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Outer Partial Actions and Partial Skew
Group Rings

Patrik Nystedt and Johan Öinert

Abstract. We extend the classical notion of an outer action α of a group G on a unital ring A to the
case when α is a partial action on ideals, all of which have local units. We show that if α is an outer
partial action of an abelian group G, then its associated partial skew group ring A ⋆α G is simple
if and only if A is G-simple. _is result is applied to partial skew group rings associated with two
diòerent types of partial dynamical systems.

1 Introduction

_e notion of a partial action of a group on a C*-algebra and the construction of its
associated crossed product C*-algebra, were introduced by R. Exel [9, 12] for partial
actions of the integers and then extended by K. McClanahan [20] to partial actions
of discrete groups. Since then, the theory of (twisted) partial actions on C*-algebras
has developed into a rich theory that has become an important tool in the study of
C*-algebras. It is now known that several important classes of C*-algebras can be real-
ized as crossed product C*-algebras by (twisted) partial actions, e.g., AF-algebras [11],
Bunce–Deddens algebras [10], Cuntz-Krieger algebras [14], andCuntz-Li algebras [4].

In a purely algebraic context, partial skew group rings were introduced by M.
Dokuchaev and R. Exel [6] as a generalization of classical skew group rings and as
an algebraic analogue of partial crossed product C*-algebras. Compared to the abun-
dance of results in the context of skew group rings or partial crossed product C*-
algebras, the theory of partial skew group rings is still underdeveloped. In particular,
apart from the results in [2,3, 16, 17], very little is known about the ideal structure and
simplicity criteria for partial skew group rings.

_e primary goal of this article is to establish a generalization (see _eorem 1.2)
of a result due to K. Crow [5] (see _eorem 1.1) concerning a connection between
outer actions and simplicity of unital skew group rings, to partial skew group rings
that have local units. _e secondary goal is to apply this result to show generalizations
(see _eorems 1.3 and 1.4) of recent results by D. Gonçalves [16] concerning partial
skew group rings associated with two diòerent types of partial dynamical systems.
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Outer Partial Actions and Partial Skew Group Rings 1145

Before we describe these results, we ûrst need to recall the following notions. Let
G be a group with identity element e and let X be a set. A partial action α of G on X
is a collection of subsets {Xg}g∈G of X and a collection of bijections αg ∶Xg−1 → Xg ,
for g ∈ G, such that for all g , h ∈ G and every x ∈ Xh−1 ∩ X(gh)−1 , the following three
relations hold:
(a) αe = idX ;
(b) αg(Xg−1 ∩ Xh) = Xg ∩ Xgh ;
(c) αg(αh(x)) = αgh(x).
It o�en happens that the set X carries an additional structure. By requiring that the
subsets {Xg}g∈G and the bijections {αg}g∈G be compatible with the given structure
on X, we may deûne a partial action of a certain type. If X is a topological space, then
we require that for each g ∈ G, Xg is an open set and αg is a homeomorphism. If X is
a semigroup (ring, algebra), then we require that, for each g ∈ G, the subset Xg is an
ideal of X and the map αg is a semigroup (ring, algebra) isomorphism. A subset I of
X is called G-invariant if for each g ∈ G the inclusion αg(I ∩ Dg−1) ⊆ I holds. In case
X is a semigroup (ring, algebra), we say that X is G-simple if there is no G-invariant
ideal of X other than X itself and {0} (which need not exist). _e action α is called
global if the equality Xg = X holds for each g ∈ G.
As a preparation for Crow’s result below, we shall now recall a couple of important

notions from the classical setting, i.e., when X is a unital ring (algebra) and α∶G ∋
g ↦ αg ∈ Aut(X) is a global action of G on X. If g ∈ G, then the map αg is said to be
inner if there is an invertible a ∈ X such that the relation αg(x) = a−1xa holds for all
x ∈ X. _e action α is said to be outer if the identity element e is the only element of
G that maps to an inner automorphism of X.

_eorem 1.1 (Crow [5]) If α∶G → Aut(A) is an outer action (in the classical sense)
of an abelian group G on a unital ring A, then the associated skew group ring A∗α G is
simple if and only if A is G-simple.

To describe our generalization of_eorem 1.1 and its applications, we ûrst need to
answer the following question:

What should it mean for a partial action of a group on a ring to be outer?
As far as we know, this question has not previously been analysed in the literature
in the C*-algebra context or in the purely algebraical setting. _e starting point for
our investigations is the observation that many of the concepts concerning partial
actions on rings are formulated by using only the operation ofmultiplication, and thus
forgetting the additive structure. In other words, we are working in the multiplicative
semigroup of a ring.

In Section 2, we therefore begin our explorations in a general semigroup S. In
addition, since we want to establish a non-unital version of_eorem 1.1, we also have
to decide what it should mean for isomorphisms α∶ I → J of ideals I and J in S to
be outer, locally at idempotents u ∈ I ∩ J. To motivate the approach taken later, let
us brie�y describe the train of reasoning that lead us to the formal deûnition. _e
restricted map α∣uSu ∶uSu → α(u)Sα(u) is also an isomorphism of semigroups. So
bymimicking the global case, themap α∣uSu should be called inner if there are a, b ∈ S
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such that α∣uSu(x) = bxa holds for all x ∈ uSu. However, for such a deûnition to
make sense, we need to assume that a ∈ uSα(u) and b ∈ α(u)Su. From the fact that
α(u) = α∣uSu(u) = bua = ba, we get that ba = α(u). Also, the inverse of α∣uSu should
be deûned by the “reversed” map a( ⋅ )b from which we get that ab = u. _erefore,
if such a and b exist, we say that α is inner at u; otherwise, α is called outer at u (see
Deûnition 2.4 for more details).

In Section 3, we recall a result (see _eorem 3.1) from [21] by the authors of this
article concerning simplicity of group graded rings thatwewill need in the subsequent
section for application to partial skew group rings, which, in a natural way, are group
graded rings.

In Section 4, we use the deûnition of outer actions in semigroups from Section 2 to
deûne outer partial actions αg ∶Dg−1 → Dg of a group G on a ring A in the following
way (see Deûnition 4.9 for more details). Consider A as a semigroup with respect
to multiplication. If g ∈ G, then we say that αg is inner (outer) at an idempotent
u ∈ A if it is inner (outer) at u in the sense deûned above. Furthermore, we say that
α is outer (or outer at u) if there is a non-zero idempotent u ∈ A such that for each
non-identity g ∈ G, the map αg is outer at u. In the classical setting, i.e., when A is
unital and α is a global action of G on A, our deûnition of outerness coincides with
the classical deûnition of outerness described above (see Remark 4.10). At the end of
Section 4, we show, with the aid of the result in Section 3, the following generalization
of _eorem 1.1.

_eorem 1.2 If αg ∶Dg−1 → Dg , for g ∈ G, is an outer partial action of an abelian
group G on a ring A such that Dg , for each g ∈ G, has local units, then the associated
partial skew group ring A ⋆α G is simple if and only if A is G-simple.

In Sections 5 and 6, we show that _eorem 1.2 can be eòectively applied to set
dynamics respectively topological dynamics. To be more precise, let us recall the fol-
lowing notions for a partial action α of a groupG on a set (topological space) X. If for
each non-identity g ∈ G, there is some x ∈ Xg−1 such that αg(x) ≠ x, then α is said to
be faithful. If for each non-identity g ∈ G, the set of x ∈ Xg−1 that satisfy αg(x) = x is
the empty set (has empty interior), then α is called (topologically) free. Clearly, free-
ness implies topological freeness. If X and∅ are the onlyG-invariant (closed) subsets
of X, then α is said to be (topologically) minimal.

In the set dynamical case, we are given a partial action α of a group G on a (non-
empty) set X and consider the partial skew group ring F0(X , B)⋆α G. Here F0(X , B)
denotes the algebra of ûnitely supported functions X → B, where B is a simple asso-
ciative ring that has local units.

_eorem 1.3 If G is abelian, then the following three assertions are equivalent:
(i) F0(X , B) ⋆α G is simple;
(ii) θ is minimal and free;
(iii) θ is minimal and faithful.

In the topological dynamical case, we are given a partial action α of a group G on
a compact Hausdorò space X such that Xg is clopen for each g ∈ G. Note that ifG is a
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countable discrete group, then these partial actions are exactly the ones for which the
enveloping space is Hausdorò (see [13, Proposition 3.1]). We then consider the partial
skew group ring CE(X , B) ⋆α G. Here B denotes a simple associative topological real
algebra that has a set E of local units. (Some additional assumptions are made on
B; see Section 6.) _e algebra CE(X , B) is the directed union of the “local” algebras
C(X , єBє) = {continuous f ∶X → єBє}, where є runs over all elements in E.

_eorem 1.4 If G is abelian, X is compact Hausdorò, and each Xg , for g ∈ G, is
clopen, then the following three assertions are equivalent:
(i) CE(X , B) ⋆α G is simple;
(ii) θ is topologically minimal and topologically free;
(iii) θ is topologically minimal and faithful.

Note that _eorems 1.3 and 1.4 generalize recent results by D. Gonçalves [16] to
also include cases when the coeõcients are taken from non-commutative rings which
have local units.

2 Outer Actions of Ideals in Semigroups

In this section, we introduce the concepts of innerness and outerness of homomor-
phisms of ideals in semigroups at idempotents (see Deûnition 2.4). We also show
that the innerness is preserved by the classical partial order on the idempotents in the
semigroup (see Proposition 2.7). We begin by ûxing some notation.

_roughout this section, S denotes a semigroup. By this we mean that S is a non-
empty set equipped with an associative binary operation S × S ∋ (x , y) ↦ xy ∈ S,
which is referred to as the multiplication of the semigroup. For subsets I and J of S
we let IJ denote the set of all products of the form xy for x ∈ I and y ∈ J. A non-
empty subset I of S is called a subsemigroup (le� ideal, right ideal, ideal) of S if II ⊆ I
(SI ⊆ I, IS ⊆ I, SI ∪ IS ⊆ I). If T is another semigroup, then a map α∶ S → T is a
homomorphism of semigroups if it respects the multiplication in S and T . Suppose
that I and J are right ideals of S. _en a map α∶ I → J is called a homomorphism of
right ideals if α(xy) = α(x)y, for x ∈ I and y ∈ S. We let HomS(I, J) denote the set of
all homomorphisms I → J of right ideals. _e concept of a homomorphism of (le�)
ideals is deûned analogously.

_e ûrst two propositions below have already appeared in the context of ideals in
rings (see e.g., [19, Propositions (21.6) and (21.20)]), except for the last part of the ûrst
proposition. However, we were not able to ûnd an appropriate reference for the case
of semigroups. _e proofs are a close adaptation to semigroups of the proofs given in
loc. cit., and we include them for the convenience of the reader.

Proposition 2.1 Let u, v, and w be idempotents in S and suppose that I is a right
ideal of S. _en the map of sets λ∶HomS(uS , I) → Iu deûned by λ(β) = β(u) for
β ∈ HomS(uS , I) is a bijection. In particular, if we put I = vS, then the corresponding
map λv ,u ∶HomS(uS , vS) → vSu is a bijection. Moreover, if β ∈ HomS(uS , vS) and
β′ ∈ HomS(vS ,wS), then λw ,v(β′)λv ,u(β) = (λw ,u)(β′ ○ β).
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Proof First we show that λ is well deûned. Suppose that β∶uS → I is a right ideal
homomorphism. _en λ(β) = β(u) = β(u2) = β(u)u ∈ Iu. Next, we show that λ
is injective. Suppose that β and β′ are right ideal homomorphisms uS → I such that
λ(β) = λ(β′). Take s ∈ S. _en β(us) = β(u)s = λ(β)s = λ(β′)s = β′(u)s = β′(us).
_erefore, β = β′. Finally, we show that λ is surjective. Take iu ∈ Iu, where i ∈ I. De-
ûne β iu ∈ HomS(uS , I) by β iu(us) = ius, for s ∈ S. We claim that β iu is well deûned.
If we assume that the claim holds, then λ(β iu) = β iu(u) = β iu(uu) = iuu = iu, and
thus λ is surjective. Now we show the claim. Suppose that us = us′ for some s, s′ ∈ S.
_en β iu(us) = ius = ius′ = β iu(us′). _e second part follows immediately from
the ûrst part. Now we show the last part of the proof. Take β ∈ HomS(uS , vS) and
β′ ∈ HomS(vS ,wS). _en λw ,v(β′)λv ,u(β) = β′(v)β(u) = β′(vβ(u)) = β′(β(u)) =
λw ,u(β′ ○ β).

Proposition 2.2 If u and v are idempotents of S, then the following four assertions
are equivalent:
(i) uS ≅ vS as right ideals of S;
(ii) Su ≅ Sv as le� ideals of S;
(iii) there exist a ∈ uSv and b ∈ vSu such that ab = u and ba = v;
(iv) there exist a, b ∈ S such that ab = u and ba = v.

Proof By le�-right symmetry it is enough to show (i)⇒(iii)⇒(iv)⇒(i).
(i)⇒(iii): Let β∶uS → vS be an isomorphism of right ideals. Put a = λv ,u(β) and

b = λu ,v(β−1). _en, by the last part of Proposition 2.1, we get

u = λu ,u(iduS) = λu ,u(β−1 ○ β) = λu ,v(β−1)λv ,u(β) = ba,
v = λv ,v(idvS) = λv ,v(β ○ β−1) = λv ,u(β)λu ,v(β−1) = ab.

(iii)⇒(iv): Trivial.
(iv)⇒(i): Suppose that there are a, b ∈ S such that ab = u and ba = v. Deûne

β∶uS → vS and γ∶ vS → uS by the relations β(x) = bx, for x ∈ uS, and γ(y) = ay,
for y ∈ vS, respectively. Since bx = bux = babx = vbx, for x ∈ uS, and ay = avy =
abay = uay, for y ∈ vS, it follows that β and γ are well-deûned homomorphisms of
right ideals. Now we show that γ ○ β = iduS and β ○ γ = idvS . Take x ∈ uS and y ∈ vS.
_en

(γ ○ β)(x) = γ(bx) = abx = ux = x and (β ○ γ)(y) = β(ay) = bay = vy = y.

Deûnition 2.3 Let u and v be idempotents of S. We say that u and v are equivalent
and denote this by u ∼ v, if u and v satisfy any (and hence all) of the equivalent
conditions (i)–(iv) above.

Deûnition 2.4 Suppose that I and J are ideals of S and α∶ I → J is a semigroup
homomorphism. Let u be an idempotent of S. We say that α is inner at u if u ∈ I
and u ∼ α(u) where this equivalence is deûned by an isomorphism β∶uS → α(u)S
of right ideals of S such that α(x) = β(u)xβ−1(α(u)) for all x ∈ uSu. We say that
α is outer at u if α is not inner at u. We say that α is strongly outer if it is outer at all
non-zero idempotents of S.
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Remark 2.5 Suppose that I and J are ideals of S and that α∶ I → J is a semigroup
homomorphism which is inner at an idempotent u of I.
(a) Although in the above deûnition we only assume that α∶ I → J is a semigroup

homomorphism, the restricted map α∣uSu ∶uSu → α(u)Sα(u) is always an iso-
morphism of semigroups. In fact, if we put a = β−1(α(u)) and b = β(u), then
ba = α(u) and ab = u and α(x) = bxa for all x ∈ uSu. It is now clear that
α∣−1

uSu ∶ β(u)Sβ(u) → uSu is deûned by α∣−1
uSu(x) = axb for all x ∈ β(u)Sβ(u).

(b) It follows that u ∈ I ∩ J, since u = ab = aα(u)b ∈ aJb ⊆ J.
(c) If S is a monoid and we let u be the identity element of S, then α∶ S → S is inner at

u precisely when it is inner in the classical case, i.e., if there is an invertible y ∈ S
such that α(x) = yxy−1 for all x ∈ S. In particular, by (a), this forces α to be a
semigroup automorphism of S.

Deûnition 2.6 Recall that the idempotents of S can be partially ordered by saying
that v ≤ u if uv = vu = v. An idempotent is calledminimal if it is minimal with respect
to ≤.

Proposition 2.7 Suppose that I and J are ideals of S and that α∶ I → J is a semigroup
homomorphism that is inner at an idempotent u of I. If v is another idempotent of I
with v ≤ u, then α is inner at v.

Proof Suppose that there is an isomorphism β∶uS → α(u)S of right ideals of S such
that α(x) = β(u)xβ−1(α(u)) for all x ∈ uSu. Put b = β(u) and a = β−1(α(u)).
_en ab = u and ba = α(u), and there are some d , d′ ∈ S such that a = udα(u) and
b = α(u)d′u.
Consider the elements a′ = vdα(v) and b′ = α(v)d′v. _en aα(x)b = a(bxa)b =

uxu = x holds for any x ∈ uSu. In particular, for x = v, this yields aα(v)b = v, and
hence

a′b′ = (vdα(v))(α(v)d′v) = vdα(v)d′v = vudα(u)α(v)α(u)d′uv
= v(udα(u))α(v)(α(u)d′u)v = vvv = v .

Moreover, bva = α(v), and hence

b′a′ = (α(v)d′v)(vdα(v)) = α(v)d′vdα(v) = α(v)α(u)d′uvudα(u)α(v)
= α(v)(α(u)d′u)v(udα(u))α(v) = α(v)α(v)α(v) = α(v).

Take x ∈ vSv ⊆ uSu. _ere is some z ∈ S such that x = vzv. Hence, α(x) = α(vzv) =
α(v)α(zv) = α(vz)α(v). _is shows that α(x) = α(v)α(x)α(v). _en

α(x) = (α(u)d′u)x(udα(u)) = (α(u)d′u)vxv(udα(u)) = α(u)d′vxvdα(u)
= α(v)(α(u)d′vxvdα(u))α(v) = (α(v)d′v)x(vdα(v)) = b′xa′ .

_is shows that α is inner at v.
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Remark 2.8 _e conclusion of Proposition 2.7 does not hold, in general, if v ≤ u
is replaced by u ≤ v. In particular, local innerness cannot always be li�ed to global
innerness. To bemore precise, suppose that I and J are ideals of S and that α∶ I → J is a
semigroup homomorphism. If u, v ∈ S are idempotents such that v ≤ u and α is inner
at v, then this does not in general imply that α is inner at u. In fact, let S = I = J denote
the multiplicative semigroup of functions from {1, 2, 3} to a ûeld K. Let u, v ∈ S be
deûned by u(1) = u(2) = u(3) = 1K , resp. v(1) = 1K and v(2) = v(3) = 0. _en v ≤ u.
If we deûne α∶ S → S by α( f )(1) = f (1), α( f )(2) = f (3) and α( f )(3) = f (2), for all
f ∈ S, then it is easy to see that α∣vSv = idvSv . Clearly, α is inner at v, but outer at u.

Deûnition 2.9 We say that a set E of minimal non-zero idempotents of S is a com-
plete set of minimal idempotents if for each non-zero idempotent u ∈ S, there is v ∈ E
such that v ≤ u.

Corollary 2.10 Suppose that there is a complete set E of minimal idempotents of S.
Let I and J be ideals of S and suppose that α∶ I → J is a semigroup homomorphism.
_en α is strongly outer if and only if it is outer at each u ∈ E.

Proof _is follows immediately from Proposition 2.7 and Deûnition 2.9.

Remark 2.11 Innerness of ring automorphisms at idempotents (however not in the
generality of semigroup homomorphisms of ideals) was considered by J. Haefner and
A. del Rio in [18, Deûnition 1.2, p. 38].

3 Simple Group Graded Rings

In this section, we recall a result (see _eorem 3.1) from [21] by the authors of this
article concerning simple group graded rings, which we will need in the sequel. We
begin by ûxing some notation.

Let R denote a ring that is associative but not necessarily unital. If R is unital,
then we let 1R denote its multiplicative identity element. By an ideal of R we always
mean a two-sided ideal of R. _e center of R, denoted by Z(R), is the set of elements
x ∈ R with the property that xy = yx holds for each y ∈ R. Recall from [1] that R is
said to have local units if there exists a set E of idempotents of R such that for every
ûnite subset X of R, there exists an f ∈ E such that X ⊆ f R f . It then follows that
x = f x = x f holds for each x ∈ X.

Let G denote a group with identity element e. Recall that R is said to be graded (by
G), if there for each g ∈ G is an additive subgroup Rg of R such that R = ⊕g∈GRg and
the inclusion RgRh ⊆ Rgh holds for all g , h ∈ G. Take r ∈ R. _ere are unique rg ∈ Rg ,
for g ∈ G, such that all but ûnitely many of them are zero and r = ∑g∈G rg . We let the
support of r, denoted by Supp(r), be the set of g ∈ G such that rg ≠ 0. _e element r
is called homogeneous if ∣ Supp(r)∣ ≤ 1. If r ∈ Rg ∖ {0}, for some g ∈ G, then we write
deg(r) = g. An additive subgroup A of R is called graded if A = ⊕g∈G(A∩ Rg) holds.
_e ring R is said to be graded simple if R and {0} are its only graded ideals. Clearly,
graded simplicity is a necessary condition for simplicity.
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_eorem 3.1 If R is a ring graded by an abelian group G and Re contains a non-zero
idempotent u, then R is simple if and only if it is graded simple and Z(uRu) is a ûeld.

Proof _is follows from amore general result by the authors of this article, concern-
ing simplicity of semigroup graded rings (see [21,_eorem 2.1]). For the convenience
of the reader, we now give a direct proof. _e “only if ” statement is straightforward.
Now we show the “if ” statement. Let I be a non-zero ideal of R. Take r ∈ I ∖{0} such
that ∣ Supp(r)∣ is minimal. Choose some g ∈ G such that rg is non-zero.

Since R is graded simple, there are homogeneous s i , t i ∈ R, for i = {1, . . . , n}, such
that ∑n

i=1 s irg t i = u. In particular, there is j ∈ {1, . . . , n} such that s jrg t i ∈ Re ∖ {0}.
By replacing r with s jrt j , we can from now on assume that re is non-zero.

Next we show that we can suppose that re = u. Put

J = {se ∣ s ∈ RrR, Supp(s) ⊆ Supp(r)}.
_en J is a non-zero ideal of Re , and hence RJR is a non-zero graded ideal of R.
By graded simplicity of R we get that there are s(i) ∈ RrR and v i ,w i ∈ R, for i ∈
{1, . . . , n}, such that Supp(s(i)) ⊆ Supp(r) and u = ∑n

i=1 v i s(i)e w i . From the last
equality it follows that we can suppose that deg(v i)deg(w i) = e for all i such that
v i s(i)e w i ≠ 0. Put s = ∑n

i=1 v i s(i)w i . _en s ∈ I, and since Supp(s(i)) ⊆ Supp(r) for all i
andG is abelian, we get that Supp(s) ⊆ Supp(r). _erefore, u = ∑n

i=1 v i s(i)e w i = se ∈ J.
Finally, we show that I = R. Take h ∈ G and t ∈ uRhu. Since re = u and G is

abelian, we get that ∣ Supp(rt − tr)∣ < ∣ Supp(r)∣. By the assumption that ∣ Supp(r)∣ is
minimal and the fact that rt − tr ∈ I, we get that Supp(rt − tr) = ∅ and hence that
rt − tr = 0. Since h ∈ G was arbitrarily chosen, we get that r ∈ Z(uRu) ∩ I. Using that
Z(uRu) is a ûeld, we get that u ∈ I. _erefore, since R is graded simple, we get that
R = RuR ⊆ I.

4 Partial Actions and Partial Skew Group Rings

In this section, we introduce outer partial actions of groups on rings (see Deûnition
4.9) and we prove the main result of this article concerning simplicity of partial skew
group rings (see _eorem 1.2).

Assumption _roughout this section, α will denote a partial action of a group G on
a ring A, and the corresponding ideals of A are denoted by Dg , for g ∈ G.

Deûnition 4.1 _e partial skew group ring A ⋆α G is deûned as the set of all ûnite
formal sums∑g∈G agδg , where for each g ∈ G, ag ∈ Dg and δg is a symbol. Addition
is deûned in the obvious way, and multiplication is deûned as the linear extension of
the rule (agδg)(bhδh) = αg(αg−1(ag)bh)δgh for g , h ∈ G, ag ∈ Dg and bh ∈ Dh .
Clearly, each classical skew group ring (see e.g., [5, 15,22]) is a partial skew group ring
where Dg = A for all g ∈ G.

Remark 4.2 Apartial skew group ringA⋆αG need not in general be associative (see
[6, Example 3.5]). However, if each Dg , for g ∈ G, has local units, then, in particular,
each Dg , for g ∈ G, is an idempotent ring, i.e., D2

g = Dg , which by [6, Corollary 3.2],
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ensures that A ⋆α G is associative. In that case, the set Eδe = { f δe ∣ f ∈ E} is a set of
local units for A ⋆α G if E is a set of local units for A.

Deûnition 4.3 If there does not exist any non-identity g ∈ G such that Dg ∩Dg−1 is
non-zero and αg ∣Dg∩Dg−1 = idDg∩Dg−1 , then α is said to be injective.

_e next result extends a well-known result for group actions on rings (see e.g.,
[22]) to the case of partial actions.

Proposition 4.4 If the partial skew group ring A ⋆α G is simple, then α is injective.

Proof Suppose that α is not injective. _en there is a non-identity g ∈ G such that
Dg ∩ Dg−1 ≠ {0} and αg ∣Dg∩Dg−1 = idDg∩Dg−1 . Take a non-zero element i ∈ Dg ∩ Dg−1 .
Let J be the ideal of A ⋆α G generated by the element iδe − iδg . It is clear that J is
non-zero and strictly contained in A ⋆α G. _erefore, A ⋆α G is not simple.

Remark 4.5 Note that A ⋆α G need not be associative for Proposition 4.4 to hold.

Remark 4.6 It is easy to check that if we put (A⋆α G)g = Dgδg , for g ∈ G, then this
deûnes a gradation on the ring A⋆α G. In the sequel, whenever we speak of graded or
graded simple it will be with respect to this gradation.

Proposition 4.7 If each Dg , for g ∈ G, has local units, then A ⋆α G is graded simple
if and only if A is G-simple.

Proof We begin by showing the “only if ” statement. Suppose that A ⋆α G is graded
simple. Let I be a non-zero G-invariant ideal of A. Deûne I ⋆α G to be the set of all
ûnite sums of the form ∑g∈G agδg , where ag ∈ I ∩ Dg , for g ∈ G. Note that I ⋆α G is
a non-zero two-sided graded ideal of A ⋆α G. Hence, I ⋆α G = A ⋆α G. In particular,
Aδe ⊆ I ⋆α G, which shows that I ⊆ A ⊆ I. We conclude that I = A. _us, A is
G-simple.

Now we show the “if ” statement. Suppose that A is G-simple. Let J be a non-zero
graded ideal of A ⋆α G. We claim that Je = J ∩ A is a non-zero G-invariant ideal of
A. If we assume that the claim holds, then A = Je = A ∩ J ⊆ J from which it follows
that J = A⋆α G. Now we show the claim. First we show that Je is non-zero. Since J is
non-zero, there is g ∈ G and a non-zero ag ∈ Dg with agδg ∈ J. Let bg−1 ∈ Dg−1 be a
local unit for αg−1(ag). _en

J ∋ agδgbg−1δg−1 = αg(αg−1(ag)bg−1)δe = αg(αg−1(ag))δe = agδe
which is non-zero. Now we show that Je is G-invariant. Take g ∈ G and a ∈ Je ∩
Dg−1 . Let cg ∈ Dg be such that αg−1(cg) is a local unit for a. _en αg(a)δe =
αg(αg−1(cg)a)δe = cgδgaδg−1 ∈ J.

Remark 4.8 Note that even if there is some g ∈ G such that Dg does not have local
units, the ûrst half of the above proposition still holds as long as A⋆α G is associative.
_at is, graded simplicity of A⋆αG impliesG-simplicity of A. In particular, simplicity
of A ⋆α G implies G-simplicity of A.
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Deûnition 4.9 Consider A as a semigroup with respect to multiplication. If g ∈ G,
then we say that αg is inner at an idempotent u ∈ A if it is inner at u in the sense of
Deûnition 2.4. Moreover, we say that α is outer (or outer at u) if there is a non-zero
idempotent u ∈ A such that for each non-identity g ∈ G, the map αg is outer at u in
the sense of Deûnition 2.4. We say that α is strongly outer if for every non-identity
g ∈ G, the map αg is strongly outer in the sense of Deûnition 2.4.

Remark 4.10 Suppose that A is unital and that α∶G → Aut(A) is a global action.
_en α is outer in the classical sense if and only if it is outer in our sense, i.e., in the
sense of Deûnition 4.9. _is follows from Proposition 2.7 and the fact that u ≤ 1 holds
for any idempotent u of A.

Suppose that β is a global action of a group G on a ring B and that A is an ideal of
B. If, for each g ∈ G, we deûne Dg = A∩ βg(A) and αg(x) = βg(x) for x ∈ Dg−1 , then
it is easily veriûed that α is a partial action of G on A. In this situation, α is referred
to as a restriction of β, and β is referred to as a globalization of α. (See e.g., [6, 8].)

Proposition 4.11 Let α be a partial action of a group G on a ring A and suppose that
α has a globalization β (on a ring B). _e following two assertions hold.
(i) If u is a non-zero idempotent of A, then, for g ∈ G, the map αg is inner at u if and

only if βg is inner at u.
(ii) If α is outer, then β is outer. Moreover, if B is unital, then β is outer in the classical

sense.

Proof (i) We ûrst show the “if ” statement. Suppose that βg is inner at u. _ere are
elements a ∈ uBβg(u) and b ∈ βg(u)Bu, satisfying ab = u and ba = βg(u) such
that βg(x) = bxa holds for each x ∈ uBu. Note that bua ∈ A, since A is an ideal
of B, and that u = βg−1(βg(u)) = βg−1(bua). _is shows that u ∈ Dg−1 . For any
x ∈ Dg−1 ∩ uBu we have that αg(x) = βg(x) = bxa. In particular, αg(u) = βg(u).
Now, deûne a′ = ua ∈ uAαg(u) and b′ = bu ∈ αg(u)Au. It is easy to see that
a′b′ = u and b′a′ = αg(u). From the fact that βg−1(A) ∋ u is an ideal of B we get that
uAu ⊆ uBu ⊆ Dg−1 . We conclude that αg(x) = b′xa′ holds for any x ∈ uAu. _is
shows that αg is inner at u.

We now show the “only if ” statement. Suppose that αg is inner at u. _ere are
elements a ∈ uAαg(u) and b ∈ αg(u)Au, satisfying ab = u and ba = αg(u), such
that αg(x) = bxa holds for each x ∈ uAu. Using that α is a restriction of β, we
know that αg(x) = βg(x) holds for each x ∈ Dg−1 . Note that uAu = uBu, since u is
an idempotent of A that is an ideal of B. Hence, uBu ⊆ Dg−1 and we conclude that
βg(x) = αg(x) = bxa holds for each x ∈ uBu. In particular, βg(u) = αg(u), which
makes it easy to see that a and b have the desired properties. _is shows that βg is
outer at u.

(ii) Suppose that α is outer. _ere is a non-zero idempotent u ∈ A such that for
each non-identity g ∈ G, the map αg is outer at u. It now follows immediately from (i)
that, for each non-identity g ∈ G, the map βg is outer at u. _is shows that β is outer.
For the proof of the last part, we assume that B is unital. Seeking a contradiction,
suppose that β is not outer (in the classical sense). _en there is a non-identity g ∈ G
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such that the automorphism βg ∶B → B is inner at 1. Since u ≤ 1, Proposition 2.7 yields
that βg is inner at u, which is a contradiction.

Remark 4.12 Note that Proposition 4.11 does not make use of the assumption, on
the existence of local units, that is made in the beginning of Section 4.

Remark 4.13 Note that the converse of Proposition 4.11(ii) does not hold in general.
In light of Remark 2.8, we want to underline that even if αg , for some g ∈ G, is inner
at an idempotent of A, it is fully possible for the globalization β to be outer (in the
classical sense). In fact, β could potentially be outer at any idempotent, as long as the
idempotent lies outside of A.

Proof of_eorem 1.2 _e “only if ” statement follows from Proposition 4.7 and the
fact that graded simplicity is a necessary condition for simplicity. Now we show
the “if ” statement. Suppose that A is a G-simple ring. Let u be a non-zero idem-
potent of A such that for each non-identity g ∈ G, the map αg is outer at u. Put
S = (uδe)(A⋆α G)(uδe). By _eorem 3.1, we are done if we can show that Z(S) is a
ûeld. Let (uδe)(∑g∈G agδg)(uδe) be a non-zero element of Z(S), where ag ∈ Dg is
zero for all but ûnitely many g ∈ G. Fix g ∈ G so that (uδe)(agδg)(uδe) ≠ 0. Since G
is abelian, we get that (uδe)(agδg)(uδe) ∈ Z(S). Since A⋆α G is graded simple, it is
easy to see that S is also graded simple. _erefore, the graded ideal of S generated by
(uδe)(agδg)(uδe) equals S. So, in particular, there is k ∈ Dg−1 such that

(4.1) (uδe)(agδg)(uδe)(kδg−1)(uδe) = uδe ,
which is equivalent to the following four equivalent equations

(uagδg)(ukδg−1)(uδe) = uδe ⇐⇒ (αg(αg−1(uag)uk)δe)(uδe) = uδe
⇐⇒ (uagαg(uk)δe)(uδe) = uδe
⇐⇒ uagαg(uk)uδe = uδe ,

which ûnally gives us that

(4.2) uagαg(uk)u = u.
Note that equation (4.2) implies that u ∈ Dg . Since (uδe)(agδg)(uδe) ∈ Z(S), we
can change the order of the factors on the le�-hand side of equation (4.1) and obtain
the following three equivalent equations

(uδe)(kδg−1)(uδe)(agδg)(uδe) = uδe ⇐⇒ (ukδg−1)(uagδg)(uδe) = uδe
⇐⇒ αg−1(αg(uk)uag)δe(uδe) = uδe ,

which are equivalent to

(4.3) αg−1(αg(uk)uag)u = u.
Note that equation (4.3) implies that u ∈ Dg−1 , and therefore

(4.4) αg(uk)uagαg(u) = αg(u).
Using again that u ∈ Dg−1 , we can rewrite equations (4.2) and (4.4) as

uagαg(u)αg(u)αg(k)u = u
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and

(4.5) αg(u)αg(k)uuagαg(u) = αg(u)
respectively. Furthermore, for every b ∈ A, the following three equivalent equations
hold

(uδe)(agδg)(uδe)(bδe)(uδe) = (uδe)(bδe)(uδe)(agδg)(uδe)
⇐⇒ (uagδg)(ubuδe) = (ubuδe)(αg(αg−1(uag)u)δg)

⇐⇒ αg(αg−1(uag)ubu)δg = ubuagαg(u)δg .

_e last equation yields

uagαg(u)αg(ubu) = ubuagαg(u).
By equation (4.5), the last equation implies that

αg(ubu) = αg(u)αg(k)uubuuagαg(u)
which shows that αg is inner at u. But since αg is outer, at u, for non-identity g ∈ G, we
conclude that g = e. Hence, ûnally, by equation (4.1), we get that Z(S) is a ûeld.

Remark 4.14 We will now make a couple of important observations.
(a) Outerness is not a necessary condition for simplicity of a partial skew group ring

A ⋆α G. Indeed, consider the simple skew group ring M2(R) ⋊σ Z/2Z in [22,
Example 4.1].

(b) _eorem 1.2 does not hold for arbitrary (non-abelian) groups. Indeed, consider
[22, Example 5.1] where X = S1 is the circle, G = Homeo(S1) is the group of all
homeomorphisms of S1. One can deûne σ ∶G → Aut(C(X)) in the usual way. It
then turns out that C(X) is G-simple and that the action is outer. However, the
skew group ring C(X) ⋊σ G is not simple.

5 An Application to Set Dynamics

At the end of this section, we use _eorem 1.2 to prove_eorem 1.3.

Assumption _roughout this section, B denotes a simple associative ring that has
local units, θ denotes a partial action of a group G on a non-empty set X, and the cor-
responding subsets of X are denoted by Xg , for g ∈ G.

Deûnition 5.1 We let F0(X , B) denote the set of functions X → B with ûnite sup-
port. For each g ∈ G, let Dg denote the set of f ∈ F0(X , B) such that f (x) = 0 for all
x ∈ X ∖ Xg . It is clear that Dg is an ideal of F0(X , B) and that the map

G ∋ g ↦ (αg ∶Dg−1 → Dg),
deûned by αg( f ) = f ○ θ g−1 , for f ∈ Dg−1 , deûnes a partial action of G on F0(X , B).

Remark 5.2 For each subset S of X and each b ∈ B, let bS denote the function
X → B deûned by bS(x) = b, if x ∈ S, and bS(x) = 0, otherwise. If S = {y} for some
y ∈ X, and b ∈ B, then we let bS be denoted by by . It is clear that for each g ∈ G, the
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set of єS , where S is a ûnite subset of Xg and є is a local unit in B is a set of local units
for Dg . In particular,

E = {єS ∣ S is a ûnite subset of X and є is a local unit in B}

is a set of local units for F0(X , B).

For future reference we record the following result.

Proposition 5.3 If θ is a partial action of an abelian group G on a set (Hausdorò
topological space) X such that θ is faithful and (topologically) minimal, then θ is free.

Proof Take a non-identity g ∈ G and consider the set

Fg = {x ∈ Xg−1 ∣ θ g(x) = x}.

We need to show that Fg is empty. Take h ∈ G and x ∈ Fg ∩ Xh−1 . By the relations
(b)–(c) in the deûnition of a partial action, and the fact that G is abelian, we get that
θh(x) = θh(θ g(x)) = θhg(x) = θ gh(x) = θ g(θh(x)). _us, Fg is G-invariant (and
closed since X is Hausdorò). Since θ is faithful, we get that Fg ≠ X. Hence, we get
that Fg = ∅. _us, θ is free.

Proposition 5.4 θ is minimal if and only if F0(X , B) is G-simple.

Proof Suppose that F0(X , B) is notG-simple. _en there is a non-trivialG-invariant
ideal I of F0(X , B). Let NI = ⋂ f ∈I f −1({0}). Since I is G-invariant, the same is true
for NI . Since I is non-zero, it follows that NI is a proper subset of X. Seeking a con-
tradiction, suppose that NI is empty. Take x ∈ X and b ∈ B. We claim that bx ∈ I. If
we assume that the claim holds, then since the set of bx , for x ∈ X and b ∈ B, gener-
ates F0(X , B), we will get the contradiction I = F0(X , B). Now we show the claim.
From NI = ∅, it follows that there is a non-zero c ∈ B such that cx ∈ I. By sim-
plicity of B, there is a natural number n and d(1) , . . . , d(n) , d′(1) , . . . , d′(n) ∈ B such
that b = ∑n

i=1 d(i)cd′(i). But then bx = ∑n
i=1 d

(i)
x cxd′(i)x ∈ I, which proves the claim.

_erefore, NI is a non-empty G-invariant subset of X, and hence θ is not minimal.
Now suppose that θ is not minimal. Let Y be a non-trivial G-invariant subset of

X. Let IY denote the ideal of F0(X , B) consisting of all f ∈ F0(X , B) that vanish on
Y . Since Y is G-invariant, it follows that IY is G-invariant. Using that ∅ ≠ Y ≠ X,
we conclude that IY is a non-zero proper ideal of F0(X , B). _us, F0(X , B) is not
G-simple.

Proposition 5.5 If α is injective, then θ is faithful.

Proof Suppose that θ is not faithful. _en there is a non-identity g ∈ G such that
θ g(x) = x for x ∈ Xg−1 . _is implies that Xg = Xg−1 and thus that Dg = Dg−1 and
αg( f ) = f , for f ∈ Dg−1 . _us, α is not injective.

Proposition 5.6 If θ is free, then α is strongly outer.

https://doi.org/10.4153/CJM-2014-043-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-043-8


Outer Partial Actions and Partial Skew Group Rings 1157

Proof Suppose that α is not strongly outer. We show that θ is not free. Choose a
non-zero idempotent u ∈ F0(X , B) and a non-identity g ∈ G such that αg is inner at
u. Pick x ∈ X such that b = u(x) ≠ 0. _en bx ≤ u in the sense of Deûnition 2.6. By
Proposition 2.7, we get that αg is inner at bx . In particular, there are f , f ′ ∈ F0(X , B)
such that bx f αg(bx) f ′bx = bx , or equivalently, bx f bθ g(x) f ′bx = bx . _erefore, we
get that

bx(x) f (x)bθ g(x)(x) f ′(x)bx(x) = bx(x) = b ≠ 0

from which it follows that θ g(x) = x. _is shows that θ is not free.

Proof of_eorem 1.3 (i)⇒(iii): Suppose that F0(X , B) ⋆α G is simple. Clearly,
F0(X , B) ⋆α G is graded simple and hence, by Proposition 4.7, we get that F0(X , B)
is G-simple. By Proposition 5.4, we get that θ is minimal. By Proposition 4.4, we
conclude that α is injective, and hence, by Proposition 5.5, θ is faithful.

(iii)⇒(ii): _is follows immediately from Proposition 5.3.
(ii)⇒(i): Suppose that θ is minimal and free. By Propositions 5.4 and 5.6, we get,

respectively, that F0(X , B) is G-simple and that α is strongly outer. _eorem 1.2 im-
plies that F0(X , B) ⋆α G is simple.

6 An Application to Topological Dynamics

At the end of this section, we use _eorem 1.2 to prove_eorem 1.4.

Assumption _roughout this section, θ denotes a partial action of a group G on a
topological space X, and the corresponding subsets of X are denoted by Xg , for g ∈ G.
Let B denote a simple associative topological real algebra which has a set E of local units.
Let CE(X , B) = ∪є∈EC(X , єBє) where

C(X , єBє) = {continuous f ∶X → єBє}.

We postulate that B satisûes the following property:
(P) _ere is a continuous map q∶B → R≥0 satisfying q(b) > 0, for non-zero b ∈ B, and
(q ○ f )єX ∈ I for every ideal I of CE(X , B) and every f ∈ I ∩ C(X , єBє).

Remark 6.1 If E and E′ are sets of local units for B, then CE(X , B) = CE′(X , B). In
particular, if B is unital, then CE(X , B) = C(X , B), and the postulate (P) simpliûes to
(P1) _ere is a continuous map q∶B → R≥0 satisfying q(b) > 0, for non-zero b ∈ B,

and q ○ f ∈ I for every ideal I of C(X , B) and every f ∈ I.

Now we show that there are lots of rings B that satisfy the postulate (P).

Example 6.2 Suppose that K denotes any of the unital rings of real numbers R,
complex numbers C or quaternions H equipped with their respective conjugation ⋅,
norm ∣ ⋅ ∣ and topology. Deûne q∶K → R≥0 by q(k) = kk = ∣k∣2. _en, of course,
q(k) > 0, for non-zero k ∈ K. If I is an ideal of C(X ,K), then q ○ I ⊆ II ⊆ I, so (P1) is
satisûed.
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Example 6.3 Let K be deûned as in Example 6.2. Let n denote a positive integer
and let B denote the unital ring Mn(K) of n × n matrices over K. Extend ⋅ to B by
elementwise conjugation. For 1 ≤ i , j ≤ n, let e i j denote the matrix with 1 in the i j-th
position and 0 elsewhere. For a matrix b = (a i j) in B, let q(b) = ∑1≤i , j≤n ∣a i j ∣2. It
is clear that q is continuous as a map B → R and that q(b) > 0 for non-zero b ∈
B. Let I be an ideal of C(X , B) and suppose that f ∈ I. _en for every choice of
i , j ∈ {1, . . . , n}, there is a continuous map f i j ∶X → B such that f = ∑1≤i , j≤n f i je i j .
_erefore, we get that

q ○ f = ∑
1≤i , j≤n

∣ f i j ∣2 = ∑
1≤i , j≤n

f i j f i j

= ∑
1≤i , j,k≤n

eki f e jk f i j ∈ ∑
1≤i , j,k≤n

eki Ie jk f i j ⊆ I

and hence (P1) holds.

Example 6.4 Let K be deûned as in Example 6.2. Let B = ∪n∈NMn(K). Note that if
m, n ∈ N satisfy m ≤ n, then we can consider Mm(K) ⊆ Mn(K) in the classical way.
Namely, with each (a i j) ∈ Mm(K), we associate (a′i j) ∈ Mn(K), where a′i j = a i j , if
1 ≤ i , j ≤ m, and a′i j = 0, otherwise. _en B is a ring that has a set of local units E
consisting of the matrices є(n) = ∑n

i=1 e i i , for n ∈ N. Take b ∈ B. _en b ∈ Mn(K) for
some n ∈ N. Deûne q(b) as in Example 6.3. It is clear that q(b) > 0 if b is non-zero.
Take an ideal I of CE(X , B) and f ∈ I ∩ C(X , є(n)Bє(n)), for some n ∈ N. _en f
belongs to є(n)X Iє(n)X , which is an ideal in the unital ring C(X , є(n)Bє(n)). Hence, by
Example 6.3, we get that (q ○ f )є(n)X ∈ є(n)X Iє(n)X ⊆ I. _erefore, postulate (P) holds.

Deûnition 6.5 For each g ∈ G, let Dg denote the set of f ∈ CE(X , B) such that
f (x) = 0 for all x ∈ X ∖ Xg . It is clear that Dg is an ideal of CE(X , B).

Remark 6.6 _e set of all єX , for є ∈ E, is a set of local units for CE(X , B).

Proposition 6.7 If each Xg , for g ∈ G, is clopen, then the map
G ∋ g ↦ (αg ∶Dg−1 → Dg),

deûned by αg( f ) = f ○ θ g−1 , for f ∈ Dg−1 , deûnes a partial action of G on C(X , B).

Proof All we need to show is that αg is well deûned. Take f ∈ Dg−1 . We need to
show that the map h∶X → B deûned by h(x) = f (θ g−1(x)), for x ∈ Xg , and h(x) = 0,
for x ∈ X ∖ Xg , is continuous. Suppose that U is an open ball in B. We now consider
two cases.

Case 1: 0 ∉ U . _en h−1(U) = ( f ○θ g−1)−1(U), which is open in Xg and hence is open
in X.

Case 2: 0 ∈ U . _en h−1(U) = ( f ○ θ g−1)−1(U) ∪ (X ∖ Xg), which, by Case 1 and the
fact that Xg is clopen, is open in X.

Proposition 6.8 If X is compact Hausdorò and each Xg , for g ∈ G, is clopen, then θ
is topologically minimal if and only if C(X , B) is a G-simple ring.
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Proof Suppose thatC(X , B) is notG-simple. _ere is a non-trivialG-invariant ideal
I of C(X , B). For a subset J of I, let NJ be the set⋂ f ∈J f −1({0}). We claim that NI is a
closed, non-empty, proper,G-invariant subset of X. If we assume that the claim holds,
then θ is not minimal. Now we prove the claim. Since I is G-invariant, the same is
true for NI . Since I is non-zero, it follows that NI is a proper subset of X. Since each
set f −1({0}), for f ∈ I, is closed, the same is true for NI . Seeking a contradiction,
suppose that NI is empty. Since X is compact, there is a ûnite subset J of I such that
NJ = NI = ∅. Take an arbitrary non-zero local unit є in B. Take another non-zero
local unit є′ in B such that єє′ = є′є = є and f ∈ C(X , є′Bє′), for all f ∈ J. Now deûne
g ∈ I by g = ∑ f ∈J(q ○ f )є′X . Since NJ is empty, we get that∑ f ∈J(q ○ f )(x) > 0 for all
x ∈ X. _erefore, we get that g is invertible in the ring є′XC(X , B)є′X , which in turn
implies that є′X ∈ I. Hence єX = єXє′X ∈ I. Since є was arbitrarily chosen, we get that
I = C(X , B), which is a contradiction, and therefore NI is non-empty.

Now suppose that θ is not minimal. We show that C(X , B) is not G-simple. Let Y
be a non-trivial, closed, G-invariant subset of X. Let IY denote the ideal of C(X , B)
consisting of all f ∈ C(X , B) that vanish on Y . Since Y is G-invariant, it follows that
IY is G-invariant. Now we show that IY is non-zero. Suppose that є is a non-zero
local unit in B. Since X is compact Hausdorò it is completely regular. Hence there
is a non-zero continuous f ∶X → R such that f ∣Y = 0. Pick a non-zero є ∈ B and
deûne a continuous f̃ ∶X → B by f̃ (x) = f (x)є, for x ∈ X. _en f̃ ∈ IY and therefore
IY ≠ {0}. Also, IY ≠ C(X , B). In fact, for every non-zero b ∈ B, the constant function
bX ∈ C(X , B) ∖ IY . _us, C(X , B) is not G-simple.

Proposition 6.9 Suppose that X is compact Hausdorò and each Xg , for g ∈ G, is
clopen. If θ is topologically free, and є ∈ E ∖ {0}, then α is outer at єX .

Proof Suppose that α is not outer at єX . We show that θ is not topologically free.
Choose a non-identity g ∈ G such that αg is inner at єX . _is implies in particular that
єX ∈ Dg ∩Dg−1 and thus Xg = Xg−1 = X. _erefore, there are f , f ′ ∈ C(X , B) such that
єX f αg(єX) f ′єX = єX and αg(єX) f ′єX f αg(єX) = αg(єX) and αg(єXhєX) = f ′h f for
all h ∈ C(X , B). In particular, if we insert h = rєX , where r ∈ C(X ,R), into the last
equation, then we get that r ○ θ g−1 = r which, in turn, by Urysohn’s lemma, implies
that θ g = idX . _us, θ is not topologically free.

Proof of_eorem 1.4 (i)⇒(iii): Suppose that CE(X , B) ⋆α G is simple. Clearly,
CE(X , B)⋆αG is graded simple, and hence, by Proposition 4.7, we get thatCE(X , B) is
G-simple. By Proposition 6.8, we get that θ is topologically minimal. By Proposition
4.4 we conclude that α is injective, and hence, by Proposition 5.5, θ is faithful.

(iii)⇒(ii): _is follows immediately from Proposition 5.3.
(ii)⇒(i): Suppose that θ is topologically minimal and topologically free. Take any

non-zero є ∈ E. By Propositions 6.8 and 6.9, we get thatCE(X , B) isG-simple and that
α is outer at єX , respectively. _eorem 1.2 implies that CE(X , B) ⋆α G is simple.
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[21] P. Nystedt and J. Öinert, Simple semigroup graded rings. J. Algebra Appl., to appear.
http://dx.doi.org/10.1142/S0219498815501029
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