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Abstract

We consider the positive centre sets of regular n-gons, rectangles and half discs, and conjecture a
Bonnesen type inequality concerning positive centre sets which is stronger than the classical isoperimetric
inequality.
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1. Introduction

The classical isoperimetric inequality asserts that for any simple closed curve,

L2 − 4πA ≥ 0, (1.1)

where L and A denote, respectively, its length and its enclosed area, and equality in
(1.1) holds if and only if the curve is a circle. Related topics, generalisations and
applications can be found in the book [3] and the survey paper [10]. One sharpened
form of (1.1) is the Bonnesen type inequality,

L2 − 4πA ≥ π2(rout − rin)2, (1.2)

where rin and rout are the inradius and circumradius of the convex curve γ, respectively.
Inequality (1.2) can be deduced from the well-known Bonnesen inequality (see [1]),

Lr − A − πr2 ≥ 0 for rin ≤ r ≤ rout. (1.3)

There are many elegant proofs and applications of (1.3) (see [2, 4, 7, 11, 14, 15]). A
more comprehensive account of various aspects of Bonnesen’s inequality can be found
in [13, pages 321–327]. Based on a method of symmetrisation and (1.3), Gage [5]
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proved an ‘isoperimetric inequality’ for a convex curve γ involving the total squared
curvature of the curve: ∫

γ

κ2 ds ≥
πL
A
, (1.4)

where κ is the curvature of γ, L is its length and A is its enclosed area. To simplify the
proof of inequality (1.4) and help the reader understand the curve shortening problem
in the plane, Gage [6] introduced the concept of the positive centre of a closed convex
curve γ and showed that the centre of the minimal annulus of γ must be its positive
centre.

Let M, N be two compact convex domains in R2. The Minkowski sum of M and N
is

M + N = {x + y | x ∈ M, y ∈ N}.

Denote by rin the inradius of M and by B2 the unit disc in R2. The set

M−λ = {x ∈ R2 | x + λB2 ⊆ M}, 0 ≤ λ ≤ rin,

is called the inner parallel body of M at distance λ. Denote by K the domain bounded
by γ and by int K its interior. For a point c ∈ K, let

rin(c) = max{r ≥ 0 | c + rB2 ⊆ K}, rout(c) = min{r > 0 | c + rB2 ⊇ K}.

The positive centre of γ can be defined by means of its Bonnesen function,

B(r) = Lr − A − πr2.

A point c ∈ int K is called a positive centre of γ if it satisfies

B(rin(c)) ≥ 0 and B(rout(c)) ≥ 0.

This definition is equivalent to that of Gage (see [6, 8]). Denote by P(γ) the set of all
positive centres of γ.

Huang et al. [8] showed that positive centre sets are convex for closed convex curves
and concluded that the positive centre sets of curves of constant width and squares are
all their inner parallel bodies K−r1 , where r1 is the left zero point of the Bonnesen
function B(r). Motivated by the work of [8], we ask the following two questions.

Question 1.1. If γ is a regular n-gon, is P(γ) its inner parallel body K−r1 ?

Question 1.2. Is there another convex curve γ such that P(γ) is also its inner parallel
body K−r1 besides the curves of constant width and regular n-gons?

The purpose of the present paper is to investigate these two questions. Further
aspects of the positive centre set can be found in [9, 12].
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2. Main results

Firstly, we state two propositions from [8].

Proposition 2.1 [8]. If γ is a convex and centrally symmetric planar curve, thenP(γ) is
also convex and centrally symmetric with respect to the centre of the minimal annulus
of γ.

Proposition 2.2 [8]. If γ is a convex and axially symmetric planar curve, then P(γ) is
also convex and axially symmetric and the symmetric axes pass through the centre of
the minimal annulus of γ.

The following theorem describes the positive centre set of a regular n-gon and gives
a positive answer to Question 1.1.

Theorem 2.3. If γ is a regular n-gon with enclosed area A, then

(i) P(γ) is its inner parallel body K−r1 , where r1 is the left zero point of the Bonnesen
function B(r); and

(ii) the boundary of P(γ) is also a regular n-gon which is a homothet of γ and

A(P(γ)) =

1 −
n sin π

n −

√
n2 sin2 π

n − nπ sin π
n cos π

n

π cos π
n


2

A. (2.1)

Proof. (i) Without loss of generality, let γ be a regular n-gon with circumradius 1.
Hence L = 2n sin(π/n), A = n sin(π/n) cos(π/n) and the two roots of B(r) = 0 are

r1 =
n sin π

n −

√
n2 sin2 π

n − nπ sin π
n cos π

n

π

and

r2 =
n sin π

n +

√
n2 sin2 π

n − nπ sin π
n cos π

n

π
.

From [6, Theorem 1.8], the centre O of the minimal annulus of γ is a positive centre.
To determine the shape of P(γ), we must find the furthest point of P(γ) on the

directions from the point O to the midpoint of each side and that to each vertex. In
other words, we have to find rin(c) and rout(c) for any point c ∈ K, where K is the
domain enclosed by γ. From the definitions of rin(c) and rout(c), we see that rin(c) is
the nearest distance from c to each side and rout(c) is the furthest distance from c to
each vertex.

Suppose n is odd. If B ∈ K is a point on the line from the point O to the midpoint of
one side and x is the distance from O to B, then

rin(B) = cos
π

n
− x and rout(B) = x + 1
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Figure 1. rin(·) and rout(·).

(rin(B) and rout(B) are the green segments through B in Figure 1(a)). If A ∈ K is a point
on the line from the point O to one endpoint of the above side and y is the distance
from O to A, then

rin(A) = (1 − y) cos
π

n
and rout(A) =

√
sin2 π

n
+

(
y + cos

π

n

)2

(rin(A) and rout(A) are the blue segments in Figure 1(a)). Combining these results with
the definition of positive centre set gives

0 ≤ x ≤ cos
π

n
,

cos
π

n
− x ≥ r1,

x + 1 ≤ r2

and



0 ≤ y ≤ 1,

(1 − y) cos
π

n
≥ r1,√

sin2 π

n
+

(
y + cos

π

n

)2
≤ r2.

From computations and comparisons in Mathematica 7.0,

0 ≤ x ≤ cos
π

n
− r1 and 0 ≤ y ≤

cos π
n − r1

cos π
n

. (2.2)

Now suppose n is even. If D ∈ K is a point on the line from the point O to the
midpoint of one side and z denotes the distance from O to D, then

rin(D) = cos
π

n
− z and rout(D) =

√
sin2 π

n
+

(
z + cos

π

n

)2

(rin(D) and rout(D) are the green segments through D in Figure 1(b)). If C ∈ K is a
point on the line from the point O to one endpoint of the above side and w denotes the
distance from O to C, then

rin(C) = (1 − w) cos
π

n
and rout(C) = w + 1
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Figure 2. The positive center sets of regular n-gons.

(rin(C) and rout(C) are the blue segments through C in Figure 1(b)). Hence,

0 ≤ z ≤ cos
π

n
,

cos
π

n
− z ≥ r1,√

sin2 π

n
+

(
z + cos

π

n

)2
≤ r2

and


0 ≤ w ≤ 1,

(1 − w) cos
π

n
≥ r1,

w + 1 ≤ r2.

By some computations and comparisons in Mathematica 7.0,

0 ≤ z ≤ cos
π

n
− r1 and 0 ≤ w ≤

cos π
n − r1

cos π
n

. (2.3)

Since γ is a regular n-gon, γ is a cap-body. From [13, Lemma 3.1.10], (2.2) and (2.3),
the boundary of P(γ) is homothetic to γ. Again by Proposition 2.2 and the convexity
of P(γ) (see [8, Theorem 2.1]), P(γ) = K−r1 (see Figure 2).

(ii) Since P(γ) = K−r1 and the boundary of P(γ) is homothetic to γ, it follows that
equality (2.1) holds. �

To investigate Question 1.2, we examine the positive centre sets of rectangles.

Theorem 2.4. There are rectangles such that their positive centre sets are also their
inner parallel bodies K−r1 , where r1 is the left zero point of the Bonnesen function B(r).

Proof. Let γ be a rectangle of length 2m and width 2. Then its length is L = 4(m + 1),
its enclosed area is A = 4m and the two roots of the Bonnesen function B(r) are

r1 =
2(m + 1) − 2

√
(m + 1)2 − mπ
π

and r2 =
2(m + 1) + 2

√
(m + 1)2 − mπ
π

.

To determine the shape of P(γ), from Propositions 2.1 and 2.2, we need only
describe a quarter of the positive centre set of γ. Divide the quarter rectangle into
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Figure 3. Dividing the quarter rectangle into three parts.

three parts as shown in Figure 3 by lines of slope k passing through the centre of the
rectangle and a point of γ. For an arbitrary point P in these domains,

rin(P) = min{1 − k(m − v), v} and rout(P) =
√

(2m − v)2 + (1 + k(m − v))2,

where v is the distance from P to the right side of the rectangle.
A similar argument to the proof of Theorem 2.3 shows that (km + r1 − 1)/k ≤ v ≤ m

for the points of domain (I). Set k1 = (1 − r1)/(m − r1) and k2 = 1/m. Then, for
domain (II) where k1 ≤ k ≤ k2 and domain (III) where 0 ≤ k < k1,

0 ≤ v ≤ m,
k > (1 − v)/(m − v), 1 − k(m − v) ≥ r1,√

(2m − v)2 + (1 + k(m − v))2 ≤ r2

and


0 ≤ v ≤ m,
k ≤ (1 − v)/(m − v), v ≥ r1,√

(2m − v)2 + (1 + k(m − v))2 ≤ r2.

By some tedious comparisons in Mathematica 7.0, we find r1 ≤ v ≤ m for 0 ≤ k ≤ k1
and (km + r1 − 1)/k ≤ v ≤ m for k1 ≤ k ≤ k2 when m ∈ (1, 1.04), which shows that the
positive centre sets are all inner parallel bodies K−r1 . �

Remark 2.5. From the proof of Theorem 2.4, we find the positive centre set of a
rectangle is extremely complicated for different choices of m. For example, if m = 2,
then q1 ≤ x ≤ 2 for 0 ≤ k ≤ k3 and (2k + r1 − 1)/k ≤ x ≤ 2 for k3 ≤ k ≤ k2, where q1
is the smaller root of (2m − x)2 + (1 + k(m − x))2 = r2

2 and k3 is the solution of the
expression (mk + r1 − 1)/k = q1, where k1 and k2 are as in the proof of Theorem 2.4.
By Mathematica 7.0, we find the quarter of the positive centre set for this case as
shown in Figure 4.

3. Another example and a conjecture

If γ is the boundary of a half disc with radius 1, then its length is L = π + 2, its
enclosed area is A = 1

2π and the two zeros of its Bonnesen function B(r) are

r1 =
π + 2 −

√
4 + 4π − π2

2π
and r2 =

π + 2 +
√

4 + 4π − π2

2π
.
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Figure 4. A quarter of the positive centre set of a rectangle for m = 2.

Figure 5. A half disc and its positive centre set.

To describe the shape of P(γ), from Proposition 2.2, we only need to consider the
positive centre set of the right side of γ. For an arbitrary point P of the right side of a
disc, set |OP| = r and denote by θ the angle from OB to OP (see Figure 5(a)). Then

rin(P) = min{1 − r, r sin θ} =

1 − r for 1/(1 + sin θ) ≤ r ≤ 1,
r sin θ for 0 < r < 1/(1 + sin θ),

and
rout(P) =

√
r2 + 2r cos θ + 1.

Hence,
0 ≤ r < 1/(1 + sin θ), θ ∈

[
0,
π

2

]
,

r sin θ ≥ r1,
√

r2 + 2r cos θ + 1 ≤ r2

and


1/(1 + sin θ) ≤ r ≤ 1, θ ∈

[
0,
π

2

]
,

1 − r ≥ r1,
√

r2 + 2r cos θ + 1 ≤ r2.

From computations in Mathematica 7.0, r ∈ [r1/sin θ, s2] for θ1 ≤ θ < θ2 and
r ∈ [r1/sin θ, 1 − r1] for θ2 ≤ θ ≤ π/2, where θ1 � 1.19346, θ2 � 1.43474 and s2 =

−cos θ +

√
cos2 θ − 1 + r2

2. Combining this with Proposition 2.2, we have the positive
centre set of γ as shown in Figure 5(b).

Based on numerical results from Mathematica 7.0 for regular n-gons, half discs,
rectangles and Reuleaux triangles (see Tables 1 and 2), we are led to the following
conjecture.
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Table 1. Some numerical results for regular n-gons with circumradius 1.

n L A A(K−r1 ) Q

3 3
√

3 3
√

3
4 0.1936059 8.01479867

10 6.1803399 2.9389263 0.06966603 1.171656193
100 6.2821518 3.1395360 9.9645422 × 10−4 0.01198560359
105 6.2831853 3.1415927 1.0335051 × 10−9 1.195437374 × 10−8

1010 6.28318531 3.14159265 1.03354256 × 10−19 1.195433624889859 × 10−18

Table 2. Some numerical results for a Reuleaux triangle, half disc and rectangles.

Examples L A A(K−r1 ) rout rin Q

Reuleaux triangle with width 1 π π−
√

3
2 0.032105

√
3

3 1 −
√

3
3 0.37355

Half disc of radius 1 π + 2 π
2 0.111849 1 1

2 2.82383
Rectangle of length 4 and wide 2 12 8 0.635667 2 1 20.40160
Rectangle of length 20 and wide 2 44 40 0.81985

√
101 1 614.7196

Conjecture 3.1. If γ is a convex curve with length L and enclosed area A, then

L2 − 4πA ≥ π2(rout − rin)2 + 4πA(P(γ)), (3.1)

where P(γ) is the positive centre set of γ, and the equality holds if and only if γ is a
circle.

Next, we suggest a method to attack this conjecture. Let

Q = L2 − 4πA − π2(rout − rin)2 − 4πA(K−r1 ).

From the definition of the positive centre, A(K−r1 ) ≥ A(P(γ)). Hence, if we can show
that Q ≥ 0, then inequality (3.1) is correct.

The Mathematica models and programs used in this paper can be found via the link:
https://pan.baidu.com/disk/home#/all?vmode=list&path=%2Fpaper%20mode.
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