yDû, (3.16)[
1

Ŵ
+ ik̂(1 − y2 − c)

]
τ̂12 = 2(1 − β)v̂ + 8ik̂(1 − β)Ŵy2 v̂ − 2y τ̂22 + 1 − β

Ŵ
Dû,

(3.17)[
1

Ŵ
+ ik̂(1 − y2 − c)

]
τ̂22 = −4ik̂(1 − β)y v̂ + 2(1 − β)

Ŵ
Dv̂. (3.18)

Since Dp̂0 = 0, differentiating (3.13) leads directly to the vorticity equation

βD4v̂ = −k̂2Dτ̂11 + ik̂D2τ̂12 + ik̂
[
(1 − y2 − c)D2v̂ + 2v̂

]
, (3.19)

and (3.14), which just defines p̂1, can be ignored. The problem defined by (3.15)–(3.19) is
then an eigenvalue problem for c. Since there is no rescaling of the spatial dimension, the
neutral eigenfunction is global and easily resolved. The asymptotic properties (Ŵ, k̂, c) of
the lower branch neutral curve are given by seeking

max
k̂

{Ŵ(k̂) | Im[c(k̂, Ŵ)] = 0}, (3.20)

and the results are shown in table 2. The asymptotic scalings for β = 0.9 where Re → ∞
are the same as for β = 0.994 where Re → −∞ but the eigenfunctions looks distinctly
different in the polymer stress field – see figure 3.

The lower branch scalings are apparent in figure 13 of Khalid et al. (2021a) (see also
their figure 18). The upper branch asymptote is reached for Rec → ∞ and E → 0 whereas
the vertical asymptote E → E∞ (a finite value) as Rec → ∞ corresponds to the lower
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Figure 3. The (asymptotic) eigenfunctions on the lower branch neutral curve for β = 0.9 (a,b) and β = 0.994
(c,d): û (red) and v̂ (blue) in (a,c); τ̂11 (blue), τ̂12 (red) and τ̂22 (black) in (b,d) (in both real/imaginary parts are
solid/dashed). Both eigenfunctions have been normalised so that û(0) = 1.

branch asymptote and the results in table 2 can be used to predict Ec. For example
(1 − β)Ec = (1 − β)Ŵ = 0.1058 at β = 0.9 and (1 − β)Ec = (1 − β)Ŵ = 0.352 at β =
0.98 (note Ec � maxRec E for a given β in figure 13 in Khalid et al. 2021a). Khalid et al.
(2021b) (their figure 4) show that there is no asymptote for β > 0.990552. Instead the
asymptote has to flip to Re → −∞ and Ec < 0 as shown for example with β = 0.994 in
figure 1(d).

4. The W → ∞ asymptotics for inertialess (Re = 0) channel flow

Without inertia (Re = 0), the relevant asymptotic limit is W → ∞ and β → 1 such that
W(1 − β) = Λ is an O(1) constant, e.g. see insets A and B of figure 2 in Khalid et al.
(2021b) (or figure 8 in their supplementary material) which suggest 3.5 � Λ � 10 for
instability. Physically, of course, this means W is large but finite whereas Re can be
considered separately as small as desired but is strictly not zero as there is flow. The latter
is mathematical: the Re → 0 limit is regular so it is convenient to set Re = 0 to get the true
limiting values of key dependencies (e.g. how 1 − c scales with W on the neutral curve).

As already mentioned in § 3 for Re > 0, the centre-mode instability has a certain
symmetry about the midplane y = 0: u is symmetric and v antisymmetric; see (3.9).
Henceforth, we only consider y ∈ [−1, 0] and impose no-slip boundary conditions
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Figure 4. Neutral eigenfunction at W = 32 000 (a), 128 000 (b) and 512 000 (c), k = 1.1 and Λ ≈ 4.11 =
W(1 − β) and cr ≈ 0.99218. Vertical dotted line near y = 0 is the critical layer where U = 1 − y2 = cr.
Here, v is blue (real/imaginary parts solid/dashed, respectively), real part of Dv is red and imaginary part
is black. Notice the O(1) jump in Re(Dv) (and in Re(D2v)) across the critical layer and the increasingly
singular behaviour of Im(Dv) (black solid line) as W increases (the line dips deeper down at the critical layer
approximating the logarithmic singularity).

v(−1)= Dv(−1)= 0 at the solid lower plate and symmetry conditions v(0)= D2v(0)= 0
at the midplane. Numerically (see Appendix A for details), we find on the neutral curve
that the eigenfunction has a critical layer near the midplane across which v is continuous
but there are jumps in Re(Dv) and Re(D2v) and singular-looking behaviour for Im(Dv)

where the phase of the eigenfunction is set by making Re(Dv) = 1 at the midplane; see
figure 4.

A key issue is whether the critical layer at y = y∗, defined by U(y∗) = cr so y∗ :=
−√

1 − cr ∈ [−1, 0], approaches the midplane, as it does in classical Orr–Sommerfeld
analysis for Newtonian shear flows (Drazin & Reid 1981), or not. Certainly, figure 4
suggests ‘not’, and earlier (pre-shooting code) attempts to develop the asymptotic structure
could not reconcile cr → 1 as W → ∞ with an O(1) jump in D2v across the critical layer.
This means a novel aspect of the asymptotics here is that, despite 1 − cr being very small,
it does in fact remain O(1) as W → ∞: see table 3.

We introduce a small parameter

ε := 1
W

, (4.1)

and take the distinguished limit β = 1 − εΛ, where Λ is an O(1) number to be
determined. The eigenfunction plotted in figure 4 shows abrupt changes in the solution
as it crosses a critical layer at y = y∗. The solution either side of the critical layer – the
‘outer’ solution – must satisfy the governing equations with β = 1, ε = 0 and Λ = O(1)

with the critical layer supplying appropriate ‘matching’ conditions between the two parts.
The purpose of the asymptotic analysis developed below is to identify analytic expressions
for these matching conditions so that the two parts of the outer solution can be fitted
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Asymptotics of the centre-mode instability

W cr kΛ− cr kΛ+

k = 0.1 32 000 0.998390 3.41331 0.999893 7.62705
128 000 0.998408 3.39349 0.999943 9.25320
512 000 0.998412 3.38849 0.999955 9.76344

a2 048 000 0.998413 3.38724 0.999957 9.80010
a8 192 000 0.998413 3.38693 0.999957 9.81447

a32 768 000 0.998413 3.38686 0.999957 9.81826

∞ 0.998413 3.38683 0.999957 9.81954

k = 1.1 64 000 0.9992186 4.526249 0.999853 7.63580
128 000 0.9992183 4.523676 0.999855 7.65132
256 000 0.9992181 4.522393 0.999855 7.65932

a1 024 000 0.9992180 4.521432 0.999856 7.66538
a8 192 000 0.9992180 4.521154 0.999856 7.66715

∞ 0.9992180 4.521114 0.999856 7.66740

Table 3. Values of cr and kΛ := k(1 − β)W as plotted in inset A of figure 2 in Khalid et al. (2021b) on the
neutral curve for k = 0.1 and 1.1 at various large W (± indicates upper and lower parts of the neutral curve
and a results computed using quadruple rather than double precision). The ∞ entry comes from Richardson
extrapolation eliminating the leading O(1/W) error. In all cases, Λ is slower to converge than cr, with the upper
curve calculations on the right highlighting this.

together in the limit of W → ∞ without solving for the critical layer. This defines the
leading solution to the problem which includes the leading O(W0) value of c.

4.1. Outer solution
We refer to the ‘outer’ solution as the solution in the regions y − y∗ = O(1). Assuming
v = O(1), then τ11 and τ12 are O(1) whereas τ22 = O(1/W). The leading-order outer
problem is then

(D2 − k2)2v = −k2Dτ11 + ik(D2 + k2)τ12, (4.2)

iku + Dv = 0, (4.3)

ik(U − c)τ11 = −vDT11 + 2ikT11u + 2U′τ12, (4.4)

ik(U − c)τ12 = ikT11v, (4.5)

which can be simplified to the fourth-order problem

(D2 − k2)2v = −ikD
[

T11D
(

v

U − c

)]
+ ik3T11v

U − c
. (4.6)

For y < y∗, outer boundary conditions are v(−1) = 0, Dv(−1) = 0 and, for y > y∗,
v(0) = 0 = D2v(0) with the critical layer supplying 4 matching conditions (for v, Dv, D2v
and D3v, respectively). This will produce a well-posed eigenvalue problem for c(Λ, k).
Ultimately, the problem is to find min Λ (i.e. smallest W at a given β) over all pairs (Λ, k)
where ci(Λ, k) = 0.

4.2. Inner solution
The inner solution is the solution in the critical layer y − y∗ = O(ε) where the thickness
comes from balancing polymer advection and relaxation processes; see the left-hand sides
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of the perturbed polymer stress equations (2.12)–(2.14). We therefore define a critical layer
variable Y and the corresponding derivative D̂,

Y := y − y∗

ε
, D = 1

ε
D̂ := 1

ε

∂

∂Y
, (4.7a,b)

so that, for example, 1/W + ik(U − c) = ε(1 + ikU
′
∗Y + ikU

′′
∗εY2), where U

′
∗ :=

U
′
(y∗) = −2y∗ > 0. Then the appropriate expansions turn out to be

v = v̂0 + ε log ε ΠY + ε v̂1(Y) + ε2 log ε
(
v̂
(Y) + 1

2ΩY2
)

+ ε2 v̂2(Y)

+ ε3 log ε
(
v̂2
 + 1

6Υ Y3
)

+ ε3 v̂3(Y) + . . .] (4.8)

u = i
k

[
log ε Π + D̂v̂1(Y) + ε log ε

(
D̂v̂
(Y) + ΩY

)
+ εD̂v̂2(Y)

+ ε2 log ε
(

D̂v̂2
 + 1
2Υ Y2

)
+ ε2D̂v̂3(Y) + . . .

]
(4.9)

Du = i
k

[
1
ε

D̂2v̂1(Y) + log ε
(

D̂2v̂
(Y) + Ω
)

+ D̂2v̂2(Y)

+ ε log ε
(

D̂2v̂2
 + Υ Y
)

+ εD̂2v̂3(Y) + . . .

]
(4.10)

D2u = i
k

[
1
ε2 D̂3v̂1(Y) + log ε

ε
D̂3v̂
(Y) + 1

ε
D̂3v̂2(Y)

+ log ε
(

D̂3v̂2
 + Υ
)

+ D̂3v̂3(Y) + . . . ,

]
(4.11)

for the velocity fields and

τ11 = 1
ε2 τ̂ 0

11(Y) + log ε

ε
τ̂ 


11(Y) + 1
ε
τ̂ 1

11(Y) + log ε τ̂ 2

11 + τ̂ 2

11(Y) + . . . , (4.12)

τ12 = 1
ε
τ̂ 0

12(Y) + log ε τ̂ 

12(Y) + τ̂ 1

12(Y) + ε log ε τ̂ 2

12 + ετ̂ 2

12(Y) + . . . , (4.13)

τ22 = τ̂ 0
22(Y) + ε log ε τ̂ 


22(Y) + ετ̂ 1
22(Y) + ε2 log ε τ̂ 2


22 + ε2τ̂ 2
22(Y) + . . . , (4.14)

for the polymer stresses, where Π , Ω and Υ are complex constants which will emerge
below. The reason we need to go so deep into these expansions is the outer problem is
fourth order and therefore requires jump conditions down to D3v plus there is a singularity
at the critical layer. Together, these require considering the equation for D̂3v̂3(Y) which is
O(ε2) down in the expansion of D3v i.e. we need to go to third order in the expansion. The
intermediate log ε terms are needed to complement the logarithmic terms which arise in
the inner solution otherwise ‘singular’ terms (as ε → 0) are forced in the outer solution.
These O(log ε) terms turn out to be unimportant for deriving the matching conditions.

To keep track of the influence of U′ and U
′′

when we probe later why plane-Couette
flow does not have a neutral curve, it is useful to expand the base state around y = y∗ in
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Asymptotics of the centre-mode instability

the critical layer as follows:

U = U∗ + εYU
′
∗ + 1

2ε2Y2U
′′
∗ + . . . , (4.15)

DU = U
′
∗ + εYU

′′
∗ + . . . , (4.16)

T11 = T∗(0)
11 + εYT∗(1)

11 + ε2Y2T∗(2)
11 + . . . , (4.17)

DT11 = T∗(1)
11 + 2εYT∗(2)

11 + . . . , (4.18)

T12 = εT∗(1)
12 + ε2YT∗(2)

12 + . . . , (4.19)

DT12 = εT∗(2)
12 + . . . , (4.20)

where

T∗(0)
11 := 2ΛU

′2
∗ , T∗(1)

11 := 4ΛU
′
∗U

′′
∗, T∗(2)

11 := 2ΛU
′′2
∗ , (4.21a–c)

and
T∗(1)

12 := ΛU
′
∗, T∗(2)

12 := ΛU
′′
∗, (4.22a,b)

assuming that U
′′′
∗ = 0 for simplicity (true for both channel and Couette flow).

Now we substitute expansions (4.8)–(4.11) for the perturbation velocity field,
(4.12)–(4.14) for the perturbation polymer stresses and (4.15)–(4.20) for the base state into
(2.11)–(2.15) and collect similar-order terms to create a hierarchy of problems in the usual
way.

4.3. Leading order: O(1/ε3) in the Stokes equation
At leading order

Xτ̂ 0
22 = 2ikT∗(1)

12 v̂0, (4.23)

Xτ̂ 0
12 = ikT∗(0)

11 v̂0 + U
′
∗τ̂

0
22, (4.24)

Xτ̂ 0
11 = 2U

′
∗τ̂

0
12, (4.25)

D̂4v̂1 = −k2D̂τ̂ 0
11 + ikD̂2τ̂ 0

12, (4.26)

where X := (1 + ikU
′
∗Y). Solving (4.23)–(4.25) for τ̂ 0

12 and τ̂ 0
11 then allows (4.26) to be

integrated twice with respect to Y to give

D2v = 1
ε

D̂2v̂1 = −k2

ε

∫
τ̂ 0

11 dY + ik
ε

τ̂ 0
12 = k2T∗(0)

11 v̂0

εX
∼ −ikT∗(0)

11 v̂0

U′
∗(y − y∗)

as Y → ±∞.

(4.27)

Here, the O(1/ε) integration constants must be zero otherwise the solution cannot be
matched with the outer region where ε = 0 to leading order. This leading inner solution
for D2v immediately suggests that the asymptotic matching will be a challenge. There
is a simple pole singularity in D2v at the critical layer and, as a consequence, a double
pole singularity in D3v. Since a double pole is symmetric across the critical layer, it does
not enter into the matching conditions for D3v but will certainly obscure any matching
criterion present involving higher-order less singular behaviour.
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Forewarned, we press on and integrate once more to give

Dv = D̂v̂1 = −ikT∗(0)
11 v̂0

U′
∗

[
log X + α1

]
, (4.28)

where α1 is another complex constant. Matching to the exterior requires that a
−ikT∗(0)

11 v̂0/U
′
∗ log ε term is present in the inner expression for Dv, otherwise the leading

outer solution would depend on log ε. As a consequence, the first complex coefficient, Π ,
in the expansions (4.8)–(4.11) has to be Π = −ikT∗(0)

11 v̂0/U
′
∗ = −2ikΛU

′
∗v̂0 so that

Dv ∼ −ikT∗(0)
11 v̂0

U′
∗

[
log[ikU

′
∗(y − y∗)] + α1

]
for ε 
 |y − y∗|, (4.29)

and so

Dv →

⎧⎪⎨
⎪⎩

Π
(

log |kU
′
∗(y − y∗)| + α1 − 1

2 iπ
)

, y → y∗−,

Π
(

log |ikU
′
∗(y − y∗)| + α1 + 1

2 iπ
)

, y → y∗+,

(4.30)

is independent of ε. The logarithmic dependence gives a jump in Dv across the critical
layer of iπΠ . Integrating (4.28) gives

v̂1 = Π

[
X log X

ikU′
∗

+ (α1 − 1)Y
]

, (4.31)

since v̂1(y∗) = 0 as v(y∗) = v̂0 by definition.

4.4. Next order: O(log ε/ε2) in the Stokes equation
Working to next order

τ̂ 

22 = 2ikT∗(1)

12 ΠY + 2ΛΠ

X
= 2ΛΠ, (4.32)

τ̂ 

12 = ikT∗(0)

11 ΠY + U
′
∗τ̂ 


22
X

= 2ΛΠU
′
∗, (4.33)

τ̂ 

11 = 2Π(−T∗(0)

11 X + 2ikU
′2∗ T∗(1)

12 + 2U
′2∗ Λ)

X3 = 0, (4.34)

so D̂4v̂
 = −k2D̂τ̂ 

11 + ikD̂2τ̂ 


12 = 0 since τ̂ 

11 = 0 and τ̂ 


12 is a constant. The homogeneous
solution for v̂
 is a cubic function of Y but Y2 or Y3 dependence would lead to singular
outer behaviour as ε → 0 (e.g. Y2 in the u expression (4.9)) and the definition of v̂0 as v

at Y = 0 precludes a constant. Hence, v̂
 can only be strictly linear in Y . But this has no
bearing on the rest of the calculation as (i) D̂3v̂
 = 0 in the equation for v̂2
 – (4.47) below,
and (ii) v̂
 only contributes at O(ε log ε) to v in (4.58) and is neglected to leading order.
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Asymptotics of the centre-mode instability

4.5. Terms of O(1/ε2) in the Stokes equation
This is the order which will give the jump condition in D2v. At O(1/ε2), we get

Xτ̂ 1
22 = −1

2 ikU
′′
∗Y2τ̂ 0

22 + 2ikT∗(2)
12 v̂0 + 2ikT∗(1)

12 v̂1 + 2ΛD̂v̂1, (4.35)

Xτ̂ 1
12 = −1

2 ikU
′′
∗Y2τ̂ 0

12 + (ikT∗(1)
11 Y − T∗(2)

12 )v̂0 + ikT∗(0)
11 v̂1 + U

′
∗τ̂

1
22 + U

′′
∗Y τ̂ 0

22 + iΛ
k

D̂2v̂1,

(4.36)

Xτ̂ 1
11 = −1

2 ikU
′′
∗Y2τ̂ 0

11 − T∗(1)
11 v̂0 − 2T∗(0)

11 D̂v̂1 + 2i
k

T∗(1)
12 D̂2v̂1 + 2U

′
∗τ̂

1
12 + 2U

′′
∗Y τ̂ 0

12,

(4.37)

with
D̂4v̂2 = ΛD̂4v̂1 − k2D̂τ̂ 1

11 + ikD̂2τ̂ 1
12. (4.38)

Integrating twice

D̂2v̂2 = ΛD̂2v̂1 − k2
∫

τ̂ 1
11 dY + ikτ̂ 1

12 + ΘY + Φ, (4.39)

where Θ and Φ are complex constants. Here, ΘY is unmatchable in the interior as it would
correspond to an O(1/ε) term in the outer solution so Θ must be 0. In terms of deriving
jump conditions across the critical layer, the presence of the constant Φ means we are
only interested in the asymptotic behaviour (as Y → ±∞) of the right-hand side of (4.39)
which gives rise to jumps across the layer. With this in mind, it is straightforward to show
from (4.35) and (4.36) that

ikτ̂ 1
12 = k2[T∗(0)

11 ]2

U′2∗
v̂0 log X + const. as Y → ±∞. (4.40)

The other term on the right-hand side

−k2
∫

τ̂ 1
11 dY =

∫ (i)︷ ︸︸ ︷
1
2 k2U

′′
∗Y2τ̂ 0

11

U′
∗X

(ii)︷ ︸︸ ︷
− ikT∗(0)

11 v̂0

U′
∗X

(iii)︷ ︸︸ ︷
−2ikT∗(0)

11 D̂v̂1

U′
∗X

− 2T∗(1)
12 D̂2v̂1

U′
∗X

+ 2ikU
′′
∗Y τ̂ 0

12

U′
∗X︸ ︷︷ ︸

(iv)

+ 2ikτ̂ 1
12

X︸ ︷︷ ︸
(v)

dX, (4.41)

is more involved, with each labelled term contributing. Respectively, as Y → ±∞,

(i) → − ikU
′′
∗T∗(0)

11

U′2∗
v̂0 log X,

(ii) → −kT∗(1)
11

U′
∗

v̂0 log X,

(iii) → −2k2[T∗(0)
11 ]2 v̂0

U′2∗

[
1
2 (log X)2 + α1 log X

]
,

(iv) → 2ikU
′′
∗T∗(0)

11 v̂0

U′2∗
log X.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.42)
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The (v) term has to be further subdivided as follows:

ik
U′

∗

∫
2U

′
∗τ̂ 1

12
X

dX =
∫ a︷ ︸︸ ︷

k2U
′′
∗Y2τ̂ 0

12
X2 −2ikΛU

′′
∗v̂0

X2 +

b︷ ︸︸ ︷
−2k2T∗(1)

11 Y v̂0

X2

+ −2k2T∗(0)
11 v̂1

X2︸ ︷︷ ︸
c

+2ikU
′
∗τ̂ 1

22
X2 + 2ikU

′′
∗Y τ̂ 0

22
X2 − 2ΛD̂2v̂1

X2 , (4.43)

with the respective asymptotic behaviours as Y → ±∞

(v)a → − ikU
′′
∗T∗(0)

11 v̂0

U′2∗
log X,

(v)b → 2ikT∗(1)
11 v̂0

U′
∗

log X,

(v)c → 2k2[T∗(0)
11 ]2 v̂0

U′2∗

[
1
2 (log X)2 + (α1 − 1) log X

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.44)

Adding all the contributions together

D̂2v̂2 ∼
[

−k2[T∗(0)
11 ]2

U′2∗
+ ikT∗(1)

11

U′
∗

]
log X + const.

= (4ikΛU
′′
∗ − 4k2Λ2U

′2
∗ )v̂0 log[ikU

′
∗(y − y∗)] + const.,

= Ω log[ikU
′
∗(y − y∗)] + const. (4.45)

This indicates that the second complex coefficient Ω in the expansions (4.8)–(4.11) has to
be Ω = (4ikΛU

′′
∗ − 4k2Λ2U

′2∗ )v̂0 to avoid an O(log ε) term in the outer leading solution
for Du (see (4.10)). More importantly (4.45) also gives the finite jump in D2v across the
critical layer. Integrating (4.45) twice to complete the solution at this order gives

D̂v̂2 = − iΩ
kU′

∗
(X log X − X) + α2,

and v̂2 = − Ω

k2U′2∗

(
1
2

X2 log X − 3
4

X2
)

+ α2Y + β2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.46)

where α2 and β2 are constants. Since v̂2 = 0 at Y = 0 (X = 1) by the definition of v̂0,
β2 = −3Ω/(4k2U

′2∗ ).

4.6. Terms of O(log ε/ε) in the Stokes equation
The O(log ε/ε) Stokes equation balance integrated once gives

D̂3v̂2
 = ΛD̂3v̂
 − k2τ̂ 2

11 + ikD̂τ̂ 2


12 + const., (4.47)
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with D̂3v̂
 = 0 (see § 4.4). Now, since

τ̂ 2

22 = 1

X

(
− 1

2 ikU
′′
∗Y2τ̂ 


22 + ikΩT∗(1)
12 Y2 + 2ikT∗(2)

12 Y2Π + 2ΛΩY
)

∼ O
(

Y2

X

)
,

τ̂ 2

12 = 1

X

(
− 1

2 ikU
′′
∗Y2τ̂ 


12 + (ikT∗(1)
11 Y − T∗(2)

12 )ΠY + 1
2 ikΩT∗(0)

11 Y2

+U
′′
∗Y τ̂ 


22 + U
′
∗τ̂

2

22 + iΛΩ

k

)
∼ O

(
Y2

X

)
,

τ̂ 2

11 = 1

X

(
−3ΠYT∗(1)

11 − 2T∗(0)
11 ΩY + 2iT∗(1)

12 Ω

k
+ 2U

′′
∗Y τ̂ 


12 + 2U
′
∗τ̂

2

12

)
∼ O

(
Y2

X2 ,
Y
X

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.48)

as |Y| → ∞, the right-hand side of (4.47) generates at best constant terms as Y → ±∞,
which can be removed by the ‘const’. Hence, there is no consequence outside the critical
layer as expected (the log ε terms are there just to fix up the logarithmic terms in the inner
solution). Note, however, v̂2
 is non-trivial in the critical layer but it just does not drive a
jump across it.

4.7. Terms of O(1/ε) in the Stokes equation
This is the order at which a finite jump in D3v across the critical layer is determined. The
O(1/ε) Stokes equation balance integrated once gives

D̂3v̂3 = 2k2D̂v̂1︸ ︷︷ ︸
(a)

+ΛD̂3v̂2 − k2τ̂ 2
11︸︷︷︸

(d)

+k2τ̂ 0
22 +

(c)︷ ︸︸ ︷
ikD̂τ̂ 2

12 +

(b)︷ ︸︸ ︷
ik3
∫

τ̂ 0
12 dY . (4.49)

Since we are only interested in jumps across the critical layer, we focus on the logarithmic
terms appearing on the right-hand side of (4.49) (only the labelled terms contribute).
Terms (a) and (b) follow immediately

(a) ∼ −2ik3T∗(0)
11 v̂0

U′
∗

log X (from (4.28)),

(b) ∼ ik3T∗(0)
11 v̂0

U′
∗

log X (from (4.24)),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.50)

as |Y| → ∞. Terms (c) and (d) require more work going to yet higher order in the polymer
stress equations (2.12)–(2.14). Starting with (c)

ikD̂τ̂ 2
12 =

(i)︷ ︸︸ ︷
D̂

[
1
2 k2U

′′
∗Y2τ̂

∗(1)
12

X

]
+

(ii)︷ ︸︸ ︷
D̂

[
(−k2T∗(1)

11 Y − ikT∗(2)
12 )v̂1

X

]
+

(iii)︷ ︸︸ ︷
D̂

[
−k2T∗(0)

11 v̂2

X

]

+ D̂

[
ikU

′
∗τ̂ 2

22
X

+ −k2(Λ + Y2T∗(2)
11 )v̂0

X
+ ikU

′′
∗Y τ̂ 1

22
X

− ΛD̂2v̂2

X

]
. (4.51)
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Then the labelled terms have the following logarithmic behaviour:

(i) ∼ −k2U
′′
∗[T∗(0)

11 ]2v̂0

2U′3∗
log X,

(ii) ∼ k2T∗(0)
11 T∗(1)

11 v̂0

U′2∗
log X,

(iii) ∼ ikT∗(0)
11 Ω

2U′
∗

log X,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.52)

as |Y| → ∞. Now, considering (d),

−k2τ̂ 2
11 =

1
2 ik3U

′′
∗Y2τ̂ 1

11

X
+ 2k2T∗(2)

11 Y v̂0

X
+

(a)︷ ︸︸ ︷
k2T∗(1)

11 v̂1

X
+

(b)︷ ︸︸ ︷
k2T∗(0)

11 D̂v̂2

X
+

(c)︷ ︸︸ ︷
k2T∗(1)

11 YD̂v̂1

X

− 2
ik2T∗(1)

12 D̂2v̂2

X
− 2

ik2T∗(2)
12 YD̂2v̂1

X
+ −2k2U

′
∗τ̂ 2

12
X︸ ︷︷ ︸
(d)

+ −2k2U
′′
∗Y τ̂ 1

12
X︸ ︷︷ ︸
(e)

, (4.53)

with labelled terms having the following logarithmic behaviour:

(a) ∼ −k2T∗(0)
11 T∗(1)

11 v̂0

U‘2∗
log X,

(b) ∼ −2ikT∗(0)
11 Ω

U′
∗

log X,

(c) ∼ −2k2T∗(0)
11 T∗(1)

11 v̂0

U′2∗
log X,

(d) ∼
[
−k2U

′′
∗[T∗(0)

11 ]2v̂0

U′3∗
+ 2k2T∗(0)

11 T∗(1)
11 v̂0

U′2∗
+ ikT∗(0)

11 Ω

U′
∗

]
log X,

(e) ∼ 2k2U
′′
∗[T∗(0)

11 ]2v̂0

U′3∗
log X,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.54)

as |Y| → ∞. Bringing the expressions from (4.50), (4.52) and (4.54) together

D̂3v̂3 ∼ Υ log X :=
[
kΠ(k − 2iΛ) − ikΛU

′
∗Ω
]

log X as Y → ±∞, (4.55)

which gives a finite jump in D3v across the critical layer. To complete the solution at this
order, integrating repeatedly

D̂2v̂3 = − iΥ
kU′

∗
(X log X − X) + α3,

D̂v̂3 = − Υ

k2U′2∗

(
1
2

X2 log X − 3
4

X2
)

+ α3Y + β3,

v̂3 = iΥ
k3U′3∗

(
1
6

X3 log X − 11
36

X3
)

+ 1
2
α3Y2 + β2Y + γ3,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.56)
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Asymptotics of the centre-mode instability

where α3, β3 and γ3 are constants with γ3 set by ensuring that v̂3 = 0 at Y = 0
(X = 1).

4.8. Matching conditions across the critical layer
All the work above has built up a high-order (in ε) representation for v as follows:

v = v̂0 + ε
[
v̂1(Y) + ΠY log ε

]+ ε2
[
v̂2(Y) +

(
v̂
(Y) + 1

2ΩY2
)

log ε
]

+ ε3 log ε v̂2


+ε3
[
v̂3(Y) + 1

6Υ Y3 log ε
]

+ . . . . (4.57)

What is important is the behaviour as y → y∗ for matching to the outer solutions;
specifically

v = v̂0 +
[
Π(y − y∗) + 1

2Ω(y − y∗)2 + 1
6Υ (y − y∗)3 + . . .

]
log[ikU

′
∗(y − y∗)]

+Π(y − y∗)(α1 − 1) − 3
4Ω(y − y∗)2 − 11

36Υ (y − y∗)3 + O(ε log ε, (y − y∗)4), (4.58)

where all the constants disappear at leading order in ε with the exception of α1. From this,
the various jump conditions

[A]+− := A(y∗ + δ) − A(y∗ − δ), (4.59)

where δ → 0, can be deduced as

[v]+− = 2Πδ[log |kU
′
∗δ| + α1 − 1] + 1

2 iπΩδ2 + Υ δ3
[

1
3 log |kU

′
∗δ| − 11

18

]
, (4.60)

[Dv]+− = iπΠ + 2δΩ[log |kU
′
∗δ| − 1] + 1

2 iπΥ δ2, (4.61)

[D2v]+− = 2Π

δ
+ iπΩ + 2δΥ [log |kU

′
∗δ| − 1], (4.62)

[D3v]+− = 2Ω

δ
+ iπΥ, (4.63)

with

Π = −2ikΛU
′
∗v̂0, Ω = (4ikΛU

′′
∗ − 4k2Λ2U

′2
∗ )v̂0, Υ = kΠ(k − 2iΛ) − ikΛU

′
∗Ω.

(4.64a–c)

These matching conditions (4.60)–(4.63) are the culmination of the inner solution analysis.
They are correct to 3 orders in δ which is clear in all but the last jump condition. Here,
D3v ∼ −Π/δ2 actually which, since it is even in δ, does not appear in the required jump.

The outer problem (4.6) is fourth order with 2 boundary conditions at each boundary
(no slip at y = −1 and symmetry conditions at y = 0). So matching the outer solutions
across the critical layer requires 4 (complex) conditions to determine 4 complex constants.
Since the problem is linear and so the amplitude and phase are indeterminate, one of these
conditions instead sets the two real numbers Λ and c (as ci = 0 on the neutral curve).
However, there is an extra (complex) unknown in the jump conditions (4.60)–(4.63), α1,
which means a fifth (complex) condition is needed.

In practice, it is convenient to choose v̂0 = −1 to set the amplitude and phase of the
eigenfunction, thereby upping the matching requirement to 6 complex equations (for the
4 complex constants specifying the two outer solutions plus the complex number α1 and
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real pair (Λ, c)). An extra equation comes from now being able to impose the behaviour
of v

v− + δΠα1 = −1 + (−δΠ + 1
2δ2Ω − 1

6δ3Υ
) [

log |kU
′
∗δ| − 1

2 iπ
]

+ δΠ − 3
4δ2Ω + 11

36δ3Υ,

(4.65)

v+ − δΠα1 = −1 + (
δΠ + 1

2δ2Ω + 1
6δ3Υ

) [
log |kU

′
∗δ| + 1

2 iπ
]

− δΠ − 3
4δ2Ω − 11

36δ3Υ,

(4.66)

as the critical layer is approached from either side (v± = v(y∗ ± δ)). The final extra
equation comes from also doing the same for Dv

Dv− − Πα1 =
(
Π − δΩ + 1

2δ2Υ
) [

log |kU
′
∗δ| − 1

2 iπ
]

+ δΩ − 3
4δ2Υ, (4.67)

Dv+ − Πα1 =
(
Π + δΩ + 1

2δ2Υ
) [

log |kU
′
∗δ| + 1

2 iπ
]

− δΩ − 3
4δ2Υ, (4.68)

which crucially does not introduce any new unknown constants. These 4 conditions
together with the jump conditions (4.62) and (4.63) give the required 6 conditions.

In practice, we impose the conditions (4.63)–(4.68) to specify the velocity fields and
α1, and then integrate the outer solutions from the lower wall at y = −1 and centreline
at y = 0 to the critical layer. The remaining (complex) D2v jump condition (4.62) at the
critical layer then defines a complex scalar function of Λ and cr which must vanish. This
is arranged by applying Newton Raphson to the variables Λ and c given a good enough
initial guess for them. The matching is not surprisingly quite delicate because up to the
third derivative in v has to be matched, there is singular behaviour and the critical layer
can get very close to the centreline which imposes the condition δ 
 √

1 − c. Invariably,
δ needs to be smaller than 10−4 to see convergence which, since terms up to O(δ3) need to
be resolved, requires quadruple precision arithmetic. Table 4 shows the results of matching
at k = 0.1, which is away from the neutral curve nose (see inset A of figure 2 of Khalid
et al. 2021b), and k = 1.1, which is close to it. For the upper neutral curve at k = 0.1
where c = 0.99957, the critical layer is so close to the centreline that only matching with
quadruple precision is possible.

Figure 5 plots the error in estimating the (lower neutral curve) limiting values of
c and Λ at k = 1.1 via the numerical solution taking W → ∞ and the asymptotic
matching approach taking δ → 0. The asymptotically matched outer velocity fields over
y ∈ [−1, y∗ − δ] ∪ [y∗ + δ, 0] compare excellently with the full numerical solution at
W = 32 000 shown in figure 4 – see figure 6. Reducing δ from 2 × 10−4 to 5 × 10−6

shows the singularity in Im(Dv) at the critical layer when the phase of the eigenfunction
is set by Dv = 1 at the midplane. The numerically computed stress field at W = 32 000 is
compared in figure 7 with the matched outer solution (using δ = 2 × 10−4) and the leading
inner asymptotic solution, again with excellent agreement.

The key realisation from the asymptotic analysis is that the structure of the critical
layer is built upon a non-vanishing cross-stream velocity there. This is reflected in the
fact that everything scales with it – specifically v̂0 in the expansion (4.8). For example,
the 3 matching constants in (4.64a–c) are proportional to v̂0; if these are zero, the critical
layer has no effect on the outer solutions. The cross-stream velocity, however, must vanish
at the midplane by the symmetry conditions and so there has to be an O(1) outer layer
between the critical layer and the centreline to bring about this adjustment (derivatives in
the outer regions are O(1) and v̂0 = O(1) to set the normalisation of the eigenfunction).
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Asymptotics of the centre-mode instability

δ cr kΛ− cr kΛ+

k = 0.1 32 × 10−4 0.99855267713 3.446546 — —
8 × 10−4 0.99844946362 3.400230 — —
2 × 10−4 0.99842217083 3.389936 — —

a1 × 10−4 0.99841758893 3.388332 0.99995720674 9.856305
a1 × 10−5 0.99841347771 3.386965 0.99995700930 9.823193
a1 × 10−6 0.99841306978 3.386842 0.99995698930 9.819909
a3 × 10−7 0.99841304032 3.386833 0.99995698769 9.819643

0 0.99841302769 3.386829 0.99995698700 9.819529

k = 1.1 32 × 10−4 0.99923583992 4.525599 0.99988318362 8.328840
8 × 10−4 0.99922208240 4.519946 0.99986369555 7.823761
2 × 10−4 0.99921892090 4.520468 0.99985801319 7.706180

a1 × 10−4 0.99921842343 4.520720 0.99985702092 7.686784
a1 × 10−5 0.99921799797 4.521053 0.99985611212 7.669353
a1 × 10−6 0.99921795926 4.521106 0.99985602002 7.667615
a1 × 10−7 0.99921795576 4.521113 0.99985600515 7.667345

0 0.99921795537 4.521114 0.99985600350 7.667315

Table 4. Values of cr and kΛ found by asymptotic matching on the neutral curve for k = 0.1 and 1.1
with various choices of δ (± indicates upper and lower parts of the neutral curve and a results computed
using quadruple rather than double precision). The quadruple precision calculations were done using the
multi-precision extension package ‘Advanpix’ for Matlab. The ‘0’ predictions are found by applying Richardson
extrapolation to the last two entries assuming a leading O(δ) error. All four cases compare well with the
numerical predictions marked by ‘∞’ in table 3.

This explains why the critical layer cannot approach the centreline as W → ∞ or
equivalently why c converges to a finite value which is not 1. It remains unclear why this
finite value is numerically so close to 1 (e.g. 1 − c = 4.3 × 10−5 for k = 0.1 in table 3)
but the plausible hypothesis is that the critical layer can only manifest in a low shear region
compared with the rest of the domain. This is probed a little in § 6 below but first we give
a discussion on the instability mechanism.

5. Instability mechanism

The asymptotic analysis above separates the ‘inner’ solution in the critical layer from the
‘outer’ solution, allowing scrutinisation of how the instability manifests in the latter. The
role of the critical layer is then viewed as generating ‘energising’ internal conditions for
the outer solution (or boundary conditions for the two parts of the outer solution). Before
proceeding in this manner, we simplify the outer equations by rewriting some terms using
the streamline displacement φ := v/ik(U − c) instead of v (e.g. Rallison & Hinch 1995)
to get

0 = −ikp + (D2 − k2)u − ikT11Dφ, (5.1)

0 = −Dp + (D2 − k2)v − k2T11φ, (5.2)

0 = iku + Dv, (5.3)

τ11 = −2T11Dφ − φDT11, (5.4)

τ12 = ikT11φ. (5.5)

991 A13-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

50
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.500


R.R. Kerswell and J. Page

10–10

10–9

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

100

E
rr

o
r 

in
 c

10–7 10–6 10–5 10–4 10–3 10–2 10–1

δ 1/W

10–10

10–9

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

100

E
rr

o
r 

in
 Λ

Figure 5. The ‘error’ in c and Λ as a function of finite δ compared with their δ = 0 limiting values for
the asymptotically matched solution and for the numerical solution as a function of 1/W compared with the
W → ∞ limit for k = 1.1 and (c, Λ) = (0.999218, 4.1101). Circles are used for the asymptotically matched
solutions (filled red circles for c and open blue circles for Λ); for the numerical approximations, red +
is used for c and blue filled squares for Λ. The ‘truth’ (c(0), Λ(0)) is estimated by assuming c(0) =
c(δ) + aδ + bδ2 + . . . and eliminating the leading error between the two most accurate predictions – i.e.
c(0) := (10c(10−7) − c(10−6))/9. Note 1/W ≤ 1/974 for an Oldroyd-B fluid (Khalid et al. 2021b).

While the above analysis shows that v is continuous across the critical layer, φ ∼1/(U− c)
as the critical layer is approached. Hence, the streamline displacement is maximal there
and the question is how this drives the polymer field which must in turn offset the viscous
dissipation in the inertialess momentum equation.

Approaching the neutral curve, ci → 0, means that φ is exactly out of phase with v so
that −k2T11φ can do no work in energising v in (5.2), that is,

k
2π

∫ 2π/k

0
Re[veik(x−ct)]Re[−k2T11φeik(x−ct)] dx = 0. (5.6)

This means the viscous dissipation in the cross-stream variable v can only be offset by the
pressure term and the polymer stress driving of the velocity field must occur in (5.1). To
confirm this, the power input

P(y) := k
2π

∫ 2π/k

0
Re[ueik(x−ct)]Re[−ikT11Dφeik(x−ct)] dx, (5.7)

is plotted in figure 8, which clearly shows that the polymer stress energising of u is
localised at the critical layer. The specific solution used here is shown in figure 9.

The polymer stress equations are particularly simple when written in terms of the
streamline displacement and are interpretable. The first term on the right of (5.4) represents

991 A13-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

50
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.500


Asymptotics of the centre-mode instability

–1.0 –0.9 –0.8 –0.7 –0.6 –0.5 –0.4 –0.3 –0.2 –0.1 0
–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

1.2
(a) (b)

–0.1 0

Figure 6. The outer solution at k = 1.1 and Λ ≈ 4.11 = W(1 − β) found by applying the matching conditions
(4.63)–(4.68) with δ = 2 × 10−4 (a) and δ = 5 × 10−6 (b). In (a), the numerical solution shown in figure 4
at W = 32 000 is plotted using thick translucent lines of the appropriate colour – v is blue (real/imaginary
parts solid/dashed respectively), real part of Dv is red and imaginary part is black – to demonstrate that the
asymptotic and numerical solutions match well. Panel (b) shows the increasingly singular behaviour in the
imaginary part of Dv at the critical point as δ decreases.

the increase in the streamwise-normal stress due to streamline compression (in y), the
second term represents the maintenance of the initial basic stress on displaced streamlines
and the third term (on the right-hand side of (5.5)) is simply the generation of tangential
polymer stress due to tilting of the base polymer stress lines (Rallison & Hinch 1995).
Multiplying (5.4) by ik(U − c) recovers the time-derivative and advection terms on the
left-hand side of (5.4) and thereby recovers the proper driving terms on the right-hand
side

ik(U − c)τ11 = −2ik(U − c)T11Dφ − ik(U − c)φDT11. (5.8)

Their energising effects

C(y) := k
2π

∫ 2π/k

0
Re[τ11eik(x−ct)]Re[−2ik(U − c)T11Dφeik(x−ct)] dx, (5.9)

and

D(y) := k
2π

∫ 2π/k

0
Re[τ11eik(x−ct)]Re[−ik(U − c)φDT11eik(x−ct)] dx, (5.10)

are shown in figure 8. Both terms are global and barely register the critical layer with
streamline compression causing the streamwise-normal stress to increase (C(y)) while
displacement across the base shear field (D(y)) works negatively to balance it on the
neutral curve. It is worth remarking that the reintroduction of the factor (U − c) into
(5.8) is responsible for desensitising C(y) to the critical layer as otherwise a significant
component – T11Dφ – is the same as that in P.

The mechanism of the instability can therefore be seen as one in which the critical
layer acts like a pair of ‘bellows’ periodically sucking the flow streamlines together – see
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Figure 7. A comparison of the stresses τ12 (a,b) and τ11 (c,d) at k = 1.1, Λ ≈ 4.11 computed numerically
at W = 32 000 (in blue in both (a,c) and (b,d)) with the outer solutions (a,c) and leading inner asymptotic
solutions given by (4.24)–(4.25) (b,d – note the rescaling of both axes). The thick translucent red line is
the numerical solution and the blue solid/dashed lines are the asymptotic approximation (as usual solid lines
indicate real parts and dashed lines imaginary parts).
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Figure 8. (a) P(y) plotted against y for a solution (k = 1.1, Λ = 4.520468 and c = 0.99921892) matched
across the critical layer using δ = 2 × 10−4 (the position of the critical layer is shown as the vertical dashed
black line). (b) C(y) (green) and D(y) (black dashed) plotted against y for the same matched solution. These
figures show that the velocity field is driven locally by the critical layer whereas the polymer perturbation is
driven globally by the gradual relaxation of the streamline distortion caused by the critical layer.
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Figure 9. Contour plots of the outer solution corresponding to k = 1.1, Λ = 4.520468 and c = 0.99921892
matched across the critical layer using δ = 2 × 10−4; (a) u, (b) v, (c) τ11 and (d) φ. The last plot focuses on the
area around the critical layer (the white gap is just the excluded critical layer region [y∗ − δ, y∗ + δ]). For u and
v, 20 equally spaced contour levels between the maximum and minimum values are used. For τ11, the contour
levels are ±[0, 10, 20, 30, 40, 50, 60, 100, 200, 1000, 2000, 5000] and 50 equally spaced levels are used for φ

with all the contours essentially contained in the shown area around the critical layer.

φ(π/2, y) in figure 9 – and then blowing them apart – see φ(3π/2, y) in the same figure.
This amplifies the base streamwise-normal stress field which in turn exerts a streamwise
stress on the flow locally at the critical layer. The streamwise flow drives the cross-stream
flow through continuity which then intensifies the critical layer closing the loop.

The one outstanding question is why the critical layer has to be so close to the centreline
as W → ∞. The asymptotic analysis above indicates that the shear at the critical layer
needs to be O(W0) as W → ∞ but can tell us nothing about the size of this O(W0) number
relative to 1. In particular, given the complicated analysis, it is still not clear why the
instability does not manifest in plane-Couette flow. To help answer this, we conduct some
simple experiments in the next section.

6. Moving towards plane-Couette flow

The complexity of the matching analysis means it is difficult to discern the importance of
U

′′
∗ or the size of U

′
∗ (e.g. just look at the 3 constants that emerge in (4.64a–c)) despite our

best efforts to keep them separated. So, here, we perform a series of numerical experiments
exploring the effect of small changes which would bring the channel flow closer to
plane-Couette flow (pCf). To keep things manageable, these experiments concentrate on
studying how the lowest W point on the neutral curve, Wmin, varies as the problem is
changed slightly. Four experiments are undertaken in which this minimum point is tracked
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Figure 10. (a) The effect on Wmin of decreasing λ from 1 to 0.96 (the common point on λ = 1 is the
undisturbed channel flow value of Wmin = 974): expt. 1 black dash-dot line; expt. 2 blue dashed line; expt. 3
yellow solid line; expt. 4 red solid line. (b) The base flow profile U := λ(1 − y2) + (1 − λ)y in expt. 3 (yellow
line) and U := λ(1 − y2) + (1 − λ)(−y) in expt. 4 (red line) for λ = 0.96 showing how the former eliminates
the zero-shear point whereas the latter moves it into the interior (notice only a small part of the flow domain is
being shown close to the midplane. In all cases the problem is solved over y ∈ [−1, 0]).

as a homotopy parameter λ is reduced from 1, which is the channel flow problem studied
above where Wmin = 974. These are as follows (unless explicitly stated, the boundary
conditions imposed on the disturbance field remain no slip at the wall and stress free at the
midplane with the computation done across the half channel y ∈ [−1, 0]).

(i) Expt. 1 explores the importance of U
′′

by (artificially) changing it while keeping U
′

fixed. Specifically U
′′

:= −2λ everywhere so U
′′

can be reduced without changing
U = 1 − y2 or U

′ = −2y in the code.
(ii) Expt. 2 explores the effect of changing the boundary condition at the midplane

towards a solid boundary to mimic the monotonic increase in U across the domain
of pCf. The boundary condition at y = 0 is set to λD2v + (1 − λ)Dv = 0 so λ = 1
corresponds to the stress-free/symmetry conditions considered above and λ = 0 to a
no-slip solid wall.

(iii) Expt. 3 explores the effect of increasing the minimum shear across the domain y ∈
[−1, 0]. The base flow is set to U := λ(1 − y2) + (1 − λ)y, which mixes in pCf in a
way to gradually generate a (minimum) non-zero shear = 1 − λ at the midplane.

(iv) Expt. 4 explores the effect of moving the U
′′ = 0 point into the interior. The base

flow is set to U := λ(1 − y2) + (1 − λ)(−y), which mixes in pCf in a way to move
the zero-shear point at y = −(1 − λ)/2λ away from the midplane and into the
interior y ∈ [−1, 0].

The results are shown in figure 10. The effect of changing the boundary conditions
(blue dashed line) at the midplane is minimal and reducing U

′′
(black dash-dot line)

is destabilising. The presence of vanishing shear, however, seems crucial: removing it
(yellow line) quickly stabilises the instability whereas moving it from the midplane (red
line) is destabilising. The plausible conclusion is that the instability needs an interior
velocity maximum where the shear vanishes to nucleate. This is certainly absent in pCf.
A very recent study by Yadav, Subramanian & Shankar (2024) (published after this paper
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Figure 11. (a) Viscoelastic Kolmogorov base flow as given in (7.1) in green and channel flow (1 − y2) in
dashed black. Neutral vKf eigenfunctions for k = 1 and (W, β, c) = (2000, 0.99954, 0.98029) (b), (W, β, c) =
(200, 0.99530, 0.97897) (c) and (W, β, c) = (20, 0.93972, 0.96726) (d). Here, v is blue (real/imaginary parts
solid/dashed respectively), real part of Dv is red and imaginary part is black.

was submitted) of the viscoelastic plane-Couette-channel flow configuration has confirmed
this as a necessary condition.

7. Viscoelastic Kolmogorov flow

Finally, the similarity of the base flow shape in viscoelastic Kolmogorov flow (vKf) to
that in channel flow suggests that the centre-mode instability of Garg et al. (2018) and
Khalid et al. (2021a,b) should be present in the results of Boffetta et al. (2005). It is
straightforward to confirm this by renormalising the base flow in vKf to the form

U = 1
2 (1 + cos πy) (7.1)

(to most closely match (1 − y2) – see figure 11) and considering disturbances which are
periodic over y ∈ [−1, 1] and have the same symmetry (3.9) as the centre-mode instability
about y = 0. These properties actually imply that the disturbance satisfies stress-free
boundary conditions at y = ±1 and so all the numerical codes developed for channel flow
can trivially be reapplied to vKf by just (i) changing U(y) and (ii) imposing stress-free
boundary conditions on the perturbation at y = −1.
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A shooting code, which identifies the neutral curve at a given k and W after a guess
for β and c (based on the channel flow solution), quickly identifies a neutral vKf
eigenfunction for (W, k) = (2000, 1) at (β, c) = (0.99953538, 0.98029137). Reducing
W to 200, keeping k = 1 and using the values of β and c found at W = 2000 as
initial guesses, the neutral eigenfunction at W = 200 converges easily to (β, c) =
(0.99530288, 0.97896974). Repeating this procedure, reducing W from 200 to 20, again
converges smoothly to (β, c) = (0.93972375, 0.96725546); see figure 11. The similarity
of the neutral eigenfunctions in figure 11 to those in channel flow (modulo the different
boundary conditions at y = −1) is striking and suggests that Boffetta et al. (2005) were
actually the first to see the centre-mode instability in rectilinear viscoelastic flow. To
further support this conclusion, Berti et al. (2008); Berti & Boffetta (2010) see ‘arrowhead’
solutions when tracking their vKf instability to finite amplitude (e.g. see figures 7 and
8 in Berti & Boffetta 2010) just like those found in channel flow originating from the
centre-mode instability; see Page et al. (2020), Buza et al. (2022a) and Beneitez et al.
(2024).

Boffetta et al. (2005) considered lower values of β (e.g. 0.77 and 0.167 in their
figure 2), disturbances with no specific symmetry (so both symmetric and antisymmetric
ones as defined by (3.9)) and also long-wavelength perturbations compared with the
forcing wavelength. While the observation made here is strictly for β close to 1 with
disturbances having the symmetry (3.9) and same cross-stream wavelength as the forcing,
a more complete investigation exploring these different aspects indicates that only the
centre-mode instability mechanism operates in vKf (Lewy & Kerswell, unpublished).

8. Discussion

We first summarise the findings of the paper. The first part of these concern the Re → ∞
asymptotics of the upper (§ 3.1) and lower branches (§ 3.2) of the centre-mode neutral
curve in the Re–W plane for viscoelastic channel flow.

Along the upper branch

W ∼ Re1/3, k ∼ Re1/3, 1 − c ∼ Re−2/3, (8.1a–c)

with numerical coefficients given in (3.11a–c) for β = 0.9. These scalings are
equivalent to Re ∼ O(E−3/2), k ∼ O(E−1/2) and 1 − c ∼ O(E) as the elasticity number
E := W/Re → 0, consistent with figure 11 in Khalid et al. (2021a).

Along the lower branch

W ∼ Re, k ∼ 1
Re

, c = O(1), (8.2a–c)

with numerical coefficients computed for β = 0.9, 0.98 and 0.994 given in table 2. These
lower branch scalings are apparent in figure 13 of Khalid et al. (2021a) (see also their
figure 18).

The second part of the findings described in § 4 concern the inertialess limit of
viscoelastic channel flow. By β = 0.994 as β increases, the lower branch has swung
sufficiently clockwise in the Re–W plane to cross the Re = 0 axis (see figure 1).
This reveals the existence of an inertialess (Re = 0) centre-mode instability and the
W → ∞ asymptotic problem in the ultra-dilute limit where W(1 − β) = O(1) is then
treated. A matched asymptotic analysis is performed in which a critical layer region is
resolved sufficiently to extract matching conditions, (4.60)–(4.63), to connect up outer
regions either side. Interestingly, the outer problem is fourth order as opposed to the
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usual second-order problem for the Orr–Sommerfeld problem and so requires matching
conditions all the way down to the third-order derivative in the cross-stream velocity. This
leads to a particularly delicate matching procedure (§ 4.8) where the matching conditions
need to be resolved to third order in the small matching parameter and quadruple precision
is needed to make contact with numerical solutions. The completed analysis is successful
in revealing, again unlike the Orr–Sommerfeld problem, that

1 − c = O(1), as W → ∞. (8.3)

This O(1) number can be deceivingly small compared with 1 (e.g. 4.3 × 10−5 for k = 0.1
in table 3) but nevertheless remains finite as W → ∞. That this has to be so is clear from
the structure of the critical layer that is built around an 0(1) cross-stream velocity which
has to be brought to zero at the midplane by an O(1) outer region separating the critical
layer from it. Quite why c has to be so close to 1 or equivalently why the critical layer sets
up in a region of small shear is unclear (and unknowable from the asymptotic analysis).
Some simple numerical experiments (§ 6) suggest that the lack of this small shear region
is the likely reason the instability does not manifest in pCf.

The asymptotic analysis also clarifies that the instability mechanism (§ 5) is one in which
the critical layer acts like a pair of ‘bellows’, periodically sucking the flow streamlines
together and then blowing them apart (see figure 9). This amplifies the streamwise-normal
polymer stress field which in turn exerts a streamwise stress on the flow locally at the
critical layer. The streamwise flow drives the cross-stream flow by continuity, which then
intensifies the critical layer, closing the loop.

Finally, in § 7, a connection is made between the centre-mode instability of channel
flow and an earlier linear instability found in vKf by Boffetta et al. (2005). The fact that the
instability in Kolmogorov flow was discovered at much lower Re and W to the extent it was
viewed as a purely ‘elastic’ instability disguised its connection to the work of Garg et al.
(2018). They worked at Re = O(100)–O(1000) and W � 20 in a very different geometry
and so viewed their instability as ‘elasto-inertial’ in origin. It is clear in hindsight that
the apparent difference in the regimes is more a function of the boundary conditions – a
solid wall in the pipe verses periodicity in Kolmogorov flow – than any deeper dynamical
difference as evident in the Newtonian versions of the respective problems (Recrit = O(10)

for Kolmogorov flow while Recrit = 5772 for channel flow).
The importance of the centre-mode instability for EIT, or indeed ET, is still an area of

much current speculation (e.g. Datta et al. 2022; Dubief et al. 2023). While computations
have confirmed that the instability leads to travelling wave solutions dubbed ‘arrowheads’
(Page et al. 2020; Buza et al. 2022a; Dubief et al. 2022), it remains unclear what these lead
to via their own bifurcations. Recently Beneitez et al. (2024) have found that the arrowhead
solutions coexist with EIT rather breaking down to it. The situation, however, is slightly
clearer at Re = 0 (perhaps because the parameter space is one dimension less) where
the (two-dimensional) arrowhead solution can become unstable to three-dimensional
disturbances (Lellep et al. 2023). Very recent calculations using a large domain indicate
that this instability can lead to a three-dimensional chaotic state (Lellep et al. 2024).

Further complicating the picture is the very recent emergence of another viscoelastic
instability – dubbed ‘PDI’ for polymer diffusive instability – when polymer stress diffusion
is present (Beneitez, Page & Kerswell 2023; Couchman et al. 2023; Lewy & Kerswell
2024). This is a ‘wall’ mode which also exists for all Re including 0 and any shear flow
with a solid wall is susceptible. Beneitez et al. (2023) have already found that PDI can
lead to a chaotic three-dimensional state in inertialess pCf using the FENE-P model.
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Going forward, the challenge is to try to unpick which process of the current
contenders – viscoelastic Tollmien Schlichting instability, the centre-mode instability
or the PDI – triggers EIT and ET in what part of parameter space. This will assist
in simulating EIT and ET and ultimately in manipulating those states as required for
industrial applications.
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Appendix A. Numerical methods for eigenvalue problem

Two complementary approaches were developed: a matrix formulation and a shooting
technique.

A.1. Matrix
A generalised eigenvalue code was written to solve for all 6 variables (u, v, p, τ11, τ12, τ22)
building in the symmetry of the unstable eigenfunction around the midline to improve
efficiency. This was done by mapping the lower half of the channel y ∈ [−1, 0] to the
full Chebyshev domain [−1, 1] so collocation points are concentrated at the wall and the
centreline, and imposing symmetry boundary conditions at the centreline y = 0 which
are ∂u/∂y = v = 0 (no boundary conditions are imposed on p or the polymer stress τ
anywhere). The fields are expanded using individual functions which incorporate these
conditions, specifically⎡
⎢⎢⎢⎢⎢⎣

u
v

p
τ11
τ12
τ22

⎤
⎥⎥⎥⎥⎥⎦ = eik(x−ct)

N∑
n=1

⎡
⎢⎢⎢⎢⎢⎣

un{Tn+1(2y + 1) + αnTn(2y + 1) + (αn − 1)Tn−1(2y + 1)}
vn{Tn+1(2y + 1) − Tn−1(2y + 1)}

pnTn−1(2y + 1)

tnTn−1(2y + 1)

rnTn−1(2y + 1)

snTn−1(2y + 1)

⎤
⎥⎥⎥⎥⎥⎦ ,

(A1)

where Tn(z) := cos(n cos−1 z) is the nth Chebyshev polynomial, (un, vn, pn, tn, rn, sm) ∈
C6 and αn := −4n/(2n2 − 2n + 1) so that u(x, −1, t) = 0 = ∂u/∂y(x, 0, t).
A complementary inverse iteration code was also written which could take an eigenvalue
from the generalised eigenvalue code and converge it at much higher resolution (e.g.
table 5). This was important as the generalised eigenvalue problem is not well conditioned
with increasing resolution; see the drift in the eigenvalue for N � 300 in table 5 using eig
in Matlab). This lack of conditioning gets worse near the neutral curve where an interior
critical layer is present. Inverse iteration treats exactly the same matrices but is far better
conditioned – there is no drift in table 5 even increasing N to 2000.

A.2. Shooting
Two shooting codes were also written based on different integrators. The first used the
Runge–Kutta 4th order scheme (RK4) over a uniformly spaced grid (e.g. 50 000 points
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Asymptotics of the centre-mode instability

N cr ci

Eigenvalue code 100 0.999608051011 8.2367630455×10−5

200 0.999608009040 8.2751793055×10−5

300 0.999607999400 8.2756092074×10−5

500 0.999608029589 8.2771153285×10−5

1000 0.999608103554 8.2644316360×10−5

2000 0.999607409613 8.3760120903×10−5

Inverse iteration 100 0.999608051169 8.2367612043×10−5

200 0.999608007042 8.2751523639×10−5

300 0.999608007115 8.2751700997×10−5

500 0.999608007115 8.2751701045×10−5

1000 0.999608007115 8.2751701039×10−5

2000 0.999608007115 8.2751701041×10−5

Shooting 50 000 0.999608007115 8.2751701040×10−5

ODE15s 0.999608007115 8.2751701043×10−5

aODE15s 0.9996080071147197327 8.27517010406007×10−5

Table 5. Check of codes with the eigenvalue shown in figure 1 (inset) of Khalid et al. (2021b). The unstable
centre mode at β = 0.997, k = 0.75 and W = 2500 is shown there with cr ≈ 0.9996 and ci ≈ 8 × 10−5. Two
shooting codes were written based on different integrators. The first used the Runge–Kutta 4th order scheme
(RK4) over a uniformly spaced grid (here 50 000 points across [−1, 0]) and the second used Matlab’s ODE15s
with relative and absolute tolerances set at 3 × 10−14 (runtime 8 s on an Apple M1 processor).

aODE15s is the quadruple precision extension using Advanpix with the quoted result showing the common
digits using tolerances set at 10−20 (runtime 3 h 56 min) and 10−24 (runtime 21 h 29 min).

across [−1, 0] in table 5) with inbuilt re-orthogonalisation of shooting solutions across
the domain and a second used Matlab’s ODE15s with relative and absolute tolerances
set at 3 × 10−14 which did not. For the solutions sought, re-orthogonalisation was not
needed and so the latter, which was more efficient as it has locally adaptive stepping,
was used for all subsequent calculations. The eigenvalue problem is fourth order so the
usual shooting code approach takes a guess for the complex phase speed c and searches
for the 2 unknown velocity boundary conditions at one wall which mean that the required
boundary conditions at the other are obeyed. This can be readily adapted to search for the
neutral curve directly by setting ci = 0 and instead adjusting one (real) parameter of the
problem. Here, we chose to vary Λ = (1 − β)W keeping W fixed. This can be used to
recreate the upper inset in figure 2 of Khalid et al. (2021b); see tables 2 and 3 for sample
computations at k = 0.1 and k = 1.1.
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