MONOTONE SEMIGROUPS OF OPERATORS ON CONES*

David W. Boyd

(received January 14, 1969)

In this paper we consider a special class of linear operators defined on a cone K in a Banach space X. This class of operators is the natural generalization of a class of operators which has applications in the theory of interpolation spaces. In particular, using the criteria developed in Theorem 1, it is possible to characterize those sequence spaces X such that every linear operator A of weak types (p,p) and (q,q) is a continuous mapping of X into itself. For details of this we refer the reader to [3].

We begin with a sequence of operators $\{E(m)\}$ each defined on K, and consider operators of the form $T = \Sigma\{t(m) | E(m) : m = 1, \ldots, \infty\}$, where $t(m) \geq 0$. Under the assumption that $\{E(m)\}$ forms a "monotone semigroup" we are able to establish conditions under which T will map K continuously into itself.

The method used allows us to give precise information about the spectral radius of T in terms of a number β associated with $\{E(m)\}$.

1. Preliminary remarks. We assume that X is a real Banach space and that $K \subset X$ is a closed normal cone in X so that $K + K \subset K$, a $K \subset K$ for a ≥ 0 , K is a closed subset of X, and there is an $\epsilon > 0$ such that x, $y \in K$, $||x|| \geq 1$, $||y|| \geq 1$ imply $||x + y|| \geq \epsilon$.

The dual cone K' is the set of linear functionals $x'\in X'$ such that $\langle x,x'\rangle\geq 0$ for all $x\in K$. Since K is normal, X'=K'-K' and if we define p(x) for $x\in X$ by

(1)
$$p(x) = \sup \{ |\langle x, x^i \rangle| : x^i \in K^i, ||x^i|| \le 1 \},$$

then p is a norm on X and there is $\gamma > 0$ such that

Canad. Math. Bull. vol. 12, no. 3, 1969

^{*}This work was supported in part by N.S.F. grant G.P. 6111.

(2)
$$\gamma \|\mathbf{x}\| \le p(\mathbf{x}) \le \|\mathbf{x}\| \text{ for all } \mathbf{x} \in \mathbf{X}$$

(see [5, pages 226-227]).

If T is a linear operator mapping K into itself, the <u>partial</u> norm and <u>partial spectral radius</u> of T are the numbers

(3)
$$\|T\| = \|T\|_{K} = \sup \{ \|Tx\| : x \in K, \|x\| \le 1 \},$$

(4)
$$r(T) = r_K(T) = \lim_{n \to \infty} ||T^n||_K^{1/n}$$
.

These terms are due to Bonsall [1]. If $\|T\|_{K} < \infty$ we write $T \in [K]$.

<u>Definition</u>. A <u>monotone semigroup</u> of operators on K is a sequence $\{E(m)\}$ of non-zero linear operators leaving K invariant and satisfying

- (a) E(1)x = x for all $x \in K$
- (b) E(mn)x = E(m)E(n)x for $x \in K$, $m, n \in \mathbb{Z}^+ = \{1, 2, ...\}$
- (c) $\langle E(m+1)x, x' \rangle < \langle E(m)x, x' \rangle$ for $x \in K$, $x' \in K'$, $m \in \mathbb{Z}^+$.

LEMMA 1. Let $\{E(m)\}$ be a monotone semigroup on K and $h(m) = \|E(m)\|_K$. If $\beta = \sup\{-\log h(m)/\log m : m \in \mathbf{Z}^+\}$, then $\beta = \lim_{m \to \infty} \{-\log h(m)/\log m\} \le 0.$

<u>Proof.</u> From (b) of the definition, we have $h(mn) \le h(m)h(n)$ while from (c) we obtain $\gamma h(m) \le h(n)$ for m > n, where γ is as in (2).

Now define $g(k) = \log h(2^k)/\log 2$ for $k = 0, 1, 2, \ldots$ and notice that $g(k+\ell) \leq g(k) + g(\ell)$. Then, by a well-known result, if $\beta = -\inf g(k)/k$, then $\beta = \lim (-g(k)/k)$ (see [4, page 244]). Given m, choose

 $k = [\log m/\log 2]$ so that $2^k \le m < 2^{k+1}$. Then we have

(5)
$$\gamma h(2^{k+1}) \leq h(m) \leq \gamma^{-1} h(2^k).$$

Taking logarithms in (5) dividing by $\log m$ and letting $m \rightarrow \infty$, we obtain

(6)
$$\lim_{m\to\infty} \log h(m)/\log m = -\beta.$$

To see that $\beta = \sup \{-\log h(m)/\log m\}$, note that just as for 2^k we have

$$\inf_{k} \log h(m^{k})/\log m^{k} = \lim_{k \to \infty} \log h(m^{k})/\log m^{k} = -\beta,$$

so that $\log h(m)/\log m \ge -\beta$.

Since $h(m) \ge m^{-\beta}$ we must have $\beta \ge 0$; for otherwise $h(m) \to \infty$ which contradicts $\gamma h(m) \le h(1)$.

Now if $\Im = \{t(m)\}$ is a sequence of non-negative numbers, we define

(7)
$$\zeta(s, \mathfrak{I}) = \sum_{m=1}^{\infty} t(m)m^{-s}, \text{ for real } s.$$

If the series diverges we write $\zeta(s, T) = \infty$, and since ζ is non-increasing we may define $\zeta(\pm \infty, T)$ as the respective limits.

We define the abscissa of convergence of ζ by ${}^\sigma_{\ o}$ so

(8)
$$\sigma = \sigma(\mathfrak{T}) = \inf \{s : \zeta(s, \mathfrak{T}) < \infty\}.$$

We may or may not have $\zeta(\sigma_0, \tau) < \infty$, but we do have $\zeta(\sigma_0, \tau) = \lim_{s \to 0} \zeta(s, \tau)$.

Note that ζ is continuous on (σ, ∞) .

2. Statement of main results. Our main results give criteria for $T \in \left[K\right]$ where

(9)
$$Tx = \sum_{m=1}^{\infty} t(m)E(m)x,$$

with domain the set of $x \in X$ for which the series converges in the weak $\langle X, X' \rangle$ topology.

Note that if $\beta<\infty,$ the only situation in which we do not obtain an effective criterion for $T\in[K]$ is when $\zeta(\sigma_o,T)<\infty,$ $\beta=\sigma_o$ and $\|\,E(m)\,\|_K\,\neq\,m^{-\beta}\,\,\text{for an infinite set of}\,\,m\,.$

THEOREM 1. Let X be a real Banach space, K a closed normal cone, and $\{E(m)\}$ a monotone semigroup of operators on K. If 3 is a sequence of non-negative numbers, define T, ζ , σ_0 , β by (9), (8), (7), (6) respectively. Then

(a)
$$\frac{\text{if}}{\text{m}} \sum_{m=1}^{\infty} t(m) \| E(m) \|_{K} < \infty$$
, then $T \in [K]$ and

$$\|T\|_{K} \leq \sum_{m=1}^{\infty} t(m) \|E(m)\|_{K};$$

- (b) if $\beta > \tau_0$, then $T \in [K]$;
- (c) if $T \in [K]$, then $\beta \geq \sigma_0$;
- (d) if $T \in [K]$ and $\tau_0 < \infty$, then $\zeta(\beta, \Im) < \infty$;
- (e) if $\beta > \sigma$, then $\zeta(\beta, T) = r_k(T)$.

COROLLARY 1. If $\beta < \infty$ and $\zeta(\tau_0, \Im) = \infty$, then the following are equivalent.

- (a) $T \in [K]$
- (b) $\zeta(\beta, \mathcal{F}) < \infty$
- (c) Σ t(m) $\| E(m) \|_{K} < \infty$.

COROLLARY 2. If $\beta < \infty$, and $\|E(m)\|_{K} = m^{-\beta}$ except for a finite set of m, then $T \in [K]$ if and only if $\zeta(\beta, \Im) < \infty$.

$$\underline{\mathbf{H}} \ \| \, \mathbf{E}(\mathbf{m}) \, \|_{\, K} \ = \ \mathbf{m}^{-\beta} \ \underline{\text{for all}} \ \mathbf{m} \, , \ \underline{\text{then}} \ \| \, \mathbf{T} \, \|_{\, K} \ = \ \mathbf{r}_{\, K}(\mathbf{T}) \ = \ \zeta \, (\beta \, , \, \overline{x}) \, .$$

The proof of Theorem 1 is somewhat involved so we first indicate a number of examples.

3. Examples.

1. Let X be a Banach space of sequences $\{x(n)\}$ on which there is a function norm ρ of the type defined by Luxemburg [6]. In particular $\|x\| = \rho(|x|)$ and $|x(n)| \leq |y(n)|$ for all n implies $\rho(|x|) \leq \rho(|y|)$. The operators E(m) defined by

(10)
$$(E(m)x)(n) = x(mn), n \in \mathbb{Z}^+$$

clearly form a semigroup.

For the cone K, take the set of all non-negative, non-increasing sequences in X. Then $x(mn) \leq x(n)$ for all n so $\{E(m)\}$ is a monotone semigroup. This semigroup appears naturally in [3].

For illustration, let $\rho(|\mathbf{x}|) = \{\Sigma |\mathbf{x}(n)|^p\}^{1/p}$ so $\mathbf{x} = \ell^p$. Then

(11)
$$\|E(m)\|_{K} = \sup \{ \|E(m)x\| : \|x\| \le 1, x \in K \} = m^{-1/p}.$$

Here Corollary 1 applies, so if {t(m)} is a non-negative sequence

$$\|T\|_{K} = \sum_{m=1}^{\infty} t(m)m^{-1/p}.$$

Suppose, on the other hand, that for our cone we take P, the set of non-negative sequences in $X = \ell^p$, and let $\{t(m)\}$ be decreasing. Then, by using rearrangements of sequences one can see that

$$\|\mathbf{T}\|_{\mathbf{P}} = \|\mathbf{T}\|_{\mathbf{K}}$$
.

However, $\|E(m)\|_{p} = 1$ for all m, so we do not have

 $\|T\|_{P} = \sum_{m=1}^{\infty} t(m) \|E(m)\|_{P}$. The reason that our corollary does not apply here is that $\{E(m)\}$ is not monotone on P.

2. After examining Theorem 1, one might conjecture that $\zeta(\beta, \pi) < \infty$ would imply $T \in [K]$, and perhaps that $\zeta(\beta, \Im) = r(T)$, even when $\beta = \sigma_0$. However, this is not true even when E is defined by (10) as our next example shows.

Let $k > 16 > e^e$ and define h by

(12)
$$h(m) = \begin{cases} 1, & \text{for } m = 1, 2, ..., k-1 \\ m^{-\beta} \log m, & \text{for } m \ge k. \end{cases}$$

If we choose β so that

$$(13) \beta \ge \log \log k / \log k$$

then h can be seen to be non-increasing, and satisfy $h(mn) \le h(m)h(n)$ for $m, n \in \mathbb{Z}^+$.

Now define a function norm ρ on sequences by

(14)
$$\rho(|x|) = \sup \{|x(n)|/h(n) : n \in \mathbf{Z}^+\}.$$

If we take X to be the set of sequences with $\rho(|x|) < \infty$, and K as in Example 1, we can easily show that $\|E(m)\|_K = h(m)$.

Now take for 3 the sequence defined by

(15)
$$t(1) = 1$$
 and $t(m) = m^{\beta-1} (\log m)^{-2}$ for $m > 2$.

Then

(16)
$$\sum_{m=1}^{\infty} t(m)h(m) = \infty \quad \text{and} \quad \sum_{m=1}^{\infty} t(m)m^{-\beta} < \infty.$$

But h is itself in X so the first part of (16) shows that $\|T\| = \infty$ and yet we have $\zeta(\beta, T) < \infty$. It is also clear that $r(T) = \infty \neq \zeta(\beta, T)$. Because of (13) we can obtain examples for any $\beta > 0$ by choosing k sufficiently large.

4. Proofs of the main results. We begin by introducing the sequences $\pi^k = \{t_k(m)\}$, $\Re_{\lambda} = \{r(m, \lambda)\}$ corresponding to a sequence $\Im = \{t(m)\}$; \Im^k is defined formally by

(17)
$$\zeta(s, \tau^k) = \zeta(s, \tau)^k, k = 0, 1, \dots$$

and R by

(18)
$$r(m,\lambda) = \sum_{k=0}^{\infty} \lambda^{-k-1} t_k(m) \text{ (possibly } \infty).$$

If $r(m, \lambda) < \infty$ for all m, we denote by R_{λ} the operator $\Sigma r(m, \lambda) E(m)$. The following lemma gives the pertinent information about R_{λ} .

LEMMA 2. (a) If $\sigma_0(\mathfrak{I}) < \infty$, then the series (18) converges for all $m \in \mathbb{Z}^+$, if $\lambda > t(1)$.

- (b) If $T \in [K]$, then $r_k(T) \ge t(1)$.
- (c) $R_{\lambda} \in [K]$ if and only if $\lambda > r_k(T)$ and in this case $R_{\lambda} = (\lambda T)^{-1}$.
- (d) For $\lambda > t(1)$, let $\sigma_1 = \sigma_0(\mathbb{R}_{\lambda})$. Then σ_1 is the unique solution of $\zeta(s, 3) = \lambda$ if $\lambda < \zeta(\sigma_0, 3)$ or else $\sigma_1 = \sigma_0(3)$ if $\lambda \geq \zeta(\sigma_0, 3)$. Furthermore,

(19)
$$\zeta(s, \Re_{\lambda}) = (\lambda - \zeta(s, \Im))^{-1} \text{ for } s > \sigma_{\Omega}(\Re_{\lambda}).$$

<u>Proof.</u> (a) By formula (17), if $s > \sigma_0$ and $\lambda > \zeta(s, \tau)$, then

(20)
$$(\lambda - \zeta(s, \pi))^{-1} = \sum_{k=0}^{\infty} \lambda^{-k-1} \zeta(s, \pi)^{k} = \sum_{m=1}^{\infty} r(m, \lambda)m^{-s} = \zeta(s, \Re_{\lambda})$$

which shows that $r(m, \lambda) < \infty$ for $\lambda > \zeta(s, \pi)$ and hence for $\lambda > \lim_{s \to \infty} \zeta(s, \pi) = t(1)$.

(b) If $T \in [K]$, then for $x \in K$, $x' \in K'$ we have

$$\langle T^{k} \mathbf{x}, \mathbf{x}' \rangle \geq t_{k}(1) \langle E(1)\mathbf{x}, \mathbf{x}' \rangle = t(1)^{k} \langle \mathbf{x}, \mathbf{x}' \rangle.$$

Now applying (2) we obtain $\|T^k\| \ge t(1)^k \gamma$ from which $r(T) \ge t(1)$ follows.

- (c) If $\lambda > r(T)$, the Neumann series for $(\lambda T)^{-1}x$ converges and it is clearly equal to $R_{\lambda}x$. Conversely if both $R_{\lambda} \in [K]$, $T \in [K]$ then a direct computation gives $TR_{\lambda}x = R_{\lambda}Tx = \lambda R_{\lambda}x$ which shows that $R_{\lambda} = (\lambda T)^{-1}$, and hence $\lambda > r(T)$. (See [1, Theorems 5 and 6].)
- (d) If $\zeta(\sigma_0, \Im) > \lambda > t(1)$, and s satisfies $\lambda > \zeta(s, \Im)$, then Formula (20) is valid, and shows that $\zeta(s, \Re_{\lambda}) \to \infty$ as s decreases to to the solution σ of $\lambda = \zeta(s, \Im)$, so $\sigma_0(\Re_{\lambda}) = \sigma_1$.

In case $\lambda \geq \zeta(\sigma_0, \Im)$, the relation (20) shows that $\sigma_0(\Re_{\lambda}) \leq \sigma_0(\Im)$. However, since $\lambda > 0$, $r(m, \lambda) \geq \lambda^{-1} t(m)$ so that $\zeta(s, \Im) \leq \lambda \zeta(s, \Re_{\lambda})$ which shows $\sigma_0(\Re_{\lambda}) \geq \sigma_0(\Im)$.

 $\frac{\text{Proof of Theorem 1.}}{\|\mathbf{x}\| \leq 1, \|\mathbf{x}'\| \leq 1 \text{ we have } \langle E(m)\mathbf{x}, \mathbf{x}' \rangle \leq \|E(m)\|_{K}^{2}. \text{ Thus, we obtain } \langle T\mathbf{x}, \mathbf{x}' \rangle = \sum t(m) \langle E(m)\mathbf{x}, \mathbf{x}' \rangle \leq \sum t(m) \|E(m)\|_{K}^{2}, \text{ which proves}$ (a) on taking supremums first over \mathbf{x}' , then over \mathbf{x} .

- (b) By definition of β , given $\epsilon > 0$, there is an $m_0(\epsilon)$ so that $m^{-\beta} \leq \|E(m)\|_K \leq m^{-\beta+\epsilon} \text{ for } m \geq m_0(\epsilon). \text{ Choose } \epsilon > 0 \text{ so that } \beta \epsilon > \sigma_0 \text{ and } \zeta(\beta \epsilon, \mathfrak{T}) < \infty, \text{ and then apply part (a).}$
- (c) We first note that the monotone condition $\langle E(m+1)x, x' \rangle < \langle E(m)x, x \rangle$ implies the following inequality if $T \in [K]$ and $\| E(m) \|_{K} = h(m)$.

(21)
$$h(2^{k+1}) \ 2^{ks} \frac{2^{k+1} - 1}{\sum_{m=2^{k}} m^{-s} t(m) \le c_{s} \|T\|_{K}}$$

where $c_s = \gamma^{-1}$ or $\gamma^{-1}2^{-s}$ according to whether $s \le 0$ or $s \ge 0$. To see this for $s \ge 0$, let $x \in K$, $x' \in K'$ with $||x|| \le 1$, $||x'|| \le 1$. Then, since $(2^k/m)^s < 1$,

$$\| T \| \ge \langle Tx, x' \rangle \ge \sum_{m=2^k}^{2^{k+1}-1} t(m) \langle E(m)x, x' \rangle$$

$$\geq \langle E(2^{k+1})x, x' \rangle 2^{ks} \sum_{m=2^{k}}^{2^{k+1}-1} t(m)m^{-s}.$$

Now, if $s < \sigma_0$ and $s + \epsilon < \sigma_0$, then $\zeta(s + \epsilon, T) = \infty$. Using this, one can show that there is a sequence C of values of k for which

$$2^{k+1}-1$$

$$\sum_{m=2^{k}} m^{-s} t(m) \to \infty .$$

But, then from (21) we have $2^{-k(\beta-s)} \leq 2^{\beta} h(2^{k+1}) 2^{ks} \to 0$ as $k \to \infty$, through G. This shows $\beta > s$ and since $s < \sigma_o$ is arbitrary that $\beta \geq \sigma_o$.

(d) By part (c), we have $\beta \geq \sigma_0$, so that if $\zeta(\sigma_0, \mathbb{J}) < \infty$ there is nothing to prove. Hence assume $\zeta(\sigma_0, \mathbb{J}) = \infty$. Let $\lambda > r(\mathbb{T})$, and σ_1 be the solution of $\zeta(s, \mathbb{J}) = \lambda$. Then by Lemma 2(d), $\sigma_1 = \sigma(\Re_\lambda)$. Since $R_{\lambda} \in [K]$, (c) implies that $\beta \geq \sigma_0(\Re_{\lambda}) = \sigma_1$, and hence

(22)
$$\zeta\left(\beta,\Im\right)\leq\zeta\left(\sigma_{_{\!4}}\,,\Im\right)=\,\chi<\infty\;.$$

(e) We assume $\beta > \sigma_0$ so $T \in [K]$ and we wish to show $r(T) = \zeta(\beta, T)$. If $\zeta(\sigma_0, T) = \infty$, (22) shows that $\zeta(\beta, T) \leq r(T)$ since $\lambda > r(T)$ is arbitrary. In case $\zeta(\sigma_0, T) < \infty$ we can again derive (22) provided $\lambda \leq \zeta(\sigma_0, T)$ and hence we have $\zeta(\beta, T) \leq r(T)$ always.

On the other hand, $\beta > \sigma_0$ implies $\zeta(\beta, \mathbb{T}) < \zeta(\sigma_0, \mathbb{T})$ (unless T = t(1)I which can be handled directly). Let $\epsilon > 0$ be chosen so $\zeta(\beta, \mathbb{T}) + \epsilon = \lambda < \zeta(\sigma_0, \mathbb{T})$ and let $\sigma_1 = \sigma_0(\mathbb{R}_\lambda)$. By Lemma 2(d) we see that $\sigma_1 < \beta$. But by part (b) of the theorem this implies $R_\lambda \in [K]$ and hence $\lambda > r(T)$, or since $\epsilon > 0$ is arbitrary that $\zeta(\beta, \mathbb{T}) \geq r(T)$, completing the proof of (e).

<u>Proof of Corollary 1.</u> Since $\zeta(\sigma_0, \Im) = \infty$, we have $\zeta(\beta, \Im) < \infty$, if and only if $\beta > \sigma_0$ so the equivalence of (a), (b), (c) follows from parts (a) and (d) of Theorem 1.

Proof of Corollary 2. If $\zeta(\beta, \mathbb{J}) < \infty$ then $\Sigma t(m) \| E(m) \|_{K} < \infty$ and hence $T \in [K]$. Conversely if $T \in [K]$ and $\sigma_{o} < \infty$, then $\zeta(\beta, \mathbb{J}) < \infty$ by Theorem 1 (d). If $\sigma_{o} = \infty$, $T \notin [K]$ since this would imply $\beta \geq \sigma_{o}$ (by Theorem 1 (c)), contradicting $\beta < \infty$.

If $\|E(m)\|_K = m^{-\beta}$ for all β , then Theorem 1 (a), and the fact that $r(T) < \|T\|$ gives

$$(23) r(T) < ||T|| \le \zeta(\beta, \mathfrak{I}).$$

Thus for $\beta > \sigma_0$, Theorem 1 (d) gives $r(T) = \zeta(\beta, \mathbb{F})$ which proves the required result. For $\beta = \sigma_0$, we can prove that $r(T) \geq \zeta(\beta, \mathbb{F})$ by assuming the contrary and choosing λ with $r(T) < \lambda < \zeta(\beta, \mathbb{F})$. The argument leading to (22) then goes through as before and completes the proof.

Remarks. 1. The proof of Corollary 2 shows that the relation $r(T) \geq \zeta(\beta, \overline{s})$ is always valid with equality in case $\beta \neq \sigma_o$. In view of the second example of Section 3, this is all that can be claimed in general.

- 2. The assumption that E(1)x = x for all $x \in K$ is unnecessary for the results of Theorem 1 as one sees by replacing the cone K by $K_4 = E(1)K$.
- 3. Extensions to semigroups of the form E(s)E(t) = E(st), s, $t \in \mathbb{R}^+$ can be made. A particular case was discussed in [2], and improvements of the results given there can be made along the lines of the proofs given here.

REFERENCES

- F. F. Bonsall, Linear operators in complete positive cones. Proc. Lond. Math. Soc. 8 (1958) 53-75.
- 2. D.W. Boyd, The spectral radius of averaging operators. Pac. J. Math. 29 (1968) 79-95.
- 3. D.W. Boyd, Indices of function spaces and their relationship to interpolation. Canad. J. Math. (to appear).
- 4. E. Hille and R.S. Phillips, Functional analysis and semigroups. (Providence, 1957).
- 5. J.L. Kelley and I. Namioka et al, Linear topological spaces. (Van Nostrand, Princeton, 1963).
- 6. W.A.J. Luxemburg, Banach function spaces. (Thesis, Delft Technical University, 1955).

California Institute of Technology