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BIRELATIVE K, OF GROUPS OF SQUARE-FREE ORDER

BRUCE A. MAGURN

ABSTRACT  Burelative K,-groups are computed for the fiber squares needed to study
K> and K3 of ZG when G 1s a group of square-free order

0. Introduction. Suppose R is a ring with ideals / and J, with /M J = 0. The birel-
ative K,-group K>(R; 1, J) 1s an abelian group B, which fits in a K-theory exact sequence
(see [3]):

K3s(R,.D) — K3(R/J,( +1)/J) — By — Ky(R,I) — Ky(R/J. (I + ]) | J) — 0.
Here I = (I+J) / J; so B, measures the failure of excision for K, of an ideal.

Since INJ = 0, R embeds as a subring of (R / DX (R / J). The relation between K,,(R)
and K, of this bigger ring is displayed in a long exact Mayer-Vietoris sequence:

oo = Kpt(R/IX R/J) = Kt (R/(+1)) @ By — Ku(R) — Ku(R/T X R/J)— - -

under certain conditions on R, I and J (see (4], Theorem 2.1). Here B, is the birelative
Ku(R; L J).

This paper is a sequel to the paper [5], in which R. C. Laubenbacher and this author
applied such Mayer-Vietoris sequences to obtain partial computations of K>(ZG) and
K3(ZG) for dihedral groups G of square-free order. Here the birelative K; computations
of [5] are extended to include those needed when G is any finite group of square-free
order. These are the groups with presentation:

(@,b:a™ =1,b°=1,bab”! = a9),

where |G| = ms is square-free (see [2], Section 9.4).

1. Specification of the B;s. For a group G with the above presentation,
QG = Q[a] B Qlalb® - - Qlalb* ',
with multiplication determined by
ba=a'b, b =1.

If d is a positive divisor of m, and {; is a primitive d-th root of unity, replacing a by {;
defines a surjective ring homomorphism

¥g: QG — X(d),
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where Z(d) is a Q-algebra with the same description as QG (above), but with ; in place
of a. As in [6], Section 7, there is a Q-algebra isomorphism:

QG ~ P (),

d|m

which is 1), in each d-component.
If D is a set of positive divisors of m, let O(D) denote the image of the projection:

7G — P X(d)
deD

to D-components. Then O(D) is the twisted group ring
Z[aplo (b) = Zap) & L{aplb & - - - & L[ap b
where the minimal polynomial of o) over Q is

[1 ®ux)

deD

(®,4(x) being the minimal polynomial of {; over Q), and where
bagp = afpband b = 1.

The Mayer-Vietoris sequences needed to study K,(ZG) are based on the fiber squares:

oD

o(DuUpD) — OpD)
(1' l) ﬂwl l
oD — OD)/pOD)

in which p is a prime factor of m, D is a non-empty set of positive factors of m/p, 7q
and 7, are projections, and the right vertical map can be defined by commutativity of
the square. In this paper the birelative groups B(D,pD) := K»(R;1,J) are computed,
where R = O(DUpD), I = kermp and J = ker .

2. Reduction to single divisors. In [1] and [3] the birelative K»(R; I, J) was deter-
mined to be
1/ @ J)J?

where R° is additively the same as R®z R, and its multiplication is extended Z-bilinearly
from

(x1 @ yDx2 ® y2) = (x1x2 @ y2y1)

for all x,, y, € R. The R°-module actions on J and [ are
(x®y)-m=axmy, m-(xR@y)=ymx,

respectively. In [5] it is proved that:
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THEOREM 2.1. In the notation used in the square (1.1), the projections
O(DUpD) — O(d,pd) applied to I and J induce an isomorphism:

By(D,pD) = @ Ba(d, pd). .
deD

3. Generators and relations for B,(d, pd). It only remains to compute
By(d,pd) = 1/I* @ J | J*,
where I and J are the kernels indicated in the diagram with short exact rows and columns:

I r

J — Z[alo(b) — ZlGulo (b)

Joo— 2Glo(b) — Fpldlo(b),

where d € D, the minimal polynomial of & over Q is @4(x)®,4(x), and R = Z[a] o (b).

The following facts were established in [5]: In Z[a] o (b), I (resp. J) is both a principal
left and principal right ideal generated by ®4() (resp. ®,4(x)). Then both ®,(«) and
p annihilate both 7/I? and J/J?; so the multiplication actions of Z[«] o (b) on these
quotients factor through F,[(;] o (b). Further, with the notation

(%) = (x Bg() @ y - Bpa()),
for x,y € F,[¢y] o (b), the F,-vector space I/I? ®; J/J* has F ,-basis:

{(¢P, ") 0<i,j< o(d),0 <k, <s}

where ¢ = . The left and right actions of F,[¢] o (b) on I/I* and J /J* may differ due
to noncommutativity of G:
ba = a’b and ab = ba"

for positive integers g and r with gr = 1 (mod m). In detail, the quotients

Pu) iy = Lo

oy ®,.(x)

are in Z[x], and the action of b satisfies:

@y(0) - b =b- Py() = ba(C) - Pu(a),
Dpy(a) - b =b- Ppy(a’) = b1(C) - Dpa(0).

Therefore, to pass from /1> @z J /J* to I/ I* @ J /J*, mod out the additional relators:
L (Gxy) = (x50
2. (G y) = (. Cy)
3. (bx,y) — (x,yb7(0))
4. (xbo(().y) — (x,by).
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With these it is easy to see that the [ ,-vector space B,(d, pd) is spanned by the ele-
ments: (1,7b") with0 <j < ¢(d),and 0 < £ <.

4. A modulo p cyclotomic unit. In order to compute B»(d, pd) from its presenta-
tion, it is helpful to produce a certain unit in F,[{;] related to the polynomials o(x) and
7(x) by a formula resembling Hilbert’s Theorem 90. For this section, suppose d is any
square-free integer with d > 1 and p is a prime not dividing d. Thend = q;q> - - - g, for
n distinct primes g,. For each j with 0 < j < n, let D(j) denote the set of all products
x -+ -x; where xi, ..., x; are distinct primes chosen from {q, ..., ¢, }. Here D(0) = {1}.
Define the polynomials:

) =[] @ =1

ecD())
in Z[x].
LEMMA 4.1. In 7Z]x],

I_Ij even Vj (x)

Dy (X)Dy(x) = Moy ()
[ odd V)

PROOF.  Suppose f € D(n — k) where 0 < k < n; so d/f is a product of k primes.
Then ®;(x) divides x"?/¢ — 1 if and only if ®,(x) divides x*/¢ — 1, and these are true if
and only if e divides d/f. So the number of e € D(j) where these equivalent conditions
hold is the binomial coefficient (f) Thus there are (k) occurrences of both ®(x) and

]
®,((x) in the factorization of v,(x) into irreducibles. Since

k k
1- 1= — .
( ) j§n<j> /§d<j>

both ®s(x) and ®,q(x) cancel out completely for k > 1, leaving only the product
D, ()P (x) for k = 0. =

Now v,((y) is a product of factors

Gile—1=a -1,

where e € D(j). So if j > 1, then e (= the order of ¢) is composite, and hence v,() is a
unit in Z[¢;]. On the other hand, if j = 1, then e = g, for some i, and ¢¢ — 1 divides g, in
Z[4]; so, since p does not divide d, v{({y) is a unit in [ ,[(;]. Define:

= (el v

Jodd jeven
)21 721

inF,[¢1".
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PROPOSITION 4.2.  Suppose q and r are positive integers withqr = 1 (mod pd), 6 is
the ring automorphism of F ,[(;] with 0(¢y) = ), and

D,(x") D, u(x")
o(x) = s T(X) = ———
20" 7 B
are expressed as polynomials in Z[x]. Then in [ (],
o(C)T(Ca) = ("
PROOF.
X — ]
I vw&) I v@e@rx) = —— T v [T v&),
Jodd jeven xd — 1 Jodd Jeven
>0 >0
and y
il SR )
xd — ]
Evaluate at ¢; and reduce mod p to get the desired equation. (]

5. Computations. Define m, s and g as in Section 1, d, p, r (x), T(x) and the pairing
(x,y) as in Section 3, and u and 6 as in Section 4. So ms is square-free, p is a prime factor
of m, d divides m/p, and in the group G, bab™! = a% and b* = 1;s0 ¢* = 1 (mod m).
Similarly b~ 'ab = a”; s0 ¥ = 1 (mod m), and gr = 1 (mod m).

In (Z/dZ)*, q and r represent inverse elements of order ¢ dividing s.

THEOREM 5.1.  The birelative K>-group By(d, pd) is an [ ,-vector space.
a) Ifp does not divide ¥ — 1, then B,(d, pd) = 0.
b) Ifp divides ¥ — 1, then By(d, pd) has anF ,-basis:

{,u'¢bYy:jetterz,0<t<s}

where J is any set consisting of one integer from each coset of (r) in (Z /dZ)*. The rank
of Ba(d, pd) in this case is p(d)s /1.

PROOF. Iff(x) € Z[x] and n > 0, define f,(x) by:

fal) = {ﬂx)f(x’) cof0” ), ifk>1
1, ifk=0

Then iterating relations 3 and 4 of Section 3, in B,(d, pd):
(b"a'bt,db") = (a'b, @b 7,(0)),
@b, b"db') = (a'b"*"0,((). &b").
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Note that since ¥ = 1 (mod d), b' commutes with { (= ) in Z[(] o {b). Also note that
from Proposition 4.2,

Ur(C)Tr(C) =r.
So in By(d, pd),
(1,¢b") = (b'b™",¢b")
— (bﬁr,cjb“tT,(C))
= (b™'p'0,((), b TA())
= (1(Qou).¢b")
= (",¢b")
=7(1,¢b".
So (I — #)(1,¢b") = Oforall j, £ € Z. Thus if p does not divide ¥ — 1, then every
generator (1,b") of B(d, pd) vanishes, proving part (a).
By relations 1 and 2 of Section 3, in B,(d, pd), for any integers j and /,
(1,¢b") = (¢.¢'b"
= (1,¢" b,
So one can add to j any element of
dZ +(q' — 1)Z

with no effect. In particular, if v is the greatest common divisor of d and ¢’ — 1, then

(¢ —1,¢b") = (1,¢7b"Y) — (1,¢bY)
=0.

If £ ¢ tZ, then d does not divide g' — 1, and v < d. If /v is composite, ' — 1 is a
unit in Z[(]. If d/v is prime, ¢" — 1 divides that prime in Z[¢] and so becomes a unit in
F,[¢]. Either way there exist x,y € Z[(] with

& —Dx=1+py.

So in B,(d, pd),
(1,¢b") = (¢ = Dx — py,¢b")
=" —1,x¢b")
=0.

Thus B,(d, pd) is spanned by the elements (l,gfb") with0 <j < ¢(d),0 < < sand
{ € tZ. In detail,

(1,049 (OB, ifk+ € € 1Z

130k gt —
CoL.EE0=1,, ifk+0 17,
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by the relations 1 and 3, and the fact that b**' commutes with  if k + £ € 1Z.
Now if ¢ € tZ andj € Z, in By(d, pd):
(1,¢b%) = &*,¢b")

— (bs; 1 , Cjb(+lT(<))

= (b°0(0).¢"b'7(©)

= (1,0(0m()¢"D").
If C = (b'), which is the subgroup of (b) consisting of those elements commuting with
¢, the group ring F,[¢]C is the center of F,[(] o (b). Then there is an F,-linear surjective

map
fE[C1C — Bo(d, pd),

withf(b") = (1,¢b"), and the kernel of f contains the F,-linear span R of the elements:
(¢ = o (r()")b!

withj € Z, £ € 1Z.

CLAIM. The inducedt ,-linear map
F:F[Q0C/ Ry — Ba(d, pd)

is an isomorphism.

To construct an inverse to f, begin by considering the F,-subspace V of /1> ®7 J / J?
spanned by the elements (1,b") for 0 < j < p(d),0 < ¢ < sand ¢ € tZ. This V
contains the elements (1,b") forall j € Z and ¢ € tZ, but those elements restricted as
above are [ ,-linearly independent. Define

Fi:l/P @70 —V
to be the [ ,-linear map with

+1g° k+¢ :
R op) = | (OO R b
for0 <i,j<e¢(d)and 0 <k, £ <s.

This description of the effect of F; on (('b*,(b") holds even if we do not restrict
the integers i, j, k and ¢, except to require k > 0, so that 7;(x) is defined. To see that
i and j need not be restricted, note that the pairing (x, y) is bilinear and there is a ring
automorphism of Z[(] taking

gt

To lift the restriction on ., note that the list

(), 7, 7C ),
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is periodic with a period of length s. So the product of any s consecutive terms is

DpulC) _
(Dpd(<) ’
since ¥ =1 (mod d). So 7,({) = 7,(¢) whenever v=w (mod s).

The map F| kills the relators of type 1, 2 and 3 from Section 3; but F of the fourth
type of relator is an [ ,-linear combination of elements:

75(Q) =

(1,¢b") — (1,0(Q)r()¢"D")
where j € Z and ¢ € tZ. Define
Fy:V—F,[CIC

to be the [ -linear map with
F((1,¢bh) = ¢b'

for0 <j < ¢(d),0 < ¢ <sand ¢ € tZ; then the same formula holds for all j € Z and
¢ € tZ. Then define

F3:F,[1C — F,[CIC/ Ry

to be the canonical map. The composite F3F,F kills all the relators for B,(d, pd); so it
induces an [ ,-linear map

g: Ba(d, pd) — F,[C1C/R,

taking (1,b") to the coset of b’ for all j € Z and ¢ € tZ. Thus the composite gf is the
identity on F,[¢]C/R;. Since f is surjective, fg is also the identity on By(d, pd), proving
the claim.

It only remains to compute F,[(]C/R;. Recall that R, is spanned by the elements:

[¢ — oI’
withj € Z and £ € tZ. Define R; to be the [,-linear span of the elements:
[¢ — B’

forj € Zand ¢ € tZ. That is, if we extend 6 to an automorphism of [ ,[C]C fixing the
elements of C, R; is the image of of the linear operator 1 — rfl. The unit u of Section 4
was chosen so that, by Proposition 4.2,

o)) = rfuyu".

Hence uR, C R, and u'R, C R;. So left multiplication by u defines an [ ,-linear iso-
morphism:
FoIC1C/ R = FL[C1C/R,.

https://doi.org/10.4153/CJM-1993-018-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-018-x

BIRELATIVE K, 377

LEMMA 5.2. If n is a square-free positive integer, the primitive n-th roots of unity
form a Z-basis of 7[(,).

PROOF. The multiplicativity of the Euler function ¢ has the following generaliza-
tion: If U, denotes the multiplicative group of primitive n-th roots of unity in C, then for
relatively prime positive integers ¢ and d, U,y = U, U,.

For a prime p,

Up = G{1.6n G2
is a Z-basis of Z[(,]. Now the fact that U, spans Z[(,] over Z (for square-free n) follows
by induction on n. n

Define J to be a full set of representatives of the cosets of (r) in (Z/dZ)*. Then J has
¢(d) /1t elements. The proof of Theorem 5.1, part (b), is completed if it is shown that

{Gbl:jed terl,0< <5}

is an [ -basis of F,[(]C/R,.
Modulo R»,
bl = b = b = =2 B

Since each power of r is nonzero mod p, each element
Cﬁj bt

is a scalar multiple of Cl_b[ inF,[¢]C/R,. So the proposed basis spans F,[¢]C/R,.
To simplify notation, let K denote (Z/dZ)*, and let L denote the set of ¢ € 1Z with
0 < ¢ <. Suppose

3 (i, 0@ =0
=
lel

for some coefficients c(j, £) € F,. By Lemma 5.2,

{¢*b'kek tel}

is an [ -basis of [ ,[(]C. So 1 — rf of this basis is a spanning set for R,. Thus there are
d(k, ¢) € ), with

S e, b = Y dik, O)(1 — )¢’

JjeJ kek

(€L fel
= 3 (d(k, £) — rd(gk, 0))¢'b".

i

€L

Comparing coefficients, if k & J,

dk, () = rd(gk, {),
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so for each j € J,

d(gj. ©) = rd(@’j, ) = PPd(q’)j. ) = -~ = P d(, D),
since ¢' = 1 (mod d). And again comparing coefficients, for each j € J,

(G, 0) = d(j, 0) — rd(gj, 0)
=d(j, ) —r’ 4@, 0)
=0,

since in this part (b), we have assumed ¥ = 1 (mod p). ]

NOTE. When pd divides r — 1, so that t = 1, 0 has no effect, and o(¢), 7({) = 1,
then Ry = R, = 0 and there is no need for u. In this case B2(d, pd) = F,[C] o (b), with
F,-basis:

{(1,db") 1 0 <j < o(d),0 < € < s}

6. Comments on computation of K,,(ZG). For those groups G of square-free order
with presentations

(@,b:d"=1,b"=1,bab ' = a%)

and those d dividing m where the order of ¢ in (Z/dZ)" is s, the K3 of the rings O(d) and
O(d) / p (where pd divides m) have been determined in [5]. In the special case of dihedral
groups of square-free order (s = 2, ¢ = m — 1) those computations, and birelative K,
computations led to estimates on K3(ZG) and SK»>(ZG) (see [5], Section 9). Now that the
birelative K, computations have been extended to all groups of square-free order, Mayer-
Vietoris sequences should lead to information on K3(ZG) and SK>(ZG) for a wider class
of square-free order groups G.

Unfortunately, when the center of O(d) is totally imaginary, K3 ( O(d)) has just enough
copies of Z to map onto the next terms

K3(0(d)/p) & B(d, pd)

in the Mayer-Vietoris sequence. So such information must await a closer analysis of the
maps in the sequence. The determination of a basis for B,(d, pd) helps set the stage for
this next step.
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