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The present paper constitutes, together with [13], a continuation of the

study of differential geometry of homogeneous spaces which we started in [11].

Our main result states that if the homogeneous holonomy group of a complete

Riemannian manifold is contained in the linear isotropy group at each point,

then the Riemannian manifold is symmetric. The converse is of course one of

the well known properties of a Riemannian symmetric space [4]. Besides the

results already sketched in [12], we add a few applications of the main theorem.

After giving a brief sketch of the general theory of connections and holo-

nomy groups, we first establish a reduction theorem for connections in a princi-

pal fiber bundle. Although it is just an exact formulation of E. Cartan's theorem

[3] and is supposedly "well known" by now, there is no published proof as yet.

By using this theorem, we prove Theorem 1 on certain invariant affine

connections on a homogeneous space. Then applying the method developed in

[13] and using Theorem 1, we obtain Theorem 2 which is the main result.

I am indebted to Professor Lichnerowicz and to my friend S. Kobayashi

for stimulating conversations on the topics treated in this paper.

I. Reduction of a connection

1. Connection in a principal fiber bundle. Although the notion of a con-

nection in a principal fiber bundle is well known [1], [5], [7], we shall give a

brief resume of the definitions which we need for our purpose. By differentia-

bility, we shall always understand that of class C33.

Let P= P(B, G) be a differentiate principal fiber bundle over the base

manifold B with structure Lie group G [7], [15]. We always assume that P

satisfies the second axiom of countability. Then this is true for the base B
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and the structure group G. For G, it means that G is a Lie group (a local]/

connected group whose identity component G° is an analytic group [6]) which

has at most a countable number of components. Conversely, if B satisfies the

second axiom of countability and if G/G® is at most countable, then P satisfies

the second axiom of countability.

At each point x of P, let Px be the tangent space to P and Gx the subspace

of Px which is tangent to the fiber through x. A connection Γ in P is a choice

of a tangent subspace Qx at each x of P which satisfies the following condi-

tions :

1) Px = Gχ + Qχ (direct sum);

2) Qxa = Ra Q, where Ra ia&G) denotes the action of G on P to the rights

that is, Ra x = xa I

3) Qx depends differentiably on x.

Qx is called the horizontal subspace at x, and a tangent vector of P is called

horizontal if it belongs to some Qx. The last condition can be explained as

follows. Given a vector field X in P, we have at each x EΞ P a unique decompo-

sition Xx= Yχ + Zχ, where F , G & and ZX&QX, by 1). The vector field

Z: x -» Zx, called the horizontal component of X, is required to be differentiate

if X is differentiate. In this case, the vector field Y: x -> F#, called the zwfo'

£#/ component of J*f, is also differentiate.

Given a connection Γ in P, we define the parallel displacement of fibers

along any (piecewise differentiate) curve in B. Let τ be a curve from uQ to

Mi in JB. Then it can be proved that, for any point Xo of P lying over wo, there

is one and only one curve τ* beginning at #0 which covers τ and whose tangent

vectors are all horizontal (such a curve is called a horizontal curve). We call

r* the /ί/ί of r through Xo. Thus r defines a mapping, denoted by the same

letter, which maps Xo into the end point of the lift τ* through XQ. From the

condition 2), we have τ(x a) = τ(#) α for any point x over wo and c G G . It

follows that r is a differentiable isomorphism of the fiber over uo onto the fiber

over uu This is called the parallel displacement along the curve τ.

Let Xo be any arbitrary but fixed point of P. The set of parallel displace-

ments which correspond to all closed curves at uo = π(xo) form a subgroup Ψ

of G, which is by definition the holonomy group of the given connection Γ. Cor-

responding to all closed curves which are homotopic to zero, we have a sub-
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group Ψ° of Ψ, called the restricted holonomy group of the given connection.

It is a connected Lie group which is proved to the identity component of Ψ.

Ψ is a Lie group such that ψ/ψ° is at most countable. For the proof, see [1].

We remark that the fundamental group of B is at most countable as it follows

from our assumption on the second axiom of countability.

2. Reduction of the structure group. Given two principal fiber bundles

P'(Bf, GO and P(B, G) over the same base manifold B, a differentiate mapping

/ of P' into P is called a homomorphism if there exists a homomorphism / of

G' into G such that fix'a1) = / U 0 / V ) , where x' G P' and a1 e G', and if it in-

duces the identity transformation of the base B onto itself. If it is one-to-one,

it is called an isomorphism of P' into P. In the case where Gf is a Lie sub-

group of G, an isomorphism / which corresponds to the injection of Gf into G

is called an injection of P'(B', GO into P{B, G).

The structure group of a principal fiber bundle P{B, G) is said to be

reducible to a Lie subgroup G' of G if there exists a differentiate principal fiber

bundle P'(B, GO and an injection/ into P(B, G). In this case, Pf(B, G') to-

gether with the injection / is called the reduced bundle.

The structure group G of P(B, G) is reducible to G' if and only if there

exists a suitable covering {UΛ} of B and an isomorphism of π^iUa) with UΛx G

expressed by x G π^iUa) -> (π(x), ψΛx)) & Ua x G such that the corresponding

transit functions φpAu) = ψpix) ψaixY1, u = π{x), take their values in the sub-

group G'. It should be remarked that if such a covering and transit functions

exist, then ψ?Λu) are differentiate mappings from U*ΓΛ U? into the Lie sub-

group G'. This may be proved in the same way as Proposition 1, p. 95, of KG.

We can construct the reduced bundle P'(B, G') as follows. For each a, consider

a space XΛ which is homeomorphic with Ua x G', the homeomorphism being

denoted by gΛ. Let I = U I t t be the topological sum of XΛ and introduce an

equivalence relation R in X by

ga(u, a1) = gfj(w, ψ

Let Pf be the quotient space X/R with quotient topology. G' acts on P' by

Cclass of g*(u, a1)'] b1 = [class of £α(w, #'£')]. It is easy to verify that P ' is a

differentiable principal fiber bundle P'(B, G') with an obvious injection into

P(B, G).
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3. Reduction of a connection. We first prove

PROPOSITION 1. A homomorphism f of P'(B, G1) into PiB, G) maps a con-

nection in Pr into a connection in P.

Proof. To establish this, we first define the horizontal subspace at any

point of f(P'). Let fix1) = x. We define Qx as the image by / of the horizontal

subspace Qx> at xf of the given connection in P'. It is independent of the

choice of x' such that fix1) = x. In fact, if fix') = fiy') = x, then / = x'a' for

some a'&G' and Q'y = Ra> Qx>. We have /• Ra> = Ra •/, where a=fia') is-

indeed the identity of G because f(x'a') = fix')fia') = /(#') implies that/(a'}

= e. From this we have / QV =f'Ra Q'x> = / OV.

For any other point y of P, we define the horizontal subspace at y by

Qy-Ra* Qx if jy = xa with ΛΓ e / ( P ' ) and a^G (any point of P is written in

such a form). Qy is defined independently of the representation y = Xiai = X2a2?

where Xi and ΛΓ2 belong to f{Pf). It is easy to verify that y-> Qy defines a

connection in P.

In the case where / is an injection, we say that a given connection Γ in

P is reducible to a connection P in P' if / maps P into Γ in the manner of

Proposition 1.

Now we are in a position to establish

PROPOSITION 2 ireduction theorem for connections). Let PiB, G) be a

principal fiber bundle with a connection Γ, and let Ψ be the holonomy group of

Γ with reference point at x0 of P. Then the structure group G is reducible to

Ψ, and the connection Γ is reducible to a connection in the reduced bundle

P'iB, Ψ). Moreover, the reduced bundle may be regarded as a subbundle of P

consisting of points which can be joined to #o by a horizontal curve.

Proof. Let πix$) = UQ. We construct a covering {£/«} of B and a set of

transit functions all taking values in ψ. For this purpose, we take any covering

{Ua) of B, each UΛ being a cube \u*\ < δa, δ« > 0, with center «β = (0, 0, . . . , 0)

with respect to some local coordinate system (V, . . . , un). We choose once

for all a family of curves τa in B all starting from UQ and each ending at wα.

Let Xa = Taixo). Now for any point x in π~1iUa) we take the ray p* in Ua (with

respect to the given local coordinates) from u-πix) to u*. We have p*(x)

= Xa a for some a G G and we define this element a to be φaix). Then we
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easily see that x -> (π(x), ψΛx)) gives an isomorphism of π~\UΛ) with Ua x G.

If x e 7r"1(C7"β x LΓP), a simple manipulation shows that 0pa(#) = f p(#) ψZ\x)

belongs to Ψ. Namely, we have transit functions all taking values in Ψ.

This shows that G is reducible to Ψ. The reduced bundle P'(B, Ψ)9 which

is constructed from the transit functions ψ^ as we have indicated in 2, may be

mapped into P in the following manner. We map a point of Pf represented by

the class (u, a), u&Ua, «GF, into the point x = QZX(XΛ a) of P. This mapping,

denoted by /, is an injection. We show that f(Pf) coincides with the set of

points Po which can be joined to XQ by a horizontal curve. If we write x ~~ y

when x and y can be joined by a horizontal curve, then x0 ~ xΛ by the defi-

nition of xΛ9 and hence Xo a ~* χa a. Since aE:Ψ, we have Xo — Xo a. Then

x- pά1 (#« 0) ~ ΛΓβ a ~~ Xo. We have thus shown that any point /(PO can

be joined to XQ by a horizontal curve. The converse is also easy to prove.

We shall now show that the given connection in P may be reduced to a

connection in the reduced bundle Po. If x e Po, then the horizontal subspace

Qx of the given connection in P is tangent to Po. In fact, any horizontal vector

at x is the tangent vector to a certain horizontal curve, which must belong to

Po by the definition of Po. Thus x e Po -> Qx defines a connection in Po and

the original connection in P is induced from this connection in Po in the manner

of Proposition 1. We have thereby concluded the proof of Proposition 2.

It might be remarked that the holonomy group of Po is exactly Ψ.

II. Holonomy and isotropy groups

4. A theorem on G/H. Let G be a connected Lie group and H a closed

subgroup. The homogeneous space GlH may be considered as the base space

of a principal fiber bundle G on which H acts to the right in the natural fashion.

G acts on G itself to the left.

PROPOSITION 3. In order that there exist a connection in the principal fiber

bundle G{G/H. H) which is invariant by the left translations of G, it is necessary

and sufficient that G/H is reductive in the sense of [11], that is, there is a sub-

space m of the Lie algebra 0 of G such that 0 = m + § {direct sum), ΐ) being the

subalgebra determined by H, and such that ad{H) m = m. More precisely, by

taking such a subspace m as the horizontal subspace at the identity element e of

G, we can define an invariant connection in G, and vice versa.
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Proof. We regard 0 as the tangent space of G at the identity element [6].

If there is a connection Γ in G(G/H, H), the horizontal subspace at e is a sub-

space m of 0 such that 0 = m + % where ί) is considered as the subspace tangent

to the fiber H through e. By the condition 2) for a connection, we see that

the horizontal subspace at a point h G H is the image of m by the right trans-

lation RH of G. If Γ is invariant by the left translations of G, then the hori-

zontal subspace at h must be the image of m by the left translation Lh. Hence

we must have Rh tπ = Lh m, that is, ad(h) m = tn. Since this is true for every

h&H, we have ad(H) m = m.

Conversely, if there exists a subspace m satisfying 0 = m + f) and ad(H) m

= m, we take m as the horizontal subspace at e in G. For any element aξΞG9

the horizontal subspace Qa at a is defined to be the image of m by the left

translation La- For any element h of H, we have then Rh ' Qa = Rh * La m

= La Rh * m = La Lh m = Lah m = <?σ/i, which is the condition 2) for connec-

tions. The condition 3) is easy to verify. Proposition 3 is hence proved.

From now on, we assume that G is effective on G/H, that is, H does not

contain any invariant subgroup ( # #) of G. If furthermore the canonical homo-

morphism of H onto the linear isotropy group H, is one-to-one, then the princi-

pal fiber bundle G(G/H, H) admits an injection in the bundle of frames

P(GlH, GL(n, R)) over G/H. Namely, we fix an arbitray frame ΛΓ0 at Po of

G/H and map β £ G into the frame which is the image of x0 by the transfor-

mation of G/H induced by a. This mapping / is an injection and is commuta-

tive with the transformations of G acting on G to the left and on P in the

natural fashion.

If G(G/H, H) admits a connection Γ invariant by the left translations of

G, then the injection / induces, in virtue of Proposition 1, a connection Γ1 in P

which is invariant by G. In this way, we obtain an aflfine connection on G/H

invariant by G.

Let X be any element of m and let %t be the one-parameter group of G

generated by X. Its tangent vector %\ at the point Xt is obtained from X by

the left translation LXf and belongs to the horizontal subspace at Xt. Therefore,

Xt is a horizontal curve in G. If h is an arbitrary element of H, then the curve

Rh' xt = LXί h is also horizontal. Let xt be the image of xt by the canonical

projection of G onto G/H. Then the parallel displacement along the curve xt
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of the fiber H is the same as the left translation of H by xt.

This property of the parallel displacement is transfered to the correspond-

ing invariant affine connection Γf on G/H. Hence Γf is what we have called

the canonical affine connection of the second kind on the reductive homogene-

ous space G/H Cll]. The torsion and curvature tensor fields being invariant

by G, they are also invariant by the parallel displacement. This means that

their covariant derivatives are zero.

Conversely, we start with a homogeneous space G/H which admits an in-

variant affine connection. The canonical homomorphism of H onto H is one-

to-one [10], If furthermore the homogeneous holonomy group Ψ is contained

in H, then the affine connection is reducible, in virtue of Proposition 2, to a

connection in the reduced bundle Pf(G/H, Ψ) and, a fortiori, to a connection

Γ in G(G/H, H) which contains P'(G/H, Ψ). Γ is certainly invariant by the

left translations of G. We have thereby proved

THEOREM 1. Let G/H be a homogeneous space of a connected Lie group G

over a closed subgroup H, where H does not contain any invariant subgroup

( # e) of G. If G/H admits an invariant affine connection whose homogeneous

holonomy group is contained in the linear isotropy group H, then G/H is re-

ductive and the covariant derivatives of the torsion and curvature tensor fields

are all zero.

5. The main theorem. Let M be a Riemannian manifold. We denote by

G the largest connected group of isometries of M. By the isotropy group Hp

at a point p of M we mean the subgroup of G consisting of isometries which

leave the point p invariant. The linear isotropy group Hp is the group of linear

transformations of the tangent space Tp induced by the elements of Hp. We

shall now prove

THEOREM 2. Let M be a complete Riemannian manifold. If the restricted

homogeneous holonomy group Ψ% is contained in the linear isotropy group Hp

at each point p of M, then M is Riemannian symmetric, that is, the covariant

derivatives of the curvature tensor field are zero.

Proof. The proof is divided into three steps.

1) First, we show that it is sufficient to prove the theorem in the case

where M is simply connected. Let M be the universal covering manifold
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of M with a natural Riemannian metric induced by the projection π. Of

course, M is symmetric if and only if M is symmetric. We show that the as-

sumption of Theorem 2 remains valid for M. The homogeneous holonomy

group of M is isomorphic with the restricted homogeneous holonomy group of

M in the manner precised in [13]. On the other hand, if p is any point of

M and if πCp) = p, every isometry of M belonging to H°p can be lifted to an.

isometry of M which belongs to the isotropy group at p of M (Lemma 6,

[13]). This proves our assertion.

2) Assume that M is simply connected and complete. We show that it ia

sufficient to prove Theorem 2 in the case where M is irreducible. For this

purpose, consider the canonical decomposition M = Mo x Mi x . . . x Mr given

by G. de Rham [13], [14]. M is symmetric if and only if every factor Mi is-

symmetric (the Euclidean part Mo is trivially so). We show that the assump-

tion of Theorem 2 is valid for each Mi.

Let p = (pa, pi, . . . , pr) e Mo x Mi x . . . x Mr. The homogeneous holo-

nomy group Ψp of M is then the direct product ΨQ x ΨΊ x . . . x Ψr where each

Ψi is the homogeneous holonomy group of Mi and acts trivially on Tj if j # i

[13], [14]. On the other hand, let ψ be any isometry of M belonging to Hp.

Then ψ leaves invariant each Ti [13] and hence induces an isometry ψi of Mi~

Obviously, ψi(pi) = pi. If we consider the isometry ψ of M defined by ψ(q)

= (̂ o(tfo), ψiiqi), . . . , ψλqr)) for q = (qo, qu . . . , qr) e Mo X Mi X . . . X ΛfΓ,

then the linear transformation of Tp induced by ψ coincides with the one in-

duced by ψ. Hence ψ = "ψ. It is also clear that each ψi belongs to the isotropy

group Hi at pi of Mi. Hence Hp = Ho x Hi x . . . x Hr.

From these considerations, it follows that if Ψp is contained in Hp, then.

Ψi is contained in Hi for each i. This proves that the assumption of Theorem

2 is valid for each Mi.

3) Finally, we assume that M is simply connected and irreducible non-

Euclidean. The orbit G(p) of G of an arbitray point p is a submanifold of

M; more precisely, the injection of G(p) provided with the differentiate struc-

ture as a homogeneous space G/Hp into M is of maximum rank at every point

of G(p). Let Tp be the subspace of Tp tangent to G(p). Since Tp is obviously

invariant by Hp, it is invariant by Ψp which is irreducible by assumption.

Therefore we have two cases : either Tj>=(0) or Tp=Tp. If Tj>=(0) at every
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point p of M, it means that G(p) = p for every p. Hp and hence Ψp consists of

the identity, that is, M is Euclidean. This is contradictory to the assumption.

Hence there exists at least one point p such that Tp = Tp. This means

that G(p) contains a neighborhood of p and hence is an open set in M. Then

G(p) is complete as a Riemannian homogeneous space G/Hp. Therefore we

must have M= G(p) = G/Hp. We conclude the proof of Theorem 2 by applying

Theorem 1.

Remark. In Theorem 2, it is sufficient to assume that the homogeneous

holonomy group is contained in the linear isotropy group at each point of a

(non-empty) open set U of M. Indeed, in the above proof, we have only to

check the following point in 3). If Tp = (Q) at every point p of U, then

G(p) = p in U. Since any isometry which is the identity on an open set is the

identity on the whole manifold, we see that G consists of the identity only.

6. Applications. Let M be a complete Riemannian manifold of dimension

n. Let r and s be the dimension of the largest connected group of isometries

G and that of the restricted homogeneous holonomy group Ψp, respectively.

THEOREM 3. Let M be a complete Riemannian manifold whose restricted

homogeneous holonomy group is irreducible. If r = s + n, then either M is a

Kάhlerian manifold whose Ricci curvature is zero or M is symmetric.

Proof. Let p be an arbitray point of M and let Hp be the isotropy group

at p. G/Hp being the orbit of p by G, we have r- dim Hp === n. On the other

hand, if M is not a Kahlerian manifold whose Ricci curvature is zero, the con-

nected component of the normalizor of Ψp coincides with Ψ°p [9]. Therefore,

Hp is contained in Ψp and hence dimHopt= s-r- n. From these two inequali-

ties, we get dim Hp = r-n = dim Ψp and hence Hp = Ψp. This holds at every

point p. M is then symmetric in virtue of Theorem 2.

For any Riemannian manifold whose Ψp is irreducible and which is not a

Ka'hlerian manifold with Ricci curvature equal to zero, we have always r ^ s -f n

[8], Theorem 3 gives another characteristic property of symmetric spaces

among the class of Riemannian manifolds in consideration.

THEOREM 4. Let M be a compact Riemannian manifold whose restricted

homogeneous holonomy group is irreducible. If r=s + n, then M is symmetric.
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Proof. We have only to show that the Ricci curvature is not zero. If it

is zero, then the covariant derivatives of any Killing vector field are zero [2].

Since M is irreducible, such a vector field is zero. This means that G consists of

the identity only and r = 0, which is contradictory to the assumption r = 5 + n.
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