MONOTONE SEMIGROUPS OF OPERATORS ON CONES*
David W. Boyd

(received January 14, 1969)

In this paper we consider a special class of linear operators
defined on a cone K in a Banach space X . This class of operators
is the natural generalization of a class of operators which has applications
in the theory of interpolation spaces. In particular, using the criteria
developed in Theorem 1, it is possible to characterize those sequence
spaces X such that every linear operator A of weak types (p,p) and
(9, q) is a continuous mapping of X into itself. For details of this we
refer the reader to [3].

We begin with a sequence of operators {E(m)} each defined on
K, and consider operators of the form T =Z{t(m)E(m):m =1,..., o},
where t(m) > 0. Under the assumption that {E(m)} forms a
"monotone semigroup' we are able to establish conditions under which
T will map K continuously into itself.

The method used allows us to give precise information about the
spectral radius of T in terms of a number B associated with {E(m)} .

1. Preliminary remarks. We assume that X is a real Banach
space and that K C X is a closed normal cone in X so that
K+K CK, a KCK for a >0, K is a closed subset of X, and
there is an ¢ > 0 suchthat x, y ¢ K, |[x| > 1, |y >1 imply
Ix+yll > e.

The dual cone K' is the set of linear functionals x' ¢ X' such
that {x,x'> > 0 for all x ¢ K. Since K is normal, X' =K'- K' and
if we define p(x) for x ¢ X by

(1) p(x) = sup {| &, xD | : x' e K, ||x] <1},

then p is a norm on X and there is v > 0 such that
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(2) v lx]l< p(x) < [|x] for all xeX

(see [5, pages 226-227]).

If T is a linear operator mapping K into itself, the partial
norm and partial spectral radius of T are the numbers

e) 1Tl = 1Tl = sup (1Txl s x e, Bl < 1),
. 1
‘4’ (1) = r(m =m0
n=*00

These terms are due to Bonsall [1]. If ”T”K < o we write T ¢[K].

Definition. A monotone semigroup of operators on K is a
sequence {E{m)} of non-zero linear operators leaving K invariant
and satisfying

(a) E(1)x = x for all x ¢ K
(b) E(mn)x = E(m)E(n)x for x¢K, m,ne¢ 2zt = {1,2,..}

(c) <E(m+1)x., x'/\_< <E(m)x, x'> for x¢ K, xte K', m¢e Z+ .

LEMMA 1. Let {E(m)} be a monotone semigroup on K and

h(m) = ”E(rn)”K If B = sup{-log h(m)/logm : me Z+} , then

B = lim {-log h(m)/logm} < 0.
m=->

Proof. From (b) of the definition, we have h(mn) < h(m)h(n) .
while from (c) we obtain yh(m) < h(n) for m >n, where v is as in (2).

Now define g(k) = log h(Zk)/log 2 for k=0,1,2,... and notice that
gk +2£) < g(k) + g(2). Then, by a well-known result, if p = -inf g(k)/k,

then g = lim (-g(k)/k) (see [4, page 244]). Given m, choose
k= o

k k+1
k = [log m/log 2] sothat 2 < m < 2 . Then we have

(5) vh(2EH) < him) < 4 The5).
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Taking logarithms in (5) dividing by log m and letting m- o, we
obtain

(6) lim log h(m)/logm = -B.

m —> 0

To see that B = sup {-log h(m)/log m} , note that just as for Zk we
have

inf log h(mk)/log mk = lim log h(mk)/bg mk = -B,
k k = o0

so that log h(m)/logm > -p.

Since h(m) > m-‘3 we must have § > 0; for otherwise h(m) —> o
which contradicts Y h(m) < h(1) .

Now if J = {t(m)} is a sequence of non-negative numbers, we

define
® -8

(7) £(s,T)= T tim)m ~, for real s.
m=1

If the series diverges we write £(s,T7)=, and since { is non-increasing
we may define {( + o, J) as the respective limits.

We define the abscissa of convergence of { by o, so

8) mo= 7 (9) =inf {s:¢(s,T) < o} .

We may or may not have g(ffo,ﬂ') < © , but we do have g(fvo,:r) = lim ¢ (s,T).
o
s A

Note that ¢ is continuous on (f?o , ) .

2. Statement of main results. Our main results give criteria
for T e [K] where

P%
(9) Tx = s tm)Em)x ,
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with domain the set of x ¢ X for which the series converges in the
weak <X, X" topology.

Note that if B < o, the only situation in which we do not obtain
an effective criterion for T ¢ [K] is when {,(-:\’o, T)< o, B = 7 and
o

I E(m)”K # rn_ﬁ for an infinite set of m.

THEOREM 1. Let X be a real Banach space, K a closed
normal cone, and {E(m)} a monotone semigroup of operators on K.
If T is a sequence of non-negative numbers, define T,¢, v B by (9),

(8), (7), (6) respectively. Then

0
(a) if = t(m)]| E(rn)”K < 0, then Te[K] and
m=1

00

It < = tm) B s
m=1

(b) if p > 5, then T . [K];
(c) if T:[K], then p> o ;
(d) if Te [K] and T <o then ¢(p,T) < oo;

(e) if p > o, then ((B,J) = r (T).

COROLLARY 1. If B < o and Q(FO,J) = o, then the following

are equivalent.

(a) T . [K]
() (P, T) <o

(c) = tm) | E(m)”K < .

COROLLARY 2. I B < o, and | E(m)”K = m P except for a
finite set of m, then T ¢ [K] if and only if LB,7)< .

If ”E(rn)”K = m—B for all m, then ”T”K = rK(T) =B, T).
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The proof of Theorem 1 is somewhat involved so we first indicate
a number of examples.

3. Examples.

1. Let X be a Banach space of sequences {x(n)} on which there
is a function norm p of the type defined by Luxemburg [6]. In
particular |[x| = p(|x|) and [x(n)] < |y(n)| for all n implies
p(lx,) < p(fy,) . The operators E(m) defined by

(10) (E(m)x)(n) = x(mn), nez’

clearly form a semigroup.
For the cone K, take the set of all non-negative, non-increasing

sequences in X. Then x(mn) < x(n) for all n so {E(m)} is a
monotone semigroup. This semigroup appears naturally in [3].

1/p
For illustration, let p([x]) = {le(n)lp} so x =4P. Then

(11) Il = sop (IEGx] : Ix] <1, xc k) =m /P,

Here Corollary 1 applies, so if {t(m)} is a non-negative sequence

1/p

” T” K= t(m)m-

%Ms

Suppose, on the other hand, that for our cone we take P, the set of

non-negative sequences in X = 2P, and let {t(m)} be decreasing.
Then, by using rearrangements of sequences one can see that

EYNEREI

However, ”E(m)"P =1 for all m, so we do not have
)
IT] = = tim)||E(m)] . The reason that our corollary does not
P .0 P
apply here is that {E(m)} is notmonotone on P.
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2. After examining Theorem 1, one might conjecture that {(p,T) < o
would imply T ¢[K], and perhaps that {(3,J9) = r(T), even when
B = 5 . However, this is not true even when E is defined by (10) as
o
our next example shows.
Let k > 16 > e° and define h by

(12) h(m) = X 5
m logm , for m > k.

If we choose B so that
(13) B > log log k/log k

then h can be seen to be non-increasing, and satisfy h(mn) < h(m)h(n)

+
for m,nc¢Z .

Now define a function norm p on sequences by

(14) o(|x]) = sup {|x(n)|/h(n) : ne 2z} .

If we take X to be the set of sequences with p(!xl) < 0, and K as in
Example 1, we can easily show that ” E(m)”K = h(m).

Now take for J the sequence defined by

(15) t(1) = 1 and t(m) = mﬁ-1(1og rn)-2 for m> 2.
Then
e o] [¢ o] ﬁ
(16) >  t(m)h(m) = oo and = t(mm = < .
m=1 m=1
But h is itself in X so the first part of (16) shows that [|T| = o and

yet we have {(B,J) < co. It is also clear that r(T) = o # ¢(B,T).
Because of (13) we can obtain examples for any p > 0 by choosing k
sufficiently large.
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4. Proofs of the main results. We begin by introducing the

k .
sequences T = {tk(rn)} , R)\ = {r(m,\)} corresponding to a sequence

k
3 = {t(m)}; T is defined formally by

(17) Q(S,Zl’k) = I;(s,ﬂ')k,k=0,1,.
and R)\ by
® k1
(18) rm,x\) = = A tk(rn) (possibly o) .

k=0

¥ r(m, \) < o for all m, we denote by R)\ the operator Zr(m, \)E(m).

The following lemma gives the pertinent information about R)\.

LEMMA 2. (a) I 0’0({]’) < w0, then the series (18) converges
+
for all me¢ Z , if \ > t(1).

(b) ¥ Te[K], them r (T) > t(1).

-1
(c) R)\e [K] if and only if \ > rk(T) and in this case R)\ =(-T) .

(d) For x > t(1), let T = To(Rx)' Then 7 is the unique

solution of ¢(s,J) = n if A\ < g(mo,ﬂ') or else o, 3 mo(B’) if ')\_>_(,(0’0.3').

Furthermore,

(19) {,(S,R)\) = (\- g(s,ﬂ'))_1 for s >0'o(ﬁ?,)\).

Proof. (a) By formula (17), if s > ¢ and X\ >{(s,T), then
—— o

o0 0
@) -t = 2 T e M = 2 rmom ™ = g(s,R))
k=0 m=1

which shows that r(m,\) < o for )\ > {(s,T) and hence for

x> lim (s, T) = t(1).

s =
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(b) ¥ Te¢ [K], thenfor x <K, x'- K' we have

<kax,x'/§Z £ (1) (E(1)x, x') = 01 (e, x)

k
Now applying (2) we obtain ” T ”2 t('l)kfy from which r(T) > t(1)
follows.

(c) ¥ x > r(T), the Neurnann series for (A-T) x converges
and it is clearly equal to R)\x. Conversely if both R)\ ¢ [K], T ¢[K]

then a direct computation gives TR)\x = R) Tx = )\R)\x which shows
-1
that R)\ = (A\~T) ~, and hence X > r(T). (See [1, Theorems 5 and 6].)
(d) ¥ ¢(r ,3) > x> t(1), and s satisfies N\ > {(s,J), then
o
Formula (20) is valid, and shows that g(s,R)\) —- 0 as s decreases to
to the solution = of \ = ¢(s,T), so # (R ) = 7 .
1 o\ 1
In case )\ > L('ro ,7), the relation (20) shows that ﬁo(Q)\) < 'To(lT).
However, since X >0, r(m,\) > )\_1 t(m) so that ¢(s,J) < )\t_,(s,R)\)

which shows ¢ (R ) > & (7).
o N - o

Proof of Theorem 1. (a) For x ¢ K, x'¢ X', and
<] <1, [[x' <1 we have {E(m)x,x') < | E(rn)”K Thus, we

obtain \/Tx ,x') = = t{m) <E(m)x,x'> < T t(m) ” E(m) ” which proves

K )
(a) on taking supremums first over x', then over x .

(b) By definition of B, given € > 0, there is an mo(s) so that

-p B +e

m < I|E(m)“K<_ m’ for m Zmo(a). Choose ¢ > o so that

B -¢e> L and {(B - €,J) < o, and then apply part (a).

(c) We first note that the monotone condition {E(m +1)x, x'> < <E(m)x,x>
implies the following inequality if T ¢ [K] and || E(rn)”K = h(m).

2k+1 -1
(21) n@<*) 2 x m %tm) < c_|| T
m=2k s K
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-1 -4 -
where cS = v or Y 2 S according to whether s < 0 or s > 0.

To see this for s >0, let x ¢eK, x'e¢ K' with [x| <1, [x'[[< 1.

A

k
Then, since (2 /rn)S <1,

2k+1_
[Tl > (T, ') > = " t(m) (E(m)x, x')
m=2
k+1
k+1 ks 2 -1 -s
> <E(2 )x, x') 2 z t{m)m
m=2

Now, if s<¢ and s +¢ < cro, then ¢(s +¢,J) = ©. Using this, one
o)

can show that there is a sequence O of values of k for which

Zkﬂ—i

-8
> m  t(m)—> o .
k

m=2

But, then from (21) we have Z_R(ﬁ-s) < 2‘3 h(ZkM)Zks -0 as k= o,
through G. This shows B > s and since s < L is arbitrary that

> o .
ﬁ—0

(d) By part (c), we have B > g, 8O that if g(rro,ZT) < o there
is nothing to prove. Hence assume g(yo,ﬁ') =ow. Let \>r(T), and
7 be the solution of {(s,J) = \. Then by Lemma 2(d), 571 = o (R)\) .

o

Since R)\ e [K], (c) implies that g > s-o(R)\) = and hence

1 ’

(22) g(ﬁ,a’)sg(«i,:}')z)\<w.

(e) We assume B > LAEL T ¢ [K] and we wish to show r(T) =¢(B,J).
I L(d’o,ﬂ') = o, (22) shows that {(B,J) < r(T) since X\ > r(T) is arbitrary.
In case Y,(vo,J) < o we can again derive (22) provided \ < g(o-o,;r) and

hence we have {(B,J) < r(T) always.
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On the other hand, p > «0 implies ¢ (B, T) < g(o'o,ZT) (unless

T = t(1)I which can be handled directly). Let ¢ >0 be chosen so

LR, T) +e =) < g(a'o,J) and let o, = o‘o(R)\). By Lemma 2(d) we

see that o, <p. Butby part (b) of the theorem this implies R)\ e [K]

and hence X > r(T), or since ¢ > 0 is arbitrary that ¢{(p,J) > r(T),
completing the proof of (e).

Proof of Corollary 1. Since L(O'O,ZT) =, we have {((B,T) < o,
if and only if g > O’O so the equivalence of (a), (b), (c) follows from
parts (a) and (d) of Theorem 1.

Proof of Corollary 2. I ¢(,J) < « then T t(m) || E(m) ”K <

and hence T ¢ [K]. Conversely if T ¢ [K] and LS then {(B, 7)<
by Theorem 1 (d). If o= w, T ¢[K] since this would imply B > T,

(by Theorem 1 (c)), contradicting p < .

I E(m)”K =m P for all B, then Theorem 1 (a). and the fact
that r(T) < ”T” gives

(23) o(T) < || T| <¢lp, ).

Thus for P > T Theorem 1 (d) gives r(T) = ¢{(B,J) which proves the

required result. For B = 0'0, we can prove that r(T) > ((B,T) by

assuming the contrary and choosing X\ with r(T) < x < ¢(3,J). The
argument leading to (22) then goes through as before and completes the proof.

Remarks. 1. The proof of Corollary 2 shows that the relation
r(T) > ¢(B,T) is always valid with equality in case g # o’o. In view of

the second example of Section 3, this is all that can be claimed in
general,

2. The assumption that E(1)x = x for all x ¢ K is unnecessary
for the results of Theorem 1 as one sees by replacing the cone K by

K, = E()K.

+
3. Extensions to semigroups of the form E(s)E(t) = E(st), s, teR

can be made. A particular case was discussed in [2], and improvements
of the results given there can be made along the lines of the proofs given
here.
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