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ON POWERFUL AND p-CENTRAL RESTRICTED LIE ALGEBRAS

S. SiciLiANO AND TH. WEIGEL

In this note we analyse the analogy between m-potent and p-central restricted Lie al-
gebras and p-groups. For restricted Lie algebras the notion of m-potency has stronger
implications than for p-groups (Theorem A). Every finite-dimensional restricted Lie
algebra E is isomorphic to E/EM for some finite-dimensional p-central restricted Lie
algebra £ (Proposition B). In particular, for restricted Lie algebras there does not
hold an analogue of J.Buckley’s theorem. For p odd one can characterise power-
ful restricted Lie algebras in terms of the cup product map in the same way as for
finite p-groups (Theorem C). Moreover, the p-centrality of the finite-dimensional re-
stricted Lie algebra £ has a strong implication on the structure of the cohomology
ring H*(£,F) (Theorem D).

1. INTRODUCTION

The structure theory of powerful p-groups had a strong impact on the study of finite
and infinite pro-p groups (see (15, 16]). Moreover, the mod p cohomology of p-central
groups has been studied quite intensively, since for these groups the cohomology ring
H*(G,F,) is easiest to analyse (see [6, 28]). In this note we shall analyse these concepts
for restricted Lie algebras.

One would expect that powerful restricted Lie algebras play a similar role in the
category of finite-dimensional p-nilpotent restricted Lie algebras as powerful p-groups
play in the category of finite p-groups. However, this is not the case. Let F be a field of
characteristic p > 0, and let §, denote the class of finite-dimensional p-nilpotent restricted
F-Lie algebras. For p # 2, the restricted Lie algebra £ € §, is called m-potent, m < p—-1,
if

(1.1) Yme1(£) < L2,

where 7,(£) denotes the k*-term of the descending central series of £, and £ denotes
the F-vector space spanned by the elements zlPI', z € £. So 1-potent restricted Lie
algebras are just powerful restricted Lie algebras as introduced by Riley and Semple in
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[19]. For m = p — 2, our definition is in analogy with the definition used by Gonzalez—
Sénchez and Jaikin-Zapirain for p-groups (see [9]). For p = 2, £ is called 1-potent - or
powerful - if

(1.2) [, £] < ()P,

Obviously, there exist powerful p-groups of arbitrary high nilpotency class. However, for
restricted Lie algebras one has the following (see- Theorem 2.6, Proposition 2.7).

THEOREM A. (a) Let £ € §, be an m-potent restricted Lie algebra, m < p ~ 1
for p odd, or m = 1 for p = 2. Then £ is nilpotent of class cl(£) < m + 1. Moreover,
£PP js a restricted Lie ideal for all j > 0, and one has (£P)P¥ = gl In particular,
if F is perfect, then for every z € £V there exists y € £ such that z =y,

(b) Let p # 2, let £ be a finite-dimensional p-nilpotent restricted Lie algebra, and
let d: = d(£) denote the minimal number of generators of £ as restricted Lie algebra.
Then £ is powerful, if and only if £ is a sum of d cyclic restricted Lie algebras.

For m = 1, the first part of Theorem A(a) has been proved already in [19, Section
5]. In section 3 we shall apply Theorem A in order to analyse properties of the restricted
universal enveloping algebras of these algebras.

While m-potency has much stronger implications for restricted Lie algebras than for
p-groups, the implications for p-centrality are sometimes stronger and sometimes weaker.
A restricted Lie algebra £ is called p-centrdl, if

(1.3) Ly ={ze | =0} <Z(9),

where Z(L) denotes the centre of the restricted Lie algebra £. Hence, for a p-central
restricted Lie algebra £, the subset £y is a restricted Lie ideal in £. Finite-dimensional
restricted Lie algebras have the following property (see Proposition 2.1G).

PROPOSITION B. Let £ be a restricted Lie algebra of dimension n < co. Then
there exists a p-central restricted Lie algebra £ of dimension 2n such that £ ~ E/E[p].

This property of restricted Lie algebras is in contrast to the situation one has for
finite groups. Indeed, for p odd, Buckley’s theorem states that for a finite p-central group
G the group G/§,(G) is p-central as well (see [7]). This phenomenon is also reflected by
the fact that the characterisation of p-centrality given by Bianchi, Gillo Berta Mauri and
Verardi (see [5]) for p-groups does not hold for restricted Lie algebras (see Proposition
2.11).

In the last section of the paper we consider cohomological properties of powerful
and p-central restricted Lie algebras. For p odd, one can characterise powerful restricted
Lie algebras in the class §, (see Theorem 4.1) in the same way as one can characterise
finitely generated powerful pro-p groups in the class of all finitely generated pro-p groups
(see [27, Theorem 5.1.6]).

THEOREM C. Let p be odd and let £ € §,. Then the following are equivalent:
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(i) £ is powerful.
(i) Cup product induces an injective map

(1.4) _U_: H'(S,F) A H\(L,F) — H%(L,F),

where F denotes the trivial left u(£)-module.

In [6], Broto and Henn showed that for an arbitrary p-central finite group G the
cohomology ring H*(G,F,) is a Cohen-Macaulay F,-algebra. Let p be odd. A finite
group G satisfies the Q-extension property, if there exists a finite p-central group G such
that G is isomorphic to G/ (G). In [28, Theorem A] it was shown that a finite p-group
G satisfies the Q-extension property, if and only if '

(1.5) H*(G,F,) ~ C* ®F, S°,

where C* is a finite-dimensional graded commutative F,-algebra, and S* is a polyno-
mial algebra generated in degree 2. Another interpretation of Proposition B is that for
restricted Lie algebras the §)-extension property is always satisfied. For restricted Lie
algebras, we shali prove the following theorem (see Theorem 4.3, Corollary 4.5) which
can be seen as an analogue of [28, Theorem Al.

THEOREM D. Let p be odd and let £ be a finite-dimensional restricted p-central
restricted Lie algebra. Then

(1.6) H*(L,F) ~C* ® S*(£],)

where 5°( (‘p]) is the polynomial F-algebra generated by Ly = Hompg (L), F) in de-
gree 2, and C* is a finite-dimensional F-algebra satisfying Poincaré duality in dimension
n: = dimg,(Lp)). In particular, H*(L,F) is a Cohen-Macaulay F-algebra.

If p is odd, one can characterise finite p-groups with the Q-extension property by the
structure of their cohomology ring (see {28]). Therefore, one would like to know whether
the following problem has an affirmative answer.

PROBLEM 1. Let p be odd and let £ € §,. Assume that H*(L,F) ~ C*® S*, where C*
is a finite-dimensional F-algebra, and S°® is a polynomial F-aigebra generated in degree
2. Is it true that £ is p-central?

The main purpose of this paper is the study of m-potent restricted Lie algebras
and p-central restricted Lie algebras in analogy to m-potent p-groups and p-central finite
groups. However, there might be other contexts where these notions play an important
role. We close the introduction with the following two open problems [The authors thank
the referee for communicating these problems to them.] which might be the subject of
further investigations.

PROBLEM 2. Investigate m-potent and p-central restricted Lie algebras represented as
ring constructions defined in [14, Chapter 3].
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PROBLEM 3. Describe m-potent and p-central restricted colour Lie superalgebras rep-
resented as blocked matrices of directed graphs (see [13]).

2. POTENT AND p-CENTRAL RESTRICTED LIE ALGEBRAS

Let £ be a restricted Lie algebra over the field IF of characteristic p > 0. For a subset
S of £, we denote by (S), the restricted subalgebra generated by S. If I is an ideal of
£ then I,: = (I), is a restricted ideal of £. By St k > 0, we denote the F-vector
subspace of £ spanned by the elements z¥*, z € S. The restricted Lie algebra £ is
cyclic, if there exists £ € £ such that £ = (z),.

For a positive integer i we denote by v;(£) the i** term of the lower central series of
£. For a restricted Lie algebra £ € §,, we denote by cl(£) the nilpotency class of £, and
by e(£) its exponent, that is, the minimum number m € Ny such that £PI™ = 0. The
element z € £ is called of ezponent k, k € Ny, if and only if (z), is of exponent k. For
an ideal I of the Lie algebra £ we put [/,,£]: = [ .. [[I, £, £] ey 2], where £ appears
in the latter expression n times.

2.1. THE FRATTINI IDEAL ®(L). Let £ € F,. The restricted Lie ideal
(2.1) (L): =Pl + (g, £

will be called the Frattini ideal of £. For the convenience of the reader we state its
well-known properties in the following proposition (see [21]).
PROPOSITION 2.1. Let £e€3,.

(a) ®(L) is the intersection of all restricted Lie ideals I of £ of codimension 1.

(b) IfS is asubset of £ whose image in £/®(L) spans £/®(L), then (S), = £.

(c) Let d(£) denote the minimal number of generators of £ as restricted Lie
algebra. Then d(£) = dimg(£/®(L)).

(d) Let J be a restricted ideal of £ being contained in ®(£). Then ®(L/J)
=&(L)/J.

(e) LetJ be al-dimensional restricted Lie ideal of £ such that the short exact
sequence 0 — J — £ — £/J — 0 is non-split. Then J is contained in
®(L).

2.2. POTENTLY EMBEDDED IDEALS. Let p be odd and m < p — 1. A restricted ideal
I of £ € §, is called m-potently embedded in £, if [, m£] is contained in [P If p = 2,
then I is called 1-potently embedded in £, if [I, £] is contained in (/)2 A 1-potently
embedded ideal will also be called a powerfully embedded ideal. Obviously, if I is m-
potently embedded in £, then IP) is a restricted ideal of L. One has the following:

LEMMA 2.2. Let £ € §, and let I be a restricted ideal of £.
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(a) Let p be odd and m < p— 1. Then I is m-potently embedded in £, if and
only if I/{I,p-1£], is m-potently embedded in £/[I,,-1£],. In this case
one has [I,,-1£], = 0.

(b) Let p=2. Then I is 1-potently embedded in £, if and only if I/[I, 3£}, is
1-potently embedded in £/[I,3£],. In this case one has [I,3£]; = 0.

PROOF: (a) Assume that I/[I,,_1£], is m-potently embedded in £/[I,,_,£),. It
suffices to show that [/, ,-1£] = 0. Suppose [, ,-1£] # 0. By hypothesis,

(2.2) [, m&l, = ([I, mLp N I[p)) + I, p-18p.

Put J: = (I, m€], N I?)) + (I, ,£],. Then J is a restricted ideal of £, and by definition,
(I, mLl, NIP)) C J C [I,m&],. As £ is nilpotent and {I,,_,£] # 0, one has [J, £]
C{1,,£] ¢ [[I,mﬂ],il] = [[1,,,,2],,, 2]. In particular, J # [I,n£],. Since £ is finite-
dimensional and p-nilpotent, there exists a restricted ideal K of £ such that J C K
G I, m&lp, and K has codimension 1 in [/, n£],. Put (I, m€], = K + F.z for a suitable
z € [I,m&lp. Since every l-dimensional left £-module is trivial, one concludes that
[[1,,,,2], S]p C K. By (2.2) and asm < p—1, it follows that [, ,,£], C K, a contradiction,
and this yields the claim.

(b) The proof for p = 2 can be obtained in a similar way by replacing the role of
1P by (123 and [I,,-,£] by [1,3£]. ad

For the reminder of this section we assume that m is a positive integer satisfying
m < p—1for podd or m =1 in case p = 2.

PROPOSITION 2.3. Let £ € §, and let I and J be two restricted ideals of £.
If I and J are m-potently embedded in £, so are [I, £, I¥), [I,J], and I + J.

PROOF: Let p be odd. First we show that [I, £] is m-potently embedded. Without
loss of generality we may assume that [[I,£],,-1£] = 0 (see Lemma 2.2(a)). Hence, for
any z € I and a € £, one has (adz)?(a) = 0, and thus ") C Z(£). Since I is m-potently
embedded in £, this yields [[I, £],, m€] C (I, £] = 0 and the claim follows.

Concerning /! we have already observed that I'”! is a restricted ideal of £ By
Lemma 2.2(a), we may assume that [IP), ,_,£] = 0. As I is m-potently embedded in £,

it follows that {I, m+p-1£] = 0. Hence [I?P, ,£] = 0, and I is m-potently embedded in
(\

Next consider [/, J],. As above we may assume that [{I s ,,_12] = 0. This forces
(I¥),J) = (1, J¥)] = 0. Since I and J are m-potently embedded in £, this implies that
([, mg],J] € (I, J] = 0 and [[J,m€],I] C [I,J¥)] = 0. By Jacobi’s identity, one has
0= [(I,J),m€] = I, Jlp,mE], and thus [, J], is m-potently embedded in £.

Finally, for I + J one has

(2.3) U+ Jm€] =, L)+ [J,mL) € 1P 4+ J¥ C (1 + J)P,
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therefore I + J is m-potently embedded in £.
For p = 2, the proof is analogous to the case p odd using Lemma 2.2(b) and suitable
modifications. 0

As a consequence of Proposition 2.3 one obtains the following corollary.

COROLLARY 2.4. Any restricted Lie algebra £ € §, contains a unique maximal
m-potently embedded restricted ideal.

A restricted m-potently embedded ideal I of £ is obviously m-potent. If $ is a
restricted subalgebra of £ and 9/7 is cyclic, then $ is m-potent. Indeed, in this case
there is z € $ such that every element of /I is a linear combination of the elements
zP + 1, i € Ny. Consequently, [9, 5] = [I,H]. As I is m-potently embedded in £, one
has
Ym1(9H) C 1% c 5 for p odd,

Tms1(9) € U C (522 forp=2.

The m-potency of a restricted Lie algebras is preserved by extension of the ground field.
Furthermore, quotient Lie algebras and direct sums of m-potent restricted Lie algebras
are m-potent as well. The following example shows that a restricted ideal of a m-potent
restricted Lie algebra need not be m-potent.

EXAMPLE 2.5. Let £ be the Lie algebra over a field F of odd characteristic with F-basis
{z,y,2,v} and with relations [z,y] = z and z,v € Z(£). The p-map of £ is given by

(2.4)

One has [£,£] = £F = F.z, and thus £ is powerful. For the restricted ideal
I: = Fx +Fy+F.z one has [[,I] = F.z, while I = 0. Therefore, I is not pow-
erful.

THEOREM 2.6. Let £ € §, be an m-potent restricted Lie algebra.
(a) £ is nilpotent of class cl(£) < m + 1.
(b) Fori > 0 the F-vector space £ is a restricted ideal of £. Moreover,
(L)l = glel™7
(c) Let {by,...,b} be an F-basis of £. Then £ = 3 F.bP".
1<kgr
(d) IfF is perfect, for every element r of £P there exists y € £ such that
T
ProOOF: (a) Let p be odd. By Lemma 2.2(a), cl(£) < p—1. For every z,y € L one
has ad zP)(y) = 0 and thus £ C Z(£). Moreover, as £ is m-potent, Y41 (L/LP) = 0
and thus cl(£) <m+ 1.
Let p = 2. By Lemma 2.2(b), cl(£) < 3. One concludes that (ad z®)2(y) = 0 for
every z,y € £. Hence (£7)® C Z(£). Since £ is 1-potent, 7,(£/(£#)?) = 0 and
therefore cl(£) < 2.
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(b) By (a), the F-vector subspace £ of £ is contained in Z(£) for every i > 0.
This yields (b). Part (c) and (d) follow from the fact that _PI': £ — Z(£) is a p-semilinear
map. 1]

One has the following characterisation of powerful restricted Lie algebras.
PROPOSITION 2.7. Let £ € §, be a restricted Lie algebra with d: = d(£).

(a) If £ is powerful, then £ is a sum of d cyclic restricted Lie algebras.

(b) Ifp +# 2, then £ is powerful, if and only if £ is the sum of d cyclic restricted
Lie algebras.

PROOF: (a) Since £ is powerful, one has ®(£) = £F. Let m5: £ — £/®(L)
denote the canonical projection, and let S = {z;,z,,...,24} be a subset of £ such

d
that 74(S) is a basis of the F-vector space £/£P. Denote by H: = Y (z;), the sum
i=1

of the cyclic restricted Lie algebras (z;),. By construction, one has W;(H ) = me(£).
Hence H + £l = ¢ As _PPl: ¢ — £P is p-semilinear and £ < Z(£), this implies
gl = gl 4 gl Thus, by induction, £IP) = H) and this yields the claim.

d d
(b) Let £ = Y (z:)p. The F-subspace Z(x[p ])p has codimension d = d(£) and is
i=1 i=1
d
contained in ker(mg). Hence ker{mg) = E(x?’])p. This implies [£, £] < ®(£) < £P and
i=1
£ is powerful. 0

The following example shows that Proposition 2.7(b) does not hold in even cha-
racteristic:

ExaMPLE 2.8. Let 5 be the 3-dimensional Heisenberg algebra over a field F of charac-
teristic 2. Then H has a basis {z,y, z} with

(2.6) [z.yl=2  [z,2]=[y,2]=0.

Consider the p-map on $) given by

(2.7) ¥ =y = 5, 2 =o.

Then d($) = 2 and $ = (), + (y¥)p, but $ is not powerful.

The following property is useful for the characterisation of powerful restricted Lie
algebras in terms of cohomological properties.

PROPOSITION 2.9. Letp be odd, and let £ € §, be a non-powerful restricted
Lie algebra. Then there exists a restricted Lie ideal J of £, such that
(i) £P is contained in J.

(ii) J is contained in ®(L) and has codimension 1.
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PROOF: The restricted Lie algebra £ is powerful, if and only if £/7,(£), is powerful
(see Lemma 2.2(a)). Since 7,(£), is contained in (L), we may therefore assume that
v5(£)p = 0 (see Proposition 2.1(d)). In particular, £/ is a restricted Lie ideal contained
in Z(£). Since £ is non-powerful, £} is properly contained in ®(£). Let J be a max-
imal ideal being properly contained in ®(£) containing £”!. Then J has the desired
properties. 0

2.3. p-CENTRAL RESTRICTED LIE ALGEBRAS. For a restricted Lie algebra £ with p-
map _[P1: £ — £P we denote by £, the set of all zeros of [p]. Thus, £ is p-central, if
and only if £, C Z(£). If £ is a p-central restricted Lie algebra, £) is a restricted ideal.
The property of p-centrality will be inherited on restricted subalgebras and is preserved
by direct sums and extensions of the ground field. However, homomorphic images of
p-central restricted Lie algebras need not be p-central. More precisely, any restricted Lie
algebras is the homomorphic image of a p-central restricted Lie algebra.

PROPOSITION 2.10. Let £ be a restricted Lie algebra of dimension n over a
field F of characteristic p > 0. Then there exists a p-central restricted Lie algebra £ such
that dirnn.-(zl) = 2n and £ is isomorphic to E/ E[p] as a restricted Lie algebra.

PROOF: Let {z1,...,Z,} be an F-basis for £ and let B be an Abelian n-dimensional
Lie algebra over F with basis {y;,...,yn}. Let £ denote the Lie algebra £&B with p-map
[p'] given by

(2.8) P =aPlhyy o A=y ==l =0

Clearly, forz=z+ye€ £ withz = 3" Xiz; € £ and y € ‘B one has

i=1

n n
(2.9) P = Z /\f.zgp] + Z APy,

i=1 i=1
The linear independence of the elements z,,...,z,,y1,..., Y. forces E[p] = ‘B, and this
yields the claim. 0

The following property which has been studied for finite groups in [5] yields a crite-
rion for p-centrality in case that the nilpotency class is less than p.

PROPOSITION 2.11. Let £ be a nilpotent restricted Lie algebra over a field
F of characteristic p > 0 with cl(£) < p. Then £ is p-central, if and only if one has
[z,y] = O for every z,y € £ satisfying gl = ylel,

PROOF: Assume that £ is p-central. Since cl(£) < p, the p-map is p-semilinear.
Hence z!?! = /P! forces (z — y)P) = 0. This yields z — y € Z(£), and thus [z,y] = 0.

Conversely, suppose that for z,y € £, 2! = /) implies [z,y] = 0. Since cl(£) < p,
for every z € £ and z € L), one has (z + z)PP! = zlPl 4 2P = zlPl. So, by hypothesis,
z € Z(£) and this yields the claim. 0
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The following examples show that in contrast to the situation for finite groups (see
[5]), one cannot drop the hypothesis on the nilpotency class.

EXAMPLE 2.12. Let F be a field of characteristic p > 0. Let £ be the restricted F-
Lie algebra with basis z,y,z,a1,...,6p-1, b1, ..., by subject to the following relations:
bi,z € Z(£),1 € ¢ < p—1 and [z,y] = ay, [z,a] = [ai,a;] = 0 for every i,j < p,
[a,,y] = ai41 for i < p—1 and [ap—1,y] = 0. In particular, ci(£) = p. The p-map is
given by zlP) = 0, ylP) = 2, 2l?) = 0, aEp] =¥, b?] =0,1<i<p-1. A straightforward
verification shows that any two elements of £ having the same image under the p-map
commute. However, P! = 0 while z ¢ Z(£). Therefore, £ is not p-central.

EXAMPLE 2.13. Let 9 be the restricted Lie algebra which coincides with £ of Example
2.12 as F-Lie algebra, but which p-map is given by zlP) = 4!l = 2, 2l = 0, a?’] = b; and
bg” l=0for1 <1< p-1. Itisan easy exercise to verify that £ is p-central. However,
) = ) but [z,y] #0. :

3. THE RESTRICTED ENVELOPING ALGEBRA OF POWERFUL RESTRICTED LIE
ALGEBRAS

Let £ be a restricted Lie algebra over a field of characteristic p > 0. By u(£) we
shall denote the restricted universal enveloping algebra of £, and by w(£) we shall denote
the augmentation ideal of u(L), that is, w(£) is the kernel of the counit ¢: u(£) — F of
the F-Hopf algebra u(£). In particular, w(£) is the associative ideal generated by £ in
u(L).

3.1. THE NILPOTENCY INDEX OF THE AUGMENTATION IDEAL. It is well known (see
[20)) that w(£) is nilpotent, if and only if £ € F,. The nilpotency indez t(u(£)) of w(£L)
is defined to be the smallest positive integer k such that w(£)* = 0. Relations beetwen
the nilpotency index t(u(£)) of w(£) and the exponent e(£) of £ were studied in [21]:
for example, it was shown that p&(® t(u(£)) for all £ € §p. For powerful restricted Lie
algebras one has also the following.

PROPOSITION 3.1. Let £ be a powerful restricted Lie algebra over a field F of
characteristic p > 0. Then one has

(3.1) t(u(g)) < 1+d(g) - (pP - 1).
Moreover, equality holds in (3.1), if and only if every element z € £\ £l is of exponent
e(£).

Proor: Put

(32) DE): =L  Du(): = <z>[,,,,,](£)lpl>ﬂ+ [£,Dm1(L)] form> 1.
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By [21], one has

(3.3) t(u(@) =1+(p@—1)-) n-d,

n21
where d,: = dimp(SDn(f,) /.’Dn+1(£)). By Theorem 2.6 and induction, one concludes
easily that

(3.4) (L) = LM

where k(n): = [log,n]. This yields

(3.5)

i dimg(£FF /€Y if n = p' with 0 < i < e(£),
" 0 otherwise.

Formula (3.3) implies that

e(£)—1 ' _
(3.6) Ct(u(g) =14+ (p-1) Y p'- dimp(ghl'/gbI™).
i=0
Moreover, by Theorem 2.6, dimg( £ /€PI™*') < d(£) which yields (3.1). One has equality
in (3.1), if and only if dimg( P /L") = d(£) for all i = 0,...,e(£) — 1. By Theorem
2.6, this is equivalent to the property that every element z € £\ £ is of exponent

e(L). 0

3.2. THE LIE DERIVED LENGTH. Let 2 be any associative F-algebra with unit. The
associative F-algebra A can be regarded as an F-Lie algebra via the Lie commutator
[z,y] = zy —yz, 7,y € A. The Lie derived series 8™ () and the strong Lie derived series
5 (A) of A are given by

SO (RA): = 6O () = 2,
(3.7) sl (@) : = [at"th@), s,
M) : = [6D (), 60D ()] L.

The associative F-algebra 2 is called Lie solvable (respectively strongly Lie solvable), if
57(A) = 0 (respectively 60V () = 0) for some n > 0. The smallest such number 7 is
called the Lie derived length (respectively strong Lie derived length) and will be denoted
by dlpi(2) (respectively dI“**(2)). Obviously, if 2 is strongly Lie solvable, then 2 is Lie
solvable and dlp;(2) < dI¥e(2).

Let £ be a finite-dimensional restricted Lie algebra over a field F of characteristic
p > 0. Under the assumption that F is of odd characteristic, Riley and Shalev proved in
[20] that u(£) is Lie solvable, if and only if £, := [£, £], is p-nilpotent. In [23] it was
shown that - without any restriction on the ground field - u(£) is strongly Lie solvable,
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if and only if £} is p-nilpotent. However, for such a restricted Lie algebra it can happen
that dle(u(£)) # dI¥*(u(L)). Apart from the results in [22, 23, 25], very little is
known about the Lie derived lengths of the F-algebra u(£). For powerful restricted Lie
algebras one has the following property.

PROPOSITION 3.2. Let £ be a restricted Lie algebra over a field F of charac-
teristic p > 0. If £ is powerful, then

min ([log,(p™%) +1)1,p — 1) < dlpie (u(£))

(38) g dlLie(u(‘g)) g [10g2(2 + d(ﬂ;) . (pe(ﬁlp) —_ 1)).l -

PROOF: By (23, Lem.2] and Proposition 3.1, one has
(3.9) di¥e(u(£)) < [logy(2 +d(L)) - (p°%) ~ 1))].

It remains to show, that if dlge(u(€)) < p, then dlLie(u(L)) > [logy(p*%) + 1)]. If
£ is Abelian, the claim is trivial. Assume that £ is non-Abelian, that is, cl(£) = 2.
By Theorem A, £ is Abelian. Consequently, there exist two non-commuting elements
a,b € £, such that z: = [a,b] is of exponent e(£,). We claim that a"22" -1, bk 2" !
€ §lm(u(£)) for every non-negative integer m and for every 0 < h,k < p—m—1. We
proceed by induction on m. For m = 0, the claim is trivial. Assume that by induction,
one has a"*122"7' -1 ¢ §im-1(u(L)) and b22""'1 € §lm-1(u(g£)). As z centralises a and
b, the Leibnitz rule implies that

h+1 h+1
(3.10) [a"*1, 8] = Za’ Ya,bla?~H*1! = Zahz = (h+ 1)a"z
i=1
In particular,
(3.11) [ah+lz2’""—-l’bz2’""—1] = [ h+1 b]z2’"-—2 (h+ 1) h,2m-1

As0 < h+1 < p, one concludes that a*22"~! € 6™ (u(£)), and a similar argument shows
that 22" ~1 € 6™ (u(£)). This yields the claim. The Poincaré-Birkhoff-Witt theorem
for restricted universal enveloping algebras (see (26, Chapter 2, Theorem 5.1]) implies
that for 2™ — 1 < p®%), the element 22™~! is non-trivial. The claim has shown that for
0 < m < p—1 the element 22"~! is contained in 6™ (u(£)), completing the proof of the
proposition. 0

3.3. THE LIE NILPOTENCY CLASS AND THE NILPOTENCY CLASS OF THE GROUP OF
UNITS. Let F be a field, and let % be an associative F-algebra with unit. One calls 2
Lie nilpotent, if 2 is nilpotent as F-Lie algebra. In this case we denote by clpi(2) the
Lie nilpotency class of A. Put A: = 2 and AC+) = [AM) AM)A, n > 2. One says
that 2 is strongly Lie nilpotent, if A = 0 for some n. In this case one calls the minimal
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non-negative integer cl“®(2): = m satisfying A™+1) = 0 the strong Lie nilpotency class
of 2.

In [20], Riley and Shalev proved that if £ is a restricted Lie algebra over a field F of
characteristic p > 0, then u(£) is Lie nilpotent, if and only it is strongly Lie nilpotent.
Moreover, this happens precisely when £ is nilpotent and E;, € 8p- They also showed
that clpie (u(£)) = cI“*(u(£)) provided p > 3, while it is unknown whether this equality
holds in the exceptional cases p = 2,3 as well. In {24] it was shown, that if £ € §, and
£ is cyclic, then clyie (u(£)) = c1*(u(£)) = pd™ &. Here we prove the following result:

PROPOSITION 3.3. Let L€ §p. If £, is powerfully embedded in £, then

(3.12) P < clpie (u(L)) < M (u(L)) < 1+d(L) - (p25) ~ 1).
PROOF: From [24, Theorem 1] and Theorem 2.6 it follows that cly;e (u(£)) > p*%).
Consider the chain of restricted ideals of £ defined recursively by
D:(L): = &, Dy(£): = £,
Drr(£): = (D(mtns(E), + [Dem(£), 2],  m
According to [21], one has

(3.14) (W) =1+ (—-1)->_ m-dems),

m21

(3.13)

WV
)

where d(m): = dimp(Dm)(£)/D(m+1)(£))- As £, is powerfully embedded in £, Proposi-
tion 2.3 and Theorem 2.6 imply that for n > 1 one has

(3.15) Dimy(£) = (£,

where h(n): = [log,(n — 1)]. From this identity one concludes that for n > 2

i ’ i 1\ [p)it? . i . . ,
(3.16) diny = {dlmF((‘Qp){P] J(E)PI) ifno=pf 41 with 0 <4 < e(L}),

otherwise.

From formula (3.14) one deduces that

e(Lp)-1
(3.17) e w(®) =1+ (-1 D p"-dime((L)P"/(L)P).
n=0
As in Proposition 3.1, this yields c1"*(u(£)) < 1+ d(£}) - (p*(%) - 1). 0

For an associative F-algebra 2 with unit, we denote by 2* the group of units of
A. Let cl(G) denote the nilpotency class of the nilpotent group G. If £ € §,, then
w(£) is nilpotent and u(£)* = F* x (1 + w(L)). Hence, u(£)" is nilpotent and cl(u(£)")
= cl(1 + w(£)). According to a result of Du (see [8]), if an associative F-algebra ¥ is
radical, that is, T coincides with its Jacobson radical, and Lie nilpotent, then cli(¥)
coincides with the nilpotency class of the adjoint group ¥° = 1 + ¥. As a consequence
one obtains the following:
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COROLLARY 3.4. Let £€ 3, If £, is powerfully embedded in £, then

(3.18) P < c(u(£)) < 1+d(L) - (% - 1).

4. COHOMOLOGY FOR RESTRICTED LIE ALGEBRAS

Let £ be a restricted Lie algebra and let u(£) denote its restricted universal en-
veloping F-algebra. The k' -cohomology group with coefficients in the left £-module M
is given by

where F denotes the trivial left £-module. Cup-product
(4.2) _U_: H*(L,F) x H*(£,F) — H*(L,F),

which coincides with the Yoneda composition of Ext-groups, gives H*(£,F) naturally the
structure of a graded commutative F-algebra. Moreover, every homomorphism ¢: £ — 9t
induces a homomorphism of graded commutative F-algebras ¢*: H*(9,F) —» H*(L,F).
The reduced cohomology F-algebra of the restricted Lie algebra £ is given by

(4.3) H*(L,F)rea: = H*(L,F)/ nil(H*(£,F)),

where nil(H*(£,F)) denotes the graded ideal of nilpotent elements of the graded F-
algebra H*(£,F). Certainly, one of the most striking result on the cohomology of finite-
dimensional restricted Lie algebras is the theorem of Jantzen (see [11]). It states that
if F is an algebraically ciosed field of characteristic p, p odd, then H*(£,F)q can be
identified with the rational functions on the algebraic set £ = {z € £ | zlP! = 0}
generated as F-algebra in degree 2. One can think of this theorem as the analogue of
Quillen’s theorem which describes H*(G,F,) of a finite group G up to F-isomorphism
(see [18]).

4.1. POWERFUL RESTRICTED LIE ALGEBRAS. Ifpisodd, one can characterise powerful
restricted Lie algebras in the class §, in the same way as powerful pro-p groups (see [27,
Theorem 5.1.6]).

THEOREM 4.1. Letp be odd and let £ € §,. Then the following are equivalent:
(i) £ is powerful.
(ii) The mapping Be: H'(L,F)AH(£,F) —» H?*(£L, F) induced by cup-product
is injective.

The proof of Theorem 4.1 makes use of the following simple fact.
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FACT 4.2. Letpbe odd, and let 2 be a finite-dimensional Abelian restricted Lie algebra
with trivial p-map. Let n € H%(2, F) and let

(4.4) Sp: 0—F — 2 HA—0

denote the corresponding short exact sequence of restricted Lie algebras (see [10]). Then
one has Ql,[f] = 0, if and only if € im{Ba).

PROOF: Aspisodd, the p-map on 2, induces a p-semilinear map ¥(n) € Hom§ (2, F)
of degree p. This yields a short exact sequence

(4.5) 0 — H'(A,F) A HY(A,F) 223 H2(2%, F) % Homd(2, F) — 0,

which implies the claim. 0

PROOF: [Proof of Theorem 4.1] Let 7: £ — A, A: = £/®(L£), denote the canonical
projection. One has a commutative diagram

(4.6) | HY\(U,F) A HY (U, F) -22- B2, F)

lﬂ"/\ﬂl lvr2

H\(S,F) A HY(L,F) 22 H2(2, F).

Moreover, 7! A7 is an isomorphism, and By is injective. For n € H*(%,F), let £, denote
the pull back of the mappings £ — A « 2, that is, one has a commutative diagram

(4.7) Syt 0 F £ - £ 0
a / -
|1

Syt 0 F A, — 2 0

If s;, is split, there exists a mapping o making the diagram (4.7) commute. On the other
hand, £, is the pull back of the mappings 7 and 7,,. Hence the existence of the mapping a
in (4.7) implies that s; is split. If n # 0, s, is a Frattini extension (see Proposition 2.1(e)),
and therefore, a mapping a making (4.7) commute must be surjective (see Proposition
2.1(b)).

Let £ be powerful. Let & € H'(£,F)AH'(L,F), £ # 0, and assume that F¢(¢') = 0.
Let £ € H' (A, F) A H' (A, F) such that (7' A7n')(€) = €. Hence Su(€) # 0 and sg,¢) is a
Frattini extension. The commutativity of the diagram (4.6) and the previously mentioned
remark imply that there exists a surjective map a: £ — g, () making the diagram (4.7)
commute for n: = fy(£). However, by Fact 4.2, one has ng’i(f) = 0. Hence g, is not
powerful. On the other hand, as a homomorphic image of £ the restricted Lie algebra
g, ¢y must be powerful, a contradiction. This yields the implication (i)=>(ii).

Let 8¢ be injective, and assume that £ is not powerful. Hence there exists a restricted
ideal J of £ such that £IP1 C J C ®(£) and J has codimension 1 in ®(£) (see Proposition
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2.9). Let H: = £/J and let
(4.8) s: 0 —2F—H-5A—50

denote the canonical short exact sequence. By construction, s is non-split and $! = 0.
Hence by Fact 4.2, there exists an element £ € H'(%,F) A HY(, F), £ # 0, such that
S = Sg,(¢)- From the commutative diagram

(4.9) Sha(e)’ 0—F —>Lpai) — £—>0
» 7 o
Spale)* 0 F 9 2 0

one concludes that B¢((m! An!)(€)) = 0. Hence B¢ is not injective, a contradiction, and
this completes the proof of the theorem. : 0

4.2. COHOMOLOGY FOR p-CENTRAL RESTRICTED LIE ALGEBRAS. Let £ be a finite-
dimensional p-central restricted Lie algebra. For such a restricted Lie algebra one has a
surjective homomorphism

(4.10) p: L @@L — £, plz,z): =2z+1.
Applying Kiinneth’ theorem one obtains a mapping
(4.11) Ag: = (red®id) o p°*: H*(L£,F) — H*(Lp}, F)rea ® H* (L, F),

which gives H*(£,F) the structure of a left H*(L,), F)req-comodule algebra. The Hopf
algebra structure on H*(£p), F)req is induced by the mapping Ag, (see [17]). Using this
additional structure one deduces the following.

THEOREM 4.3. Let p be odd and let £ be a finite-dimensional restricted Lie
algebra. Then one has an isomorphism of graded commutative F-algebras

(4.12) H*(L,F) ~ C" ® 5°(£},)

where 5°*( ‘[p]) is generated in degree 2 and C* is a finite-dimensional graded commutative
F-algebra. In particular, H*(£,F) is a graded commutative Cohen—Macaulay F-algebra.

PROOF: Let ¢: £ — £ denote the canonical map. The theorem of Jantzen implies
that the reduced restriction map

(4.13) j*:=redo’: H*(L,F) — H*(Lpp), Frea
is surjective. Thus [28, Theorem 3.1] implies that one has an isomorphism of F-algebras

(4.14) H*(L,F) ~ C* @ H* (L), Frea,
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where C*: = FOpge(g,;h..o *(£,F) and O denotes the cotensor product (see [17]).
Moreover, since H*(£,F) is a finitely generated graded commutative F-algebra (see [12,
Section 1.11, Proposition]), C* is also finitely generated. By Jantzen’s theorem,

(4.15) trea’ H*(L,F)reg — H* (L}, Frea

is an isomorphism. This implies that the augmentation ideal w(C"*) of C* consists entirely
of nilpotent elements. In particular, C* is finite-dimensional, and H*(£,F) is a graded
commutative Cohen—Macaulay F-algebra.

Let B® be a graded commutative F-algebra. Then B*® is said to satisfy Poincaré
duality in dimension n, if dimg(B") = 1, B" = 0 for all j > 0, and if for all
k € {0,...,n} multiplication induces a non-degenerate pairing B* ® B"~* — B". In (3],
Benson and Carlson developed a method for studying the cohomology ring H*(G, F,) for
a finite group G provided one knows that H*(G,F,) is a Cohen-Macaulay F-algebra and
p is odd. Their main result can be summarised as follows:

THEOREM 4.4. ([3, Theorem 6.3]) Let F be a field of characteristic p ;é 2, and
let A be a finite-dimensional cocommutative F-Hopf algebra such that
(i) A is a Frobenius algebra.
(i) H*(A,F) is a finitely generated Cohen-Macaulay F-algebra.
Let &, ...,&, be a homogeneous system of parameters of degree s, ..., s,, s; = 2. Then
C*: = H*(A,F)/{&,...,&,) satisfies Poincaré duality in dimension s: = En:(si -1).

i=1

PRrROOF: The cocommutativity of the Hopf algebra A ensures that for left A-modules
M and N, the tensor product M Qr N is a projective left A-module whenever one of
the factors is projective. The property of being a Frobenius algebra implies that the
left regular A-module A is also injective (see {1, Proposition 1.6.2]). Therefore one can
transfer the proof of [3, Theorem 6.3] ad verbatim. 0

It is well-known that for a finite-dimensional restricted Lie algebra £, the restricted
universal enveloping algebra u(£) is a Frobenius algebra (see [4]). Moreover, if p is odd
and £ is a p-central restricted Lie algebra, Theorem 4.3 has shown that the cohomology
ring H*(L,F) is a Cohen—Macaulay algebra with a homogeneous system of parameters
€1y ..., & all of degree 2, where n: = dimg(£j). Hence from Theorem 4.4 one obtains:

COROLLARY 4.5. The finite-dimensional F-algebra C* of Theorem 4.3 satisfies
Poincaré duality in dimension n: = dimg(Lp)).

REMARK 4.6. Let £ be a finite-dimensional p-central restricted Lie algebra, and let
(4.16) he(t): = ) _ dimg(H*(L,F)) - t*
k€Np

denote the Hilbert series of its cohomology algebra H*(£,F). One has a multiplicative
decomposition hg(t) = c(t) - (1 — t2)~", where c(t) denotes the Hilbert series of C* and
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n: = dimg(Lp)). The Poincaré duality of C* implies that c(t) = " - ¢(1/t). Hence hg(t)
satisfies the functional equation

(4.17) he(1/t) = (—t)3meCe) . po(2).

The analogous functional equation also holds for p-central groups. Let G be a finite
p-central group, that is, 4 (G): = {g€ G| ¢* =1} < Z(G), and let

(4.18) ha(t): = Y dimg, (H*(G,F,)) - t*

k€eNy

denote the Hilbert series of the mod p cohomology ring of G. By [6], H*(G,F,) is a
Cohen-Macaulay F,-algebra, and thus by [2, Theorem 5.18.1]),

(4.19) ha(1/t) = ()™M O . ho(t).
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