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SUMMARY

Epidemiologists agree that there is a prevailing seasonality in the presentation of epidemic waves
of respiratory syncytial virus (RSV) infections and influenza. The aim of this study is to quantify
the potential relationship between the activity of RSV, with respect to the influenza virus, in
order to use the RSV seasonal curve as a predictor of the evolution of an influenza virus
epidemic wave. Two statistical tools, logistic regression and time series, are used for predicting
the evolution of influenza. Both logistic models and time series of influenza consider RSV
information from previous weeks. Data consist of influenza and confirmed RSV cases reported in
Comunitat Valenciana (Spain) during the period from week 40 (2010) to week 8 (2014). Binomial
logistic regression models used to predict the two states of influenza wave, basal or peak, result
in a rate of correct classification higher than 92% with the validation set. When a finer three-
states categorization is established, basal, increasing peak and decreasing peak, the multinomial
logistic model performs well in 88% of cases of the validation set. The ARMAX model fits well
for influenza waves and shows good performance for short-term forecasts up to 3 weeks. The
seasonal evolution of influenza virus can be predicted a minimum of 4 weeks in advance using
logistic models based on RSV. It would be necessary to study more inter-pandemic seasons to
establish a stronger relationship between the epidemic waves of both viruses.
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INTRODUCTION

Influenza virus and respiratory syncytial virus (RSV)
are responsible for causing both mild and severe re-
spiratory infections in people of all ages, although
RSV is known for its propensity to particularly affect
young children.

From an epidemiological point of view, there is a
prevailing seasonality in the presentation of epidemic

waves of RSV infections and influenza. However, it
is often difficult to predict with a high degree of accur-
acy the peak amplitude and duration, as defined by
the shape of the seasonal curve [1]. These seasonal pat-
terns vary annually, due to diverse circulating strains
and various environmental factors [2].

Although there is a considerable variation in the in-
tensity and timing of the transmission of these respira-
tory viruses over a period of years, there is always
some degree of predictability. This predictability typ-
ically occurs in temperate climates with a clearly
defined winter seasons [3].

Thanks to the efforts regarding surveillance of respira-
tory viruses, which has considerably strengthened in
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recent years, in February 2013 Bloom-Feshbach et al. [4]
published a quantitative study of a systematic review of
the seasonal patterns of influenza and RSV worldwide.
Information on the seasonality of both viruses was avail-
able for 137 different localities throughout five conti-
nents. In addition, the weekly routine monitoring of the
influenza virus available through FluNet, the WHO
influenza surveillance system, allowedmore refined time-
series modelling in a subset of 85 countries [3].

Consistent with the 2006 recommendation of the
European Influenza Surveillance Network (EISN) to
incorporate RSV information under European
influenza sentinel networks in Spain, a descriptive
study [5] analysed the information on the movement
of RSV obtained under the sentinel influenza surveil-
lance system in Spain from 2006 to 2014; its usefulness
was concluded to be a better characterization of sea-
sonal influenza waves.

In Comunitat Valenciana, an autonomous region in
Eastern Spain, influenza virus has been under surveil-
lance since 2004, using the analysis of epidemiological
surveillance system (AVE). Since 2007, and from the
introduction of the microbiological surveillance net-
work of Valencia (RedMIVA) dissemination of RSV
incidence has been achieved, with information pub-
lished on a weekly basis.

AVE is an electronic system which has been devel-
oped for epidemiological surveillance in Valencia
since 2004. It permits the collection of real-time
data from notifiable disease outbreaks and alerts,
the analysis of which is automatically disseminated
to users.

Within the Comunitat Valenciana, surveillance
activities are carried out in 16 units, according to
the region’s health disaggregation, which act as
the first level of specialized surveillance. The elec-
tronic monitoring is operative in all 16 surveillance
units and, additionally, covers optional primary and
speciality care, enabling the units to complete the
clinical information of disease cases detected from
socio-demographic data of system ambulatory infor-
mation [6].

Incorporation of the microbiological results is done
automatically via RedMIVA. RedMIVA is a Ministry
of Health information system aimed at monitoring
and research, and is based on the systematic collection
of the results from 27 microbiology laboratories of the
Valencian health system [7].

The rationale for this study is that the anticipated in-
formation on the influenza virus’s epidemiology and
seasonality, derived from the data collected by these

RSV record surveillance systems, is crucial to create
and guide public health strategies at the community
level in order to develop effective disease control
measures.

The aim of this study is to quantify the potential re-
lationship between the activity of RSV, with respect to
influenza virus, so that the RSV seasonal curve might
serve as a predictor of the evolution of an influenza
virus epidemic wave.

METHODS

A population study was performed covering all the
influenza cases reported in Valencia, by means of the
AVE, and those cases of RSV registered in RedMIVA.
The study period lasted from week 40 (2010) to week 8
(2014), a total of 177 weeks. The validation of influenza
cases was performed according to the case definition of
the national epidemiological surveillance network.

The objective of predicting the evolution of
influenza from the information provided by RSV in
advance, can be achieved by either of two different
statistical methods: logistic regression and time series.

Binomial logistic regression

For a first approach to the problem, let us examine the
graph of influenza evolution in Figure 1. Two distinct
situations can be distinguished: one can be termed
‘basal’, referring to those weeks when a certain thresh-
old is not exceeded, and the other designated the
‘peak’, when the weekly influenza cases exceed the
threshold. Once the threshold is set, the variable gn
can be categorized as a new variable, estg2, so that:

estg2 = 0 basal( ) if gn ≤ u,
estg2 = 1 peak

( )
if gn . u.

In this context, the prediction has to be done in
terms of probability and the model used is a binomial
logistic regression [8] whose expression is,

logitπt = ln
πt

1− πt
= β0 +

∑n
k=m

βkvrst−k, (1)

where πt =P(estg2t = 1) and t denotes the week. Using
antilogarithms the following is obtained:

πt =
exp(β0 +

∑n
k=m

βkvrst−k)

1+ exp(β0 +
∑n
k=m

βkvrst−k)
. (2)
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Multinomial logistic regression

The above classification can be refined, taking into ac-
count the fact that the influenza peak has both a grow-
ing phase and a decreasing one. We can define a new
variable under three categories,

The logistic model is now multinomial [8] and given
that there are more than two categories of dependent
variable, the model consists of as many equations as
categories minus 1. Each equation relates a category
with the one taken as reference. Thus, if by πi, i=−1,

Fig. 1. (a) Weekly evolution of gn and respiratory syncytial virus (RSV) cases, (b) cross-correlation function (CCF) of
both series.

estg3 = −1 decreasing peak
( )

if gn. u and the epidemic decreases,
estg3 = 0 basal( ) if gn ≤ u,
estg3 = 1 increasing peak

( )
if gn. u and the epidemic increases.
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0, 1 we represent P(estg3t= i), and the reference is for
basal category, the two model equations are:

log
π−1

π0
= β0,−1 +

∑n
k=m

βk,−1vrst−k,

log
π1
π0

= β0,1 +
∑n
k=m

βk,1vrst−k.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3)

The relationship π−1 + π0 + π1 = 1 and (3) provide
direct expressions for the probabilities associated
with each category.

Time series with regressors: ARMAX models

Predicting influenza in a given week t by the use of
RSV values in previous weeks, the influence of the
previous values of the influenza itself cannot be
ignored. A model that includes the influenza time ser-
ies and the previous RSV values as regressors, is an
ARMAX model for which the general expression is

gnt =
∑p
i=1

ϕignt−p +
∑q
j=1

θjet−j +
∑n
k=m

βkvrst−k + et,

(5)
where et is a white noise (i.e. random variables with
zero mean and i.i.d.). In short, we have an ARMA
model (p,q) to which a regression component with pre-
vious RSV values has been added. This model can be
considered a special case of transfer function models,
popularized by Box & Jenkins [9].

RESULTS

Throughout the study period 239 321 cases of
influenza were reported, of which 125 135 (52·3%)

were female and 113 976 (47·6%) were male. The high-
est number of cases were in the 25–44 years age group
(78195, 32·7%). Of the total number of reported
influenza cases, 22 762 samples of respiratory secre-
tions were processed, with 3436 (15·1%) testing
positive.

Relative to RSV, 19 676 cases were recorded, of
which 5112 (26%) were laboratory confirmed. Of
those filed, 2815 (55·1%) were male and 2286
(44·7%) female. The most affected age group, with
4338 cases, was that of children aged <1 year, com-
prising 85% of RSV infections.

Looking at time series of influenza cases (gn) and
confirmed RSV cases a similar behaviour is observed,
but presenting with a certain time lag of the former
with respect to the latter (see Fig. 1).

The series have been presented with different scales
in order to avoid the effect of the large difference be-
tween the incidences of the two diseases. To corrobor-
ate the relationship between the two series, which
Figure 1a seems to demonstrate, their cross-
correlation function (CCF) has been obtained.

The ‘prewhiten’ function of the TSA package in R
[10, 11] performs an automatic adjustment of an
ARIMA model for both series and obtains the CCF
of the residuals. Figure 1b shows the estimation of
the CCF for gn and RSV series; it can be seen that
RSV precedes gn with a positive cross-correlation be-
tween RSV values in the previous weeks (6 and 7) and
the current week (gn).

Binomial logistic regression

The threshold chosen to divide gn values was u = 567
which amounted to an incidence of 11 influenza cases/

π−1 =
exp(β0,−1 +

∑n
k=m

βk,−1vrst−k)

1+ exp(β0,−1 +
∑n
k=m

βk,−1vrst−k) + exp(β0,1 +
∑n
k=m

βk,1vrst−k)
,

π1 =
exp(β0,1 +

∑n
k=m

βk,1vrst−k)

1+ exp(β0,−1 +
∑n
k=m

βk,−1vrst−k) + exp(β0,1 +
∑n
k=m

βk,1vrst−k)
,

π0 = 1

1+ exp(β0,−1 +
∑n
k=m

βk,−1vrst−k) + exp(β0,1 +
∑n
k=m

βk,1vrst−k)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)
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100 000 people. In order to get a simple model only a
single RSV term was included in model (2). We have
established a model for each RSV delay from k = 3
to k = 7. The set of observations has been randomly
divided into two sets, the training set with two-thirds
of the cases, and the validation set with the remaining
third. The best results were obtained for delays 3 and
4. Table 1 shows the results of both adjustments with
the estimation of the parameters and their standard
errors. If the value of the log-likelihood is considered,
the model with RSVt−3 is slightly better than the
model with RSVt−4.

An indirect measure of the model’s goodness is its
ability to classify. Each observation is predicted as a
basal or peak, according to the probability that the
model assigns, the default criteria being to classify
into the most likely group (0·5 as the cut-off point).
The resulting classifications with both models and
for both sets, training and validation, are shown in
Table 2. The percentages refer to correctly predicted
cases in each category and overall.

The receiver-operating characteristic (ROC) curves
[12], are obtained by plotting ordered pairs (specifi-
city, sensitivity) for different thresholds or cut-off
points. Given its definition, the curve is within the
unit square; its end points are (0,0) and (1,1).
Figure 2 shows the curves for both models with the
first quadrant’s bisector as reference line. A hypothet-
ical ROC curve that coincides with this bisector means
that for any threshold specificity and sensitivity would
be 0·5. Just as if the classification had been done by
tossing a coin, i.e. by pure chance.

A good method of classification is that for which
both specificity and sensitivity are high, showing a
graph above the first quadrant’s bisector, as seen by
the two curves in Figure 2. The best possible method
would be that in which the curve passes through point
(0,1), coinciding with the left and top sides of the unit
square. The area under the ROC curve (AUC) pro-
vides a measure to evaluate the quality of one method;
only those methods with an AUC >0·5 are of interest.

The AUC for both curves, and respective confi-
dence intervals obtained by bootstrap are shown in
Table 3. Clearly both areas are well above 0·5 and
close to 1, the maximum possible value.

Although the model RSVt−3 performs better both
models are very similar, as tests based on their respect-
ive AUCs confirms. The corresponding statistic is
D=−1·274 with P = 0·207, and the null hypothesis
of equality of AUCs is accepted.

Moreover, observation of the ROC curves suggests
the possibility of improving the specificity of both
classifications by changing the cut-off point. Indeed,
cut-off points that provide sensitivity and specificity
values (see the circle in the graph) improve the specifi-
city with minimal sacrifice of sensitivity. Table 4
shows the results of the classification with cut-off
points P = 0·125 for the RSVt−3 model, and P =
0·135 for the RSVt−4 model.

Multinomial logistic regression

The best result was obtained by a model involving
delays 3 and 6 for RSV. Table 5 shows the results of
adjustment with estimation of the parameters and
their standard errors.

Table 6 shows the result of classification with the
multinomial model for training and validation sets.
Percentages refer to those cases correctly predicted
in each category and overall.

ROC curves cannot now be used to evaluate the
model’s behaviour, since they cannot be constructed
for a variable with more than two categories. Hand
& Till [13] propose an overall measure that, as
AUC, measures the ability of the model to separate
each class from the remaining classes. It is expressed
as follows:

M = 2
k(k − 1)

∑k−1

i=1

∑k
j=i+1

Â(i, j),

with

Â(i, j) = 1
2 [Â(i|j) +Â( j|i)],

Â(i|j) being the probability that an individual of class
j, randomly selected, would have an estimated prob-
ability of belonging to a class i less than an individual
of class i, also randomly chosen. M also takes values
between 0 and 1. Table 7 shows the value of M for
the adjusted model and its 95% confidence interval
obtained by bootstrap.

Table 1. Adjustment for the binomial logistic models

β S.E. exp(β) 95% CI

Constant −3·4763 0·5753 0·0309
RSVt−3 0·0865 0·0177 1·0904 1·0532–1·1288
Constant −4·1856 0·7633 0·0152
RSVt−4 0·1317 0·0306 1·1407 1·0744–1·2112

CI, Confidence interval; RSV, respiratory syncytial virus.
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Time series with regressors: ARMAX models

The forecast function of the ‘auto.arima’ package in R
[14] allows the simultaneous management of both re-
gression and series adjustment. It was used by intro-
ducing delays 3–7 of RSV as regressors; as delay 3
had a non-significant coefficient, it was eliminated in
a second adjustment, so that the final expression of
model (1) is:

gnt = ϕ1gnt−1 + ϕ2gnt−2 +
∑7
i=4

βivrst−i + et. (6)

Table 8 contains the results of the adjustment of
model (6). Figure 3 shows the graph of original and
adjusted series and the residuals’ autocorrelation func-
tion. It follows from Figure 3(a, b) that the model fits
the data well and the residuals are compatible with
white noise.

The above adjustment was obtained using data of
weeks 1–171, leaving the remaining 6 weeks for pre-
dictions. Table 9 shows these predictions, that are
also represented in Figure 4. The graph begins at
week 160 in order to be able to observe the previous
behaviour of the model. The predictions up to week
174 are close to the observed values, confidence inter-
vals containing the true value, but the predictions for
the last 3 weeks overestimate the observed values.

Table 2. Classification table for binomial logistic models

Model with RSVt−3 Model with RSVt−4

Training set Validation set Training set Validation set
Predicted Predicted Predicted Predicted

Observed Basal Peak % Basal Peak % Basal Peak % Basal Peak %

Basal 81 3 96·4 41 0 100·0 82 2 97·6 38 2 95·0
Peak 8 23 74·2 6 12 66·7 4 27 87·1 3 15 83·3
Overall % 90·4 89·8 94·8 91·4

RSV, Respiratory syncytial virus.

Fig. 2. Receiver-operating characteristic curves for binomial logistic models.

Table 3. Area under curve (AUC) for the two binomial
logistic models

Model AUC mean.boot se.boot 95% CI

RSVt−3 0·9793 0·9794 0·0099 0·9585–0·9953
RSVt−4 0·9869 0·9867 0·0072 0·9702–0·9978

CI, Confidence interval; RSV, respiratory syncytial virus.
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DISCUSSION

It is difficult to establish truly valid disease morbidity
forecasts, when the knowledge of them is the result of
a practitioner’s notification following a consultation,
but there is a very high correlation between isolations
of influenza virus in the laboratory and primary-care
notifications of influenza, as can be seen in Figure 5
in which gnpct is the percentage of laboratory-
confirmed influenza samples.

To the best of our knowledge, this is the first study
that statistically quantifies the anticipation of the
movement of RSV with respect to the influenza
virus. The logistic regression analysis shows good
results for both models, and provide a useful tool to
predict the evolution of an influenza epidemic from
the values confirmed for RSV at least 3 weeks in ad-
vance of the event.

Mention should be made of the threshold for the
classification of the epidemic situation as basal or
peak, denoting an increasing or decreasing phase.
Here epidemiological criteria were selected, but it
can also be determined graphically or automatically
through the so-called threshold models [15, 16].

With regard to the application of time series, a
model that fits a dataset well frequently fails to pre-
dict. The adjusted model is a good one since all
covariates included present statistical significance
(P < 0·05) and its residuals are compatible with
white noise. For weeks 172–174, the predictions are
quite good and their confidence intervals contain
true values. For last three weeks the predicted values
overestimate those actually observed with confidence
intervals, the amplitude of which increase as the fore-
cast horizon is further away.

The presence of delays 1 and 2 of the gn series in the
autoregressive part of model (1), is not a problem
when performing predictions above this horizon, be-
cause dynamic forecast incorporates the previous pre-
dictions for establishing subsequent ones. This is not
the case with RSV values because they form part of
the model as regressors and must be known in ad-
vance. As the model gains fresh information, it must
be continuously adjusted to maintain the quality of
the predictions.

Using data from two important surveillance systems,
we have demonstrated a close temporal relationship be-
tween circulating influenza virus and RSV, as the peak
of maximum activity of the influenza virus appears at
least 3 weeks after the RSV peak. Our results are con-
sistent with those of Gasparini et al. [17], which main-
tains that the RSV annual peak tends to occur in the
absence of other respiratory viral pathogens and that
influenza epidemics usually occur when RSV decreases.

In the study by Bloom-Feshbach et al. [4], the time-
series models applied to FluNet data confirmed the
presence of latitudinal gradients in seasonal influenza
parameters, including timing peak, seasonal amplitude,
epidemic duration, and fluctuations in the seasonal pat-
tern from one year to another. They suggest that the
global seasonal patterns of influenza and RSV are

Table 4. Classification table for binomial logistic models with different cut-off points

Model with RSVt−3 (cut-off = 0·125) Model with RSVt−4 (cut-off = 0·135)

Training set Validation set Training set Validation set
Predicted Predicted Predicted Predicted

Observed Basal Peak % Basal Peak % Basal Peak % Basal Peak %

Basal 77 7 91·7 39 2 95·1 78 6 92·9 37 3 92·5
Peak 2 29 93·5 1 17 94·4 1 30 96·8 3 15 83·3
Overall % 92·2 94·9 93·9 89·7

RSV, Respiratory syncytial virus.

Table 5. Adjustment for the multinomial logistic model

b S.E. exp(b) 95% CI

log π1
π0

Constant −4·872 0·715
RSVt−3 0·053 0·018 1·054 1·017–1·093
RSVt−6 0·059 0·017 1·061 1·027–1·097

log π1
π0

Constant −4·568 0·660
RSVt−3 0·078 0·018 1·081 1·045–1·119
RSVt−6 0·035 0·016 1·036 1·003–1·069

Log-likelihood 102·3

CI, Confidence interval; RSV, Respiratory syncytial virus.
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very similar in temperate locations throughout the
Northern Hemisphere, characterized by focused peaks
of activity during their respective winters, with a slight
advance of RSV over influenza virus [3]. This advance
is also observable in the works of Monto in America [3]
and Freitas in Brazil [18].

Our results suggest that time-series models can be a
useful tool for reporting the relative frequency of viral
agents in a given clinical series, for providing a real-
time circulation of respiratory viruses during the
winter season, while at the same time allowing com-
parison of patterns of behaviour in different years.

This study has some limitations. On the one hand our
models are not applicable in the case of an influenza
pandemic since, in those circumstances, the spread of
the disease expands logarithmically. On the other
hand, due to the lack of laboratory-confirmed RSV in-
fection in the adult population, the actual magnitude of
the impact of RSV on adults is not clearly known [19].

Some authors have described the existence of a bio-
logical mechanism called non-specific temporary im-
munity as a possible cause of the interference
induced by the circulation of different respiratory
viruses (especially RSV) with the evolution of the epi-
demic curve of influenza [20–22].

Taking this theory into consideration, we observe in
Figure 1 that the seasons with the highest number of
recorded cases of RSV (2010–2011 and 2013–2014),
coincide with the lowest number of influenza cases.
In both seasons, the predominant influenza virus
type was A(H1N1) and the time lag between the
RVS and influenza epidemic peaks was 3 weeks for
the first season and 4 weeks for the second. For the
time periods 2011–2012 and 2012–2103, the predom-
inant influenza types were A(H3N2) and B, respective-
ly, and the time lag between the period of maximum
activity of both viruses was 6 weeks for the first time
period and 7 weeks for the second. This observation
supports the hypothesis of the existence of a cross-
immunity phenomenon for a short period (3–4
weeks), between RSV infection and influenza virus,
with it being more likely that the RSV infection has
a short-term protective effect against type A(H1N1)
influenza infection.

Since there is evidence of correlation between the
progress of RSV and influenza, the public health au-
thorities should utilize this. It would serve to empha-
size aspects such as planning the most appropriate

Table 6. Classification table for multinomial logistic models

Training set Validation set
Predicted Predicted

Observed Decreasing Basal Increasing % Decreasing Basal Increasing %

Decreasing 8 3 1 66·7 6 0 2 75·0
Basal 1 79 2 96·3 1 39 0 97·5
Increasing 4 2 13 68·4 1 3 6 60·0
% Global 88·5 87·9

Table 7. M value for the multinomial logistic models

M media.boot se.boot 95% CI

0·8355 0·8347 0·0277 0·7794–0·884

CI, Confidence interval.

Table 8. Adjustment for the ARMAX model

Coefficient S.E. z P

f1 1·4835 0·0563 26·3442 0·0000
f2 −0·7073 0·0568 −12·4452 0·0000
RSVt−4 8·8858 3·0682 2·8961 0·0038
RSVt−5 7·8729 2·8336 2·7784 0·0055
RSVt−6 22·1431 2·8563 7·7524 0·0000
RSVt−7 17·6813 3·1347 5·6402 0·0000
Log-likelihood: −1267·8 AIC: 2549·6

RSV, Respiratory syncytial virus; AIC, Akaike’s Information
Criterion.

Table 9. Predictions for the last 6 weeks

Week Observed Prediction S.E. 95% CI

172 5638 6178·89 546·21 5108·33–7249·44
173 7309 7019·89 977·21 5104·60–8935·18
174 6943 7780·45 1272·94 5285·55–10 275·36
175 5183 7961·67 1423·43 5171·79–10 751·55
176 3341 8605·27 1470·25 5723·64–11 486·90
177 1781 8072·64 1473·34 5184·95–10 960·34
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time to vaccinate certain risk groups against influenza,
and to implement other interventions to reduce its an-
nual incidence, increasing the effectiveness of vaccin-
ation programmes and influenza prophylaxis.

The demand for outpatient and emergency-room
admissions for acute respiratory infection in the winter
months follows a parallel course to the incidence of
influenza infection [23], so that the prediction of the dis-
ease’s evolution would help institutions to optimize the

distribution of healthcare resources based on the chan-
ging burden of disease in the community. Following
this idea, a study by Gilca et al. in Quebec [24] showed
that the peak of maximum influenza activity precedes
by a period of 1–2 weeks the peak in hospitalizations
associated with influenza infection. Additionally, pro-
viding this information to medical practitioners could
contribute to the improvement of the disease’s clinical
diagnosis.

Fig. 3. (a) Original and adjusted series, (b) residual autocorrelation function (ACF).
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An advantage of having advanced knowledge of the
evolution of seasonal waves of influenza virus is that
taking timely preventive measures in order to achieve
a decrease in the incidence of influenza, leads to a de-
cline of serious bacterial diseases such as invasive
pneumococcal disease. It has been shown in various

studies that there is a temporal relationship between
influenza virus circulation and increased frequency
of occurrence of these diseases [25–27].

In conclusion, our objective has been achieved since
acceptable predictions of the seasonal evolution of
influenza virus from RSV values were established a

Fig. 4. Predictions and their 95% confidence intervals.

Fig. 5. Weekly evolution of gn cases and the percentage of laboratory-confirmed influenza samples, gnpct.
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minimum of 4 weeks in advance. These predictions are
particularly satisfactory for the first 3 predicted weeks
172, 173, 174, although their quality deteriorates as
the forecast horizon becomes further way. It would
be necessary to study more inter-pandemic seasons
to establish a stronger relationship between the epi-
demic waves of both viruses.
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