TWO RELATED ESTIMATION PROBLEMS

W. BRISLEY

(Received 11 July 1977)
(Revised 19 October 1977)

Abstract

Two problems involving the "best" solution X for a matrix equation $V X V^{*}=M$ are discussed, together with methods for their solution, and a generalization of one of the methods beyond matrix equations.

1. The two problems

Suppose V and M to be given $k \times n$ and $k \times k$ matrices respectively, and consider the equation

$$
\begin{equation*}
V X V^{*}=M \tag{1}
\end{equation*}
$$

(where * indicates complex conjugate transpose-in general, the matrices will be taken over C).

In typical cases, this equation arises with $k<n$, and there is no diagonal solution X, the matrix M being a "distortion" of a result derived from a supposed diagonal matrix, the "distortion" being due to noise or some other factor. For a particular case in signal processing, see, for example, [1].

Two problems arise:

Problem (a). Select, from the set of all solutions X of (1), that particular matrix X for which the quantity
is least.

(If such a solution exists, we will term it the "tightest" solution of (1): one may reasonably describe it as being the solution which is "closest to being diagonal".

In typical cases, the matrix V is usually arranged from experimental data, and is of rank k; in this circumstance (1) has solutions and so the problem makes sense. For a substantial discussion of further circumstances under which solutions may exist, see Rao [2].)

Problem (b). Select, from the set of all diagonal $n \times n$ matrices, D, that particular one D such that the quantity $\left|V D V^{*}-M\right|$ is least, where $|A|$ denotes

$$
\sum_{\substack{i=1 \\ i=\ldots, \ldots k}}\left|a_{i j}\right|^{2} .
$$

(One may reasonably describe it as "the diagonal which is closest to giving M ". Even if (1) has no solutions, this problem still makes sense, and then may be the most appropriate one for some signal processing estimation tasks (d'Assumpcao [1]).)

In each case, it is clear that a necessary condition for the problem to be well-posed is that the equation

$$
\begin{equation*}
V K V^{*}=0 \tag{2}
\end{equation*}
$$

admits no diagonal non-zero solutions-for, if " $K=D^{\prime}$ " was such a solution, then whenever " $X=S$ " solved (a), then so would " $X=S+D^{\prime \prime}$ ", and, whenever " $D=B$ " solved (b), then so would " $D=B+D^{\prime \prime}$ ". Consequently, in assuming that the problems are well-posed, we assume that

$$
\begin{equation*}
\text { If } V K V^{*}=0_{k \times k} \text { and } K \text { is diagonal, then } K=0_{n \times n} . \tag{3}
\end{equation*}
$$

(We shall return to some analysis of the conditions under which (3) holds, in Section 4.)

2. Solution of Problem (a)

We assume that (1) does not lack solutions, and adopt the point of view that (1), (2) and (3) are referring to the linear map ϕ from the space of $n \times n$ matrices to the space of $k \times k$ matrices, where

$$
\phi(A)=V A V^{*} .
$$

Consequently, the solution set of (2) is the kernel of ϕ, statement (3) is a property of that kernel, and we are considering a search amongst all matrices of the form

$$
X=P+K
$$

where P is a particular matrix such that $\phi(P)=M$, and K is such that $\phi(K)=0$.
Let G be any "generalized inverse" for V; that is, let G be one of the many $n \times k$ matrices such that

$$
\begin{equation*}
V G V=V \tag{4}
\end{equation*}
$$

(and hence also

$$
\left.V^{*} G^{*} V^{*}=V^{*}\right)
$$

The matrix G has only to satisfy (4) for the following, so any of the "generalized inverses" defined in the literature will suffice (see, for example, Rao [3], pp. 24-26 and also Noble and Daniel [4]). The equation (4) implies that

$$
V \mathbf{k}=\mathbf{0} \text { if and only if } \mathbf{k}=(I-G V) \mathbf{r}
$$

for some arbitrary vector r and

$$
\begin{align*}
& \text { if } V \mathbf{x}=\mathbf{b} \text { has solutions, then } \\
& \mathbf{x}=G \mathbf{b} \text { is one of them. }
\end{align*}
$$

It follows from ($4^{\prime \prime \prime}$) that $G M G^{*}$ is a particular solution for (1). Letting K denote any solution of (2) (that is, $K \in \operatorname{ker} \phi$), we have from (4") that $K V^{*}=(I-G V) A$ for some arbitrary $n \times k$ matrix A, and hence (using (4") again) that

$$
\begin{equation*}
K=(I-G V) A G^{*}+B\left(I-V^{*} G^{*}\right) \tag{5}
\end{equation*}
$$

where A and B can be any $n \times k$ and $n \times n$ matrices. Adopting $P=G M G^{*}$, we need only select K, which we do using a Fourier technique, as follows.

Suppose V has rank r. Then the subspace of $C^{n}\{\mathbf{k} \mid V \mathbf{k}=0\}$ has a basis $\left\{\mathbf{k}_{1}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{\nu}\right\}$ with $\nu=n-r$ (note that a suitable basis will have already appeared in the calculation of G). Let $C_{i j}$ denote the $n \times n$ matrix which has \mathbf{k}_{j} entered as column i, and zero for all other entries. Then clearly any matrix of the form

$$
\begin{equation*}
\sum_{\substack{i=1 \ldots . . n \\ j=1 \ldots v}} \alpha_{i j} C_{i j}+\sum_{\substack{i=1 . . n \\ j=1 \ldots v}} \beta_{i j} C_{i j}^{*} \tag{6}
\end{equation*}
$$

will be a solution of (2). Since (5) displays each such K as a sum

$$
K=R+S \text { with } V R=0 \text { and } S V^{*}=0
$$

it follows that $\operatorname{ker} \phi$ is spanned by the set $\mathscr{K} \cup \mathscr{K}^{*}$, where

$$
\mathscr{K}=\left\{C_{i j}\right\}_{\substack{i=1 \ldots n \\ j=1 \ldots v}}, \quad \mathscr{K}^{*}=\left\{C_{i j}^{*}\right\}_{i=1 \ldots n}^{j=1 \ldots v}
$$

On the space of all $n \times n$ matrices, set up the inner product $\langle;\rangle$ by defining that

$$
\begin{equation*}
\langle A ; B\rangle=\sum_{i \neq j} a_{i j} \overline{b_{i j}} . \tag{7}
\end{equation*}
$$

It is clear that this is an inner product, that it is not positive definite, but also that:
when restricted to ker ϕ, under assumption (3), 〈; > is a positive definite inner product on $\operatorname{ker} \phi$.

One can then define $\|X\|$ to mean $\sqrt{ }(\langle X ; X\rangle)$ and note that $\|X\|$ is 0 if and only if X is diagonal.

Although $\mathscr{K} \cup \mathscr{K}^{*}$ is not necessarily a linearly independent set, it will yield (by, for example, a modified Gram-Schmidt process) an orthonormal basis for $\operatorname{ker} \phi$, say

$$
\left\{K_{1}, K_{2}, \ldots, K_{m}\right\} \quad \text { with }\left\langle K_{i}, K_{j}\right\rangle=\delta_{i j}, \quad m \leqslant 2 n v .
$$

Then any solution of (1) reads

$$
" X=S \quad \text { where } \quad S=P+\sum_{i=1}^{m} \alpha_{i} K_{i} "
$$

and Problem (a) is reduced to selecting the α_{i} to minimize $\|S\|$. Since P has been adopted already, and hence the numbers $\langle P ; P\rangle$ and $f_{i}=\left\langle P ; K_{i}\right\rangle$ are fixed, we calculate that

$$
\begin{aligned}
\langle S ; S\rangle & =\langle P ; P\rangle+\sum_{1}^{m} \alpha_{i} \bar{f}_{i}+\sum_{1}^{m} \bar{\alpha}_{i} f_{i}+\sum_{1}^{m} \alpha_{i} \bar{\alpha}_{i} \\
& =\langle P ; P\rangle+\sum_{i=1}^{m}\left(\alpha_{i}+f_{i}\right)\left(\bar{\alpha}_{i}+\bar{f}_{i}\right)-\sum_{i=1}^{m} f_{i} \bar{f}_{i} .
\end{aligned}
$$

Thus, a minimum for $\|S\|$ is achieved if and only if each α_{i} is $-f_{i}$, and the solution to problem (a) appears as

$$
\begin{equation*}
" X=S \quad \text { with } \quad S=P-\sum_{i=1}^{m}\left\langle P ; K_{i}\right\rangle K_{i} " \tag{8}
\end{equation*}
$$

(That the result is independent of the particular choice of P is clear, since if $S_{j}=P_{j}-\sum_{i=1}^{m}\left\langle P_{j} ; K_{i}\right\rangle K_{i}(j=1,2)$ then, since $P_{1}-P_{2} \in \operatorname{ker} \phi$, and hence

$$
P_{1}-P_{2}=\sum_{i=1}^{m}\left\langle\left(P_{1}-P_{2}\right) ; K_{i}\right\rangle K_{i},
$$

we have $S_{1}-S_{2}=0$. It is equally "standard" that the result is independent of the particular orthonormal basis chosen for ker ϕ. Thus, it does make sense to speak of the tightest solution $X=S$ given by (8).)

Some further remarks are of interest:
(i) If M of (1) is Hermitian, then the "tightest" solution is also Hermitian.

This can be seen as follows: from (6), we have

$$
S^{*}=P^{*}-\sum_{i=1}^{m}\left\langle\overline{P ; K_{i}}\right\rangle K_{i}^{*}
$$

But since $\langle\overline{A ; B}\rangle=\left\langle A^{*} ; B^{*}\right\rangle$, the set $\left\{K_{1}^{*}, \ldots, K_{n}^{*}\right\}$ is also an orthonormal basis for $\operatorname{ker} \phi$, and since P^{*} is also a particular solution of (1) when M is Hermitian, then S^{*} is merely the "tightest solution" using P^{*} and $\left\{K_{1}^{*}, \ldots, K_{n}^{*}\right\}$. Hence $S=S^{*}$.
(ii) It can be arranged that each K_{i} is Hermitian, and hence, if M is Hermitian, that each $\left\langle P ; K_{i}\right\rangle$ be real.

We note that the Gram-Schmidt process preserves "Hermitian", since it only involves calculations such as $A /\langle A ; A\rangle$ and $A-\langle A ; B\rangle B$, and $\langle A ; B\rangle$ is real if both A and B are Hermitian. If then, we use, instead of $\mathscr{K} \cup \mathscr{K}^{*}$, the spanning set

$$
\left\{\left(C_{i j}+C_{i j}^{*}\right)\right\}_{\substack{i=1 \ldots n \\ j=1 \ldots v}} \cup\left\{i\left(C_{l s}-C_{i j}^{*}\right)\right\}_{\substack{l=1 \ldots n \\ s=1 \ldots v}}
$$

(which consists entirely of Hermitian matrices) and apply the Gram-Schmidt process, the resulting $\left\{K_{1}, \ldots, K_{n}\right\}$ will consist entirely of Hermitians. If, further, $M=M^{*}$, and we use $P=G M G^{*}$, then $P^{*}=P$, and hence

$$
\left\langle\overline{P ; K_{i}}\right\rangle=\left\langle P^{*} ; K_{i}^{*}\right\rangle=\left\langle P ; K_{i}\right\rangle .
$$

(iii) In the special case that V, M are real, and M is symmetric, we need only consider real symmetric matrices, in which case the dimension of $\operatorname{ker} \phi$ is no greater than $n \nu$.

For, by remark (ii), we have collapse from "Hermitian" to "symmetric" whereever appropriate. If K is in $\operatorname{ker} \phi$, it can be written as some linear combination

$$
K=\sum_{\substack{i=1 \ldots . n \\ j=1 \ldots v}} \alpha_{i j} C_{i j}+\sum_{\substack{i=1 \ldots n \\ j=1 \ldots v}} \beta_{i j} C_{i j}^{T}
$$

But also $K=K^{\mathrm{T}}=\Sigma \beta_{i j} C_{i j}+\Sigma \alpha_{i j} C_{i j}^{\mathrm{T}}$ whence $K=\Sigma \gamma_{i j}\left(C_{i j}+C_{i j}^{\mathrm{T}}\right) \quad$ where $\gamma_{i j}=\frac{1}{2}\left(\alpha_{i j}+\beta_{i j}\right)$. Hence, we may take $\left\{\left(C_{i j}+C_{i j}^{T}\right)\right\}_{\substack{i=1 \ldots n \\ j=1 \ldots v}}$ as a spanning set. That dimension $n \nu$ can be attained is demonstrated by the following example.

$$
V=\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right] ; \quad \nu=1, \quad \mathbf{k}_{1}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

giving

$$
K_{3}=\frac{1}{4 \sqrt{ } 5}\left[\begin{array}{cccc}
-2 & -2 & 3 & -1 \\
-2 & -2 & 3 & -1 \\
3 & 3 & 8 & 4 \\
-1 & -1 & 4 & 0
\end{array}\right], \quad K_{4}=\frac{1}{\sqrt{30}}\left[\begin{array}{cccc}
-1 & -1 & -1 & 2 \\
-1 & -1 & -1 & 2 \\
-1 & -1 & -1 & 2 \\
2 & 2 & 2 & 5
\end{array}\right]
$$

giving, when

$$
M=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

the "tightest solution" for Problem (a) as

$$
S=\frac{\frac{1}{6}}{}\left[\begin{array}{cccc}
10 & 1 & -2 & 1 \\
1 & 4 & 1 & -2 \\
-2 & 1 & 10 & 1 \\
1 & -2 & 1 & 4
\end{array}\right]
$$

3. Solution of Problem (b)

Here, we take the view that V affords a linear map ψ from the space of all diagonal $n \times n$ matrices into the space of all $k \times k$ matrices, by

$$
\begin{equation*}
\psi(D)=V D V^{*} . \tag{9}
\end{equation*}
$$

Condition (3) assures us that ψ is of rank n, and Problem (b) is solved by finding that matrix Q in Image ψ which is "closest" to M, and then setting $D=\psi^{-1}(Q)$. In this case, the relevant inner product on the space of $k \times k$ matrices is

$$
\langle\langle A ; B\rangle\rangle \text { defined as } \sum_{\substack{i=1 . \ldots k \\ j=1 . . k}} a_{i j} \bar{b}_{i j}
$$

(so that the corresponding norm $|\cdot|$ is as in Problem (b)). Calculating

$$
\left\{\psi\left(D_{1}\right), \psi\left(D_{2}\right), \ldots, \psi\left(D_{n}\right)\right\}
$$

for an appropriate linearly independent set of diagonals gives a basis for Image ψ, hence an orthonormal basis for Image ψ, say $\left\{B_{i}\right\}_{i=1, \ldots, n}$, and then Q is determined uniquely as

$$
Q=\sum_{i=1}^{n}\left\langle\left\langle M ; B_{i}\right\rangle\right\rangle B_{i} .
$$

(By arguments similar to previous ones, we may take the B_{i} to be Hermitian, and so if M is Hermitian, all the $\left\langle\left\langle M ; B_{i}\right\rangle\right\rangle$ are real, and Q is Hermitian.)

The equation

$$
\begin{equation*}
\psi(D)=Q \tag{10}
\end{equation*}
$$

can be rewritten as

$$
N \mathbf{d}=\mathbf{q}
$$

where \mathbf{d} is the diagonal of D, \mathbf{q} is a suitable "unwrapping" of Q and N is $k^{2} \times n$. Since N is of rank n by (3), we have $d=Z q$ whenever Z is a generalized inverse for N. Equation (10) and condition (3) are discussed below.

As a matter of comparison with Problem (a), the process applied to the same V, M in the illustration given yields
$\left\{B_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], \quad B_{2}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right], \quad B_{3}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], \quad B_{4}=\frac{1}{\sqrt{6}}\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]\right\}$
and hence

$$
D=\frac{1}{3}\left[\begin{array}{llll}
4 & & & 0 \\
& 4 & & \\
& & 4 & \\
0 & & & 2
\end{array}\right]
$$

as a solution for Problem (b).

4. The "well-posing" of the problems

Condition (3) is clearly necessary for the problems to be well-posed. Since, with it, they each have unique solutions, it is also sufficient for them to be well-posed, as long as, in Problem (a), we assume the existence of at least one solution X to equation (1). The equations (10) and (10^{\prime}) (and hence condition (3)) can be explicitly written in numerous ways: one such is to "unwrap" Q as the column whose entries read in order

$$
q_{11}, q_{12}, \ldots, q_{1 k}, q_{21}, \ldots, q_{2 k}, q_{31}, \ldots, q_{k 1}, \ldots, q_{k k}
$$

In this case (the diagonal d reading $d_{11}, d_{22}, \ldots, d_{n n}$) one has N consisting of k^{2} rows, the i th block of k rows reading:

$$
\begin{aligned}
& v_{i 1} \bar{v}_{11}, v_{i 2} v_{12}, \ldots, v_{i n} \bar{v}_{1 n}, \\
& v_{i 1} \bar{v}_{21}, v_{i 2} \bar{v}_{22}, \ldots, v_{i n} \bar{v}_{2 n} \\
& \vdots \\
& v_{i 1} \bar{v}_{k 1}, v_{i 2} \bar{v}_{k 2}, \ldots, v_{i n} \bar{v}_{k n} .
\end{aligned}
$$

For condition (3), that is, for N to be rank n, we clearly need at least, that $n \leqslant k^{2}$. (If N is of rank n, with $n=k^{2}$, then equation (1) has a unique diagonal solution, and both problems become, trivially, "solve $N \mathbf{d}=\mathbf{m}$ where \mathbf{m} is M unwrapped".) If M is Hermitian, then the Q of (10) is Hermitian, and so $\psi(D)=Q$ implies that D must be real; since the rows of N occur in complex conjugate pairs, this leaves just $\frac{1}{2} k(k+1)$ equations to solve, k of them being real: although this does not alter the bound on the necessary rank of N, it does provide a smaller matrix than N for the computation of the appropriate generalized inverse.
Two special cases are worthy of mention. In at least one type of application, each entry in V is of modulus 1 , so that N has at least k rows with each entry 1 . In this case, then, one has " $k^{2}-k+1 \geqslant n$ " as a necessary condition for each of the problems to be well-posed, and M not having equal diagonal entries is then a sufficient condition for there to be no diagonal solution to equation (1).
In applications where all matrices are real, there will be at most $\frac{1}{2} k(k+1)$ distinct rows in N, so a necessary condition for the problems to be well-posed is that $n \leqslant \frac{1}{2} k(k+1)$. If, further, M is symmetric, n being $\frac{1}{2} k(k+1)$ will render both problems trivial, in that (1) will then have a unique diagonal solution.

Further discussion of the relations between the rank of N and properties of V can be found in [2].

5. Generalization of Problem (a) and its solution

The Problem (a) is a special case of the following: given the linear map $\phi: U \rightarrow V$, with S a subspace of the vector space U, and g in V, find that solution \mathbf{x} of $\phi(\mathbf{x})=\mathbf{g}$ such that x is "closest possible" to being a member of S.

If we take it that $\langle;\rangle$ is a positive definite inner product on U, so that U splits as $S \oplus S^{\perp}$ (each \mathbf{u} in U being written $\mathbf{u}=s(\mathbf{u})+r(\mathbf{u})$ uniquely, with $s(\mathbf{u}) \in S$, $r(\mathbf{u}) \in S^{1}$), the obvious measure is to define

$$
\langle\langle\mathbf{u} ; \mathbf{v}\rangle\rangle=\langle r(\mathbf{u}) ; r(\mathbf{v})\rangle
$$

so that $\langle\langle;\rangle\rangle$ is a positive definite inner product on the factor space U / S and, also, on $K / K \cap S$ where K is the kernel of ϕ. Taking $\left\{k_{1}, k_{2}, \ldots\right\}$ (modulo $K \cap S$) as an orthonormal basis for $K / K \cap S$, with respect to $\langle\langle;\rangle\rangle$, it follows (as in the particular case of Section 2) that of all possible solutions of $\phi(\mathbf{x})=\mathbf{g}$, that solution with $\langle\langle\mathbf{x} ; \mathbf{x}\rangle\rangle$ least possible is

$$
\left.\mathbf{x}=\mathbf{p}-\Sigma\left\langle\left\langle\mathbf{p} ; \mathbf{k}_{i}\right\rangle\right\rangle \mathbf{k}_{i} \quad \text { (modulo } K \cap S\right),
$$

where \mathbf{p} is any particular solution to $\phi(\mathbf{p})=\mathbf{g}$.

Perhaps the simplest examples (other than the more obvious signal processingparameter estimation problems) are in control problems; as two samples which are simple enough for scratch pad checking, we have:
(i) Find the input $y(t)$ with least R.M.S. over $0 \leqslant t \leqslant 1$, such that $y-y^{\prime}=t^{2}-2 t$. (Here S is zero, K is spanned by the single function e^{l}, and the required function is $y(t)=t^{2}-\left(2(e-2) /\left(e^{2}-1\right)\right) e^{t}$.)
(ii) Find the input $y(t)$, which is closest to being linear such that $y-y^{\prime}=t^{2}-2 t$ in the intervai $0 \leqslant t \leqslant 1$. (Here one takes S as the subspace of all linear functions, with $\langle f ; g\rangle$ being $\int_{0}^{1} f g d t$, so that the required function is $y(t)=t^{2}-(1 / 3(3-e)) e^{t}$.)

The usefulness of the method, in this context, increases with the degree of the relevant differential equation, since it merely involves the projection of a new particular solution on to the fixed space $K / K \cap S$ each time a "new" target function is presented, rather than re-solving a "new" minimization problem. In practice, the parameters needed are immediately available by quadrature, whereas the corresponding $a b$ initio minimization problem involves not only quadratures but also the solution of a set of simultaneous equations which are often, because of their source, fairly badly conditioned.

Acknowledgement

The author wishes to thank the referee for his comments and suggestions.

REFERENCES

[1] H. A. d'Assumpcao, "Estimation of sound directionality", Australian Weapons Research Establishment WRE-TN-1369 (WR \& D).
[2] C. R. Rao, "Estimation of heteroscedastic variance", J. Amer. Statist. Ass. 65 (1970), 161-172.
[3] C. R. Rao, Linear statistical inference (John Wiley \& Sons Inc., New York 1965).
[4] B. Noble and J. W. Daniel, Applied linear algebra (Prentice Hall, New York 2nd ed., 1977).

Department of Mathematics
University of Newcastle
New South Wales 2308
Australia

