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BIRELATIVE K2 OF GROUPS OF SQUARE-FREE ORDER 

BRUCE A. MAGURN 

ABSTRACT. Birelative ^-groups are computed for the fiber squares needed to study 
K2 and K^ of TG when G is a group of square-free order. 

0. Introduction. Suppose R is a ring with ideals 7 and /, with 7 Pi / = 0. The birel­
ative K2-group K2{R\ 7, J) is an abelian group B2 which fits in a A -̂theory exact sequence 
(see [3]): 

K3(R,I)-+ K3(R/J,(I + J)/J) -^B2-^ K2(R,I) -> K2(R/7,(7+ J)/7) - • 0. 

Here 7 = (7 + J)/J\ so B2 measures the failure of excision for K2 of an ideal. 
Since 7HJ = 0,R embeds as a subring of (R/I) x (R/J). The relation between Kn(R) 

and A^ of this bigger ring is displayed in a long exact Mayer-Vietoris sequence: 

• Kn+l(R/I x R/J) -+ Kn+l(R/(I + J))(BBn -+ Kn(R)-> Kn(R/1 xR/J)->-. 

under certain conditions on R, I and J (see [4], Theorem 2.1). Here #„ is the birelative 
Kn(R;I,J). 

This paper is a sequel to the paper [5], in which R. C. Laubenbacher and this author 
applied such Mayer-Vietoris sequences to obtain partial computations of K2(ZG) and 
K3(TG) for dihedral groups G of square-free order. Here the birelative K2 computations 
of [5] are extended to include those needed when G is any finite group of square-free 
order. These are the groups with presentation: 

(a,b:am = l,bs = \,bab~l = aq\ 

where \G\ — ms is square-free (see [2], Section 9.4). 

1. Specification of the B2 s. For a group G with the above presentation, 

QG = Q[a] ® Q[a]b 0 • • • ® Q M ^ _ 1 , 

with multiplication determined by 

ba = aqb, bs=\. 

If d is a positive divisor of m, and Q is a primitive d-th root of unity, replacing a by Q 
defines a surjective ring homomorphism 

i;d: QG -+ Z(rf), 
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where T(d) is a Q-algebra with the same description as QG (above), but with Q in place 
of a. As in [6], Section 7, there is a Q-algebra isomorphism: 

d\m 

which is V^ in each ^-component. 
If 2) is a set of positive divisors of ra, let 0(©) denote the image of the projection: 

d£<D 

to ©-components. Then 0((D) is the twisted group ring 

Z[a#] ° (&) = Z[<*0] © Z[a^]fe © • • • © Z[aQ]bs-1 

where the minimal polynomial of ap over Q is 

n ®d(*) 

d£<D 

(O^(JC) being the minimal polynomial of Q over Q), and where 
ba<£> = ay? and bs = 1. 

The Mayer-Vietoris sequences needed to study Kn{TG) are based on the fiber squares: 

0(£>U/?£>) ^ 0(p©) 

(1.1) ^ | | 
0(2)) —• 0( £>)//? 0(2)) 

mod/? 

in which /? is a prime factor of ra, 2) is a non-empty set of positive factors of ra//?, ix^, 
and 7rp£> are projections, and the right vertical map can be defined by commutativity of 
the square. In this paper the birelative groups #2 (2),/? 2)) := K2(R',I9J) are computed, 
where R — OCDUpÇ)), I = ker ir^, and J = ker TTP<£,. 

2. Reduction to single divisors. In [1] and [3] the birelative K2(R\ /, J) was deter­
mined to be 

I/I2 ®Re JI J2 

where Re is additively the same as R<g>z R^ a nd its multiplication is extended Z-bilinearly 
from 

(x\ ® vi )(x2 ® yi) = (x\x2 ® yiy\ ) 

for all xt, yt G R. The Re -module actions on J and / are 

(x 0 v) • ra — xmy, ra • (x 0 v) = ymx, 

respectively. In [5] it is proved that: 
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THEOREM 2.1. In the notation used in the square (1.1), the projections 
0((D Up^D) —> 0(d,pd) applied to I and J induce an isomorphism: 

B2(<D,p<D)^ ®B2(d,pd). m 

3. Generators and relations for B2(d,pd). It only remains to compute 

B2(d,pd) = I/l2®ReJ/J2, 

where / and J are the kernels indicated in the diagram with short exact rows and columns: 

/ V 

I I 
j _ _ Z[a]o(b) -^ Z[(pd]o(b) 

I I 
J' — Z[C/]o(fc) — Vp[Q]o{b)9 . 

where d e CD, the minimal polynomial of a over Q is 0d(x)Q>pd(x)9 and R = Z[a] o (b). 
The following facts were established in [5]: In Z[a] o(b),I (resp. J) is both a principal 

left and principal right ideal generated by O^(a) (resp. <bpd(oc)). Then both O^(a) and 
p annihilate both I/I2 and J/J2; so the multiplication actions of Z[a] o (b) on these 
quotients factor through ¥p[Q] o (b). Further, with the notation 

(x,y) := (x-Od(a)®y0pd(aj), 

forx, v G fp[Q] o (&), the F^-vector space I /12 ®z JI J2 has F^-basis: 

{(<?**.<?*') : 0 < i,7 < <p(d),0 < *, £ < s} 

where C = £/. The left and right actions of ¥P[Q o (b) on l/l2 and J/J2 may differ due 
to noncommutativity of G: 

&a = aqb and aZ? = Z?ar 

for positive integers q and r with gr = 1 (mod m). In detail, the quotients 

a m = and T(X) = ~ -

are in Z[JC], and the action of & satisfies: 

Orf(a) -ft = b • <S>d(ocr) = M O • *</(<*), 

<&/**(<*) • £ = b • Ow(a r) = br(Q • O^(a). 

Therefore, to pass from I/l2 ®z 7 / / 2 to l/l2 0 ^ / / / 2 , mod out the additional relators: 
1. (£x,y)-(x9yQ 
2. (xCy)-(xXy) 
3. ( ^ , y ) - ( x , ^ ( 0 ) 
4. ( I M O J ) - ( I , ^ ) . 
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With these it is easy to see that the ¥p-vector space B2(d,pd) is spanned by the ele­
ments: (l,Çjbl) with 0 <j < (f(d), and 0 < £ < s. 

4. A modulo p cyclotomic unit. In order to compute B2(d,pd) from its presenta­
tion, it is helpful to produce a certain unit in F^^] related to the polynomials a(x) and 
T(X) by a formula resembling Hilbert's Theorem 90. For this section, suppose d is any 
square-free integer with d > 1 and/7 is a prime not dividing d. Then d = q\q2 • • -qn for 
n distinct primes qt. For each j with 0 < j < n, let D(j) denote the set of all products 
x\ • • • Xj where jq , . . . , JC, are distinct primes chosen from {q\,...,qn}. Here D(0) = {1}. 
Define the polynomials: 

V,-(JC) = n (^d/e - 1 ) 
eeDij) 

inZ[jc]. 

LEMMA 4.1. Inl[x], 

<&pd(x)®d(x) 
ITfevenV/W 

Il/oddV/W ' 

PROOF. Suppose/ £ D(rc — &) where 0 < k < n\ so d/f is a product of & primes. 
Then Oy(jc) divides xPdle — 1 if and only if 0>pf(x) divides xpd^e — 1, and these are true if 
and only if e divides d/f. So the number of e G D(j) where these equivalent conditions 
hold is the binomial coefficient (*). Thus there are (*) occurrences of both <3>f(x) and 
0>pf(x) in the factorization of V,(JC) into irreducibles. Since 

d - i ) t = E ( * ) - E ( * 
7 even y / 7 odd \J 

both 0/(x) and ^ / W cancel out completely for k > 1, leaving only the product 

®pd(x)®d(x) for k = 0. • 

Now v/(£/) is a product of factors 

where e G D(/). So if j > 1, then e (= the order of (%) is composite, and hence Vj(Q) is a 
unit in Z[(^]. On the other hand, if j = 1, then e — qi for some /, and (% — 1 divides g, in 
[̂C/]» so> since/? does not divide d, vi(Q) is a unit in F ^ ^ ] . Define: 

l f 

« = [ n v,-(C/)l [ n v,-(o 
L7'odd J L j even 

inMC,]*. 
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PROPOSITION 4.2. Suppose q and r are positive integers with qr = 1 (mod pd), 6 is 
the ring automorphism of¥p[Q] with 6(Q) = Q, and 

are expressed as polynomials in T[x\. Then in ¥p[Q\ 

v(Cd)T{C4) = re(u)u~\ 

PROOF. 

and 

n vtf) n yj(xMx)r(x) = - _ n v,« n *>&)> 
j odd 7 even * A 7 odd y even 

7>0 7>0 

rpd _ i 
1

 = l + J ^ + . . . + J C ( - D W 
J ^ - 1 

Evaluate at Q and reduce mod/? to get the desired equation. • 

5. Computations. Define ra, s and q as in Section \,d,p,r CT(JC), T(JC) and the pairing 
(x, v) as in Section 3, and u and 6 as in Section 4. So ras is square-free, p is a prime factor 
of ra, J divides ra//?, and in the group G, bab~l = «^ and Z?5 = 1; so qs = 1 (mod ra). 
Similarly &-1aZ? = ar; so r* = 1 (mod ra), and gr = 1 (mod ra). 

In (Z/dZ)*, q and r represent inverse elements of order t dividing s. 

THEOREM 5.1. The birelative K^-group B2(d,pd) is an ¥p-vector space. 
a) Ifp does not divide r1 — 1, then Biid.pd) = 0. 
b) Ifp divides r* — 1, then B^id.pd) has an ¥p-basis: 

{(l,u-l(jbl):j eJ,l etl,0<t<s} 

where J is any set consisting of one integer from each coset of(r) in (Z/dZ)*. The rank 
ofB2(d,pd) in this case is (f(d)s/t2. 

PROOF. lff(x) e Z[x] and n > 0, define fn(x) by: 

f(x)=lf(x)f(xr)'--f(xr"~]l i f * > l 
J 11, if ifc = 0 " 

Then iterating relations 3 and 4 of Section 3, in B2(d,pd): 

{bndb\dbl) = {db\dbUnTn(0\ 

{dbk,bndbl) = (aW^aniQ^b1). 
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Note that since Is = 1 (mod d), b' commutes with C, (= (j) in Z[Q o (b). Also note that 
from Proposition 4.2, 

a,(C)T,(C) = r1. 

So in B2(d,pd), 
(l,Cjbl) = (b'b~'Xjbe) 

= (b",CJbl+,T,(0) 

= (b-'b'ariOX'b^iQ) 

= (T,(Qor(0,tJbf) 

= (/,CV) 
= iJ(\^bf). 

So (1 — r'Xl.Ç-'V) = 0 for ally, l G Z. Thus if/? does not divide r' — 1, then every 
generator (\,Qbl) of B2(d,pd) vanishes, proving part (a). 

By relations 1 and 2 of Section 3, in B2(d,pd), for any integers y and £, 

(i,C;V) = (C,C/-1^) 

= ( i , C v - 1 ^ ) . 

So one can add to j any element of 

dZ + (ql - 1)Z 

with no effect. In particular, if v is the greatest common divisor of d and q( — 1, then 

( C v - i , c V ) = ( i , r V ) - ( i , c V ) 

If l $ tL, then d does not divide ql — 1, and v < d.\ï d/v is composite, (v — 1 is a 
unit in Z[£]. If d/v is prime, (v — 1 divides that prime in ~l[Q and so becomes a unit in 
FP[Q. Either way there exist x, y G Z[Q with 

( C - l ) x = l + p j . 

So in B2(d,pd), 
( l ,CV)- ( (C- l )x - /7y ,CV) 

= ( C - i , ^ V ) 

= 0. 

Thus B2(d,pd) is spanned by the elements (1, Ç7V) with 0 < j < (f(d), 0 < t < s and 
I <E *Z. In detail, 

(âhk CJb() = I (heiqfrk(Obk+", if k+ I e 
ffc+£ £*Z, 
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by the relations 1 and 3, and the fact that bk+f commutes with ( if k + l G il. 
Now if t e il and 7 6 Z, in B2(d,pd): 

(l,CJbe) = (b\Cibf) 

= (bs-\CbMT(Q) 

= (bsa(0,(irbeT(0) 

= (lMQr«XJrbe). 

If C = (//), which is the subgroup of (b) consisting of those elements commuting with 
(, the group ring FP[(]C is the center of FP[Q o (b). Then there is an F^-linear surjective 
map 

f:¥p[QC^B2(d,pd), 

withf(Qb() — (\,Qbf), and the kernel of/ contains the Fp-linear span R\ of the elements: 

(CJ-cr(Or(OCJry 

withy G Z J G fZ. 

CLAIM. 77î  induced Fp - linea r map 

f:Fp[QC/Rl^B2(d,pd) 

is an isomorphism. 

To construct an inverse to/ , begin by considering the F^-subspace V of I/I2 ®z J/J2 

spanned by the elements (1,<?V) for 0 < j < <p(d), 0 < I < s and l G fZ. This V 
contains the elements (1,( ;V) for ally G Z and l G fZ, but those elements restricted as 
above are Fp-linearly independent. Define 

Fi:I/I2®zJ/J2->V 

to be the Fp-linear map with 

Fi(iCbk cJb1)) = I (^CjWn(Qbk+\ ifk + letz 
1VVS , s )} 10 iffc + ££rZ , 

for 0 < 1,7 < (^(J) and 0 < k, I < s. 
This description of the effect of F\ on (£'M,Ç7Z/) holds even if we do not restrict 

the integers i,j, k and £, except to require k > 0, so that rk(x) is defined. To see that 
/ and 7 need not be restricted, note that the pairing (JC, y) is bilinear and there is a ring 
automorphism of T[Q taking 

To lift the restriction on k, note that the list 

T ( ( ) , r ( 0 , C ) , . . 
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is periodic with a period of length s. So the product of any s consecutive terms is 

since r* = 1 (mod d). So rv(Q = rw(Q whenever v = w (mod s). 
The map F\ kills the relators of type 1, 2 and 3 from Section 3; but F\ of the fourth 

type of relator is an ¥p-linear combination of elements: 

(htjbe)-(lMOr(<Xjrbe) 

where j G Z and £ G fZ. Define 

to be the Fp-linear map with 

for 0 < j < (f(d), 0 < I < s and £ G fZ; then the same formula holds for ally G Z and 
£ G fZ. Then define 

Fs'.FpiQC-tFplQC/Rx 

to be the canonical map. The composite F^F2F\ kills all the relators for B2(d,pd)\ so it 
induces an F^-linear map 

g:B2(d,pd)^¥p[QC/Ri 

taking (l9Çbe) to the coset ofÇb* for ally G Z and l G fZ. Thus the composite gf is the 
identity on Fp[QC/R\. Since/ is surjective, fg is also the identity on B2(d,pd), proving 
the claim. 

It only remains to compute ¥P[Ç]C/R\. Recall that R\ is spanned by the elements: 

[<? - °(OT(Q0«;W 

withy G Z and £ G fZ. Define #2 to be the F^-linear span of the elements: 

for y G Z and t G fZ. That is, if we extend 9 to an automorphism of Fp[£]C fixing the 
elements of C, #2 is the image of of the linear operator 1 — rO. The unit u of Section 4 
was chosen so that, by Proposition 4.2, 

(j(QT(Q = r6(u)u-1. 

Hence uR\ Ç /?2 and u~xR2 Ç R\. So left multiplication by w defines an F^-linear iso­
morphism: 

VplQC/Rx = ¥P[QC/R2. 
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LEMMA 5.2. If n is a square-free positive integer, the primitive n-th roots of unity 
form a T-basis ofZ[Çi]. 

PROOF. The multiplicativity of the Euler function (p has the following generaliza­
tion: If Un denotes the multiplicative group of primitive n-th roots of unity in C, then for 
relatively prime positive integers c and d, Ucd = UcUd. 

For a prime /?, 

uP = cp{\,cP4,...,qr2} 

is a Z-basis of Z[<^]. Now the fact that Un spans Z[< ]̂ over Z (for square-free n) follows 
by induction onn. • 

Define J to be a full set of representatives of the cosets of (r) in (Z/dZ)*. Then J has 
<p(d)/t elements. The proof of Theorem 5.1, part (b), is completed if it is shown that 

{W'J €JJ GfZ,0< £<s} 

is an F^-basis of¥p[QC/R2. 

Modulo 7?2, 
Cjbl = rÇrjbl = rrÇrrjbl = • • • = r ^ V -

Since each power of r is nonzero mod/?, each element 

is a scalar multiple of@be in ¥P[QC/R2. So the proposed basis spans FP[QC/R2. 
To simplify notation, let K denote (Z/dZ)*, and let L denote the set of l G tZ with 

0 < £ < s. Suppose 

£ c(/, «tf*7 = 0 

for some coefficients c(j,£) G Fp. By Lemma 5.2, 

{CV :keKj eL} 

is an F^-basis of FP[£]C. So 1 — rQ of this basis is a spanning set for R2. Thus there are 
d(k, I) e Fp with 

£ c(/, 0?*' = E <*(*> W - ^)CV 
y&/ keK 

= £(</(M)-^(?M))C**'. 
keK 

leL 

Comparing coefficients, ifk^J, 
d(k, I) = rd(qk, i), 
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so for each j G /, 

d{qj91) = rd(q2j, I) = Mq3j, «) = ••• = r*-ld(j, l\ 

since ql = 1 (mod d). And again comparing coefficients, for each j G /, 

c(/\ 0 = d(/\ 0 - rd(qj, I) 

= d(jJ)-rrJ'ld(JJ) 

= 0, 

since in this part (b), we have assumed Y* = 1 (mod p). m 

NOTE. When pd divides r — 1, so that t — 1, 0 has no effect, and <J((), T(Q = 1, 
then /?i = R2 = 0 and there is no need for u. In this case Bï(d,pd) = ¥P[Q o (/?), with 
Fp -basis: 

{(1,C7V) : 0 <j < <p(d),0 <£<s}. 

6. Comments on computation of Kn(ZG). For those groups G of square-free order 
with presentations 

(a,b:am= l,bs = \Mb~x = aq) 

and those d dividing m where the order of q in (Z/dZ)* is s, the K$ of the rings 0(d) and 
0(d) Ip (where /?d divides m) have been determined in [5]. In the special case of dihedral 
groups of square-free order (s = 2, q = m — 1) those computations, and birelative Ki 
computations led to estimates on K^(ZG) and SK2(ZG) (see [5], Section 9). Now that the 
birelative K2 computations have been extended to all groups of square-free order, Mayer-
Vietoris sequences should lead to information on K^(ZG) and SK2(ZG) for a wider class 
of square-free order groups G. 

Unfortunately, when the center of 0(d) is totally imaginary, K3 ( 0(d)) has just enough 
copies of Z to map onto the next terms 

K3(0(d)/p)(BB2(d,pd) 

in the Mayer-Vietoris sequence. So such information must await a closer analysis of the 
maps in the sequence. The determination of a basis for B2(d,pd) helps set the stage for 
this next step. 
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