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ON PRIME SEMILATTICES 

BY 

Y. S. P A W A R * A N D N. K. T H A K A R E 

ABSTRACT. Several characterizations for prime semilattices are 
obtained. Prime semilattices that are compactly packed by filters 
have been characterized. Solution to the problem, "Find a condition 
on a semilattice by which every filter can be expressed as the 
intersection of all prime filters containing it", is furnished. 

1. Introduction. Throughout this paper a semilattice will mean a meet 
semilattice i.e. a partially ordered set in which any two elements a and b have 
a greatest lower bound denoted by a A b. The least upper bound for any subset 
{xl5 x2,..., xn} of S, if it exists will be denoted by x 1 v x 2 v < " v x n . The least 
and the greatest elements of S when they exist will be denoted by 0 and 1 
respectively. 

A filter of a semilattice S is a non-empty subset F of S such that x A y e F if 
and only if xeF and y e F A proper filter F of S is prime if, whenever 
x2v • • vx n exists and is an element of F then X J G F for some ie{1, 2 • • • n}. 
For any non-empty subset A of S the filter generated by A is denoted by [A) 
where 

[A) = { X G S : X > a x A a 2 A • • • Aa n for some a l9 a2 • • • an in A}. 

An ideal I of a semilattice S is a non-empty subset of S satisfying 
(i) y < x and x € I imply y el, 

(ii) if join of any finite number of elements of I exists in S then it must be in 
L 

Balbes [1] introduced the prime semilattice as the semilattice S satisfying any 
one of the following equivalent conditions: 

(1) If xxv • *vxn exists in S then for each x in S (x AXX)V(X A X 2 ) V - • -v 
(xAxn) exists and equals X A ( X 1 V X 2 V • • v x j . 

(2) If F is a filter in S and J a non-empty subset of S disjoint with F and 
such that xx v • • • v xn exists whenever xl9 x2 • • • xn e J, then there exists a prime 
filter F such that F ç F and F n J = 0. 
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(3) If x^y then there exists a prime filter F ' such that xeF' and y£F'. 
In the first part of this paper we show that prime semilattices are charac

terized by Stone's theorem (Theorem 1). In the sequel we also consider the 
relative annihilators in the context of prime semilattices. In the last section we 
study prime semilattices that are compactly packed by filters. 

2. Characterizations. Along the lines of Stone's Theorem for distributive 
lattices we have 

THEOREM 1. A semilattice S is prime if and only if for any ideal I and a filter F 
disjoint with I in S there exists a prime filter Q in S containing F and disjoint with 
I. 

Proof. Let S be a prime semilattice. The existence of a filter Q containing F 
and disjoint with I follows by Zorn's Lemma. To prove Q is prime let 
x1 v x2 v • • • v xn exist and is in Q with xt <£ Q for every i e {1, 2 • • • n). But then 

[QU{x1}),[QU{x2}), . . . ,[QU{xn}) 

will have a non-void intersection with I; which in turn will imply that there 
exist il9 i2 • • • in in I such that 

i1>q1Ax1, i2>q2Ax2,..., i n >q n Ax n 

for some ql9 q2,..., qn in Q. / being an ideal, ix A Î2A • • A in is in I. Further 

iiAi2A- • •Ain>(q1Aq2A- • • A q n ) A ( x 1 v x 2 v • - v x j , 

by primeness of S. As 

(q1Aq2A- • •Aq n )A(x 1 v • -vxn) 

is an element of Q, 0 ^ Q fl J; this contradicts the choice of Q. Hence Q is 
prime. 

Conversely, let x^y. Let I = (y] and F = [x). As I P l F = 0, by assumption, 
there exists a prime filter Q containing F and disjoint with J, i.e. Q contains x 
but not y, proving that S is prime. 

It follows immediately from the above theorem 

THEOREM 2. A semilattice S is prime if and only if any one of the following 
separation properties hold. 

(1) A filter and an element not belonging to it are separated by a prime filter. 
(2) An ideal and an element not belonging to it are separated by a prime filter. 

In a distributive lattice every filter is the intersection of all prime filters 
containing it. The following theorem gives a solution to the problem: 

"Find the condition on a semilattice S such that every filter of S can be 
expressed as the intersection of all prime filters containing it". 
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In any semilattice, for a filter Q, define the radical of Q ( = rad Q) to be the 
intersection of all prime filters containing Q. 

Theorem 1 allows us to have 

THEOREM 3. A semilattice S is prime if and only if rad Q = Q, for any filter Q 
in S. 

Balbes [1, Theorem 2.4] proves that in a prime semilattice S every maximal 
filter is prime. Hence any prime ideal in a prime semilattice will be a minimal 
prime ideal if and only if its set complement is a maximal filter. 

Recall that a semilattice S with 0 is called weakly complemented if for a ̂  b 
in S there exists c ̂  0 in S such that exactly one of a A C, b A C is zero (see [4]). 
In a weakly complemented semilattice converse of Theorem 2.4 in [1] holds; 
this we prove in the following 

THEOREM 4. Let S be a semilattice with 0. If S is a prime semilattice then every 
maximal filter is prime. The converse holds when S is weakly complemented. 

Proof. Though the proof of first part follows from (Balbes [1], Theorem 
2.4), we give here a rather simple proof. Let X i V ' V ^ exist and 

with Xi^M for each i in {1, 2 • • • n}, where M is a maximal filter in a prime 

semilattice S. As M is maximal, Xi£M imply that there exist yt in M such that 

xt A yt = 0 for every i e{l , 2 • • • rc}; (see [4]). But then 

( x x v x 2 v • • vx n )A (y 1 Ay 2 A- • -Ayn) = 0 

by primeness of S, implies that OeM, contradicting the maximality of M. 
Hence M is a prime filter. 

Now for the second assertion, as S is weakly complemented, x^y in S 
implies that there exists a maximal filter F containing x and not containing y 
(see [4]). As F is prime, by assumption, we conclude that S is a prime 
semilattice. This completes the proof. 

As the complement of a maximal filter in a prime semilattice is a minimal 
prime ideal we get 

COROLLARY 5. In a prime semilattice with 0 a prime ideal M is a minimal 
prime ideal if and only if for every x in M there exists y not in M such that 
XAy = 0. 

Varlet [3] defined an annihilator (a, b) of a relative to 6 in a semilattice S to 
be the set of all elements x in S such that a A x < b . Mandelkar [2] charac
terized distributive lattices in terms of such annihilators. The following theorem 
shows that this very characterization applies well to prime semilattices. 
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THEOREM 6. For any semilattice S the following are equivalent 
(1) S is prime 
(2) (a, b) is an ideal for all a, b in S 
(3) (a, b) is an ideal for all b<a. 

Proof. (1)=M2). 
Let S be a prime semilattice and xl9 x 2 , . . . , xn are in (a, b) such that 

XiVX 2v • -vxn exists. Then as S is prime 

a A ( x 1 v x 2 v - • • vx n) = (aAJCi)v(aAX2)V- • - v ( a A x n ) < 6 

as xt e (a, b) for every i in {1, 2 • • • n}. 

This proves that x1vx2v- • • v x n e ( a , b). If x < x a and x1e(a,b) then a/\x< 
a AXx<b implies that x e ( a , ft). Hence (a, 6) is an ideal. 

(2)=>(3) Obvious. 

(3 )^(1) . 

Let XjV • -vxn exist in S and a be any element in S. As 

(a A xa) v (a A x2) v • • • v (a A xn) < a 

we get 

(a, (a A Xi) v (a A x2) v • • v (a A xn)) 

is an ideal in S. As x1? x 2 , . . . , xn are in 

(a, ( a A x ^ v • • v(aAx n ) ) 

and X ! v x 2 v • • vx n is an element of 

(a, ( a A X i ) v • -v(aAxn)) 

hence a A(XJ V • • v x n ) < ( a A X J V • • v (a Axn). As the reverse inclusion al
ways holds we get 

a A ( X X V • •vxft) = ( a A x 1 ) v • -v(aAx n ) 

proving that S is a prime semilattice. 

Let us denote by a*b the pseudocomplement of a relative to b in a 
semilattice S, i.e. a * 6 is an element satisfying 

a A x < fr if and only if x < a * b. 

If a*b exists for all a, b in S then S is called an implicative or relatively 
pseudocomplemented semilattice (see [1]). 

It follows from the definition of relative annihilator and implicative semilat
tice that a semilattice S is implicative if and only if the relative annihilator 
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(a, b) is a principal ideal (a*b] , for all a, b in S. Hence we have 

COROLLARY 7. Euery implicative semilattice is prime. 

A sufficient condition for a prime semilattice to satisfy (a, b)U(b, a) = S is 
given in the following theorem. It will be interesting to see whether the 
condition is necessary also. 

THEOREM 8. In a prime semilattice if the filters containing the given filter F 
form a chain then F is prime and 

(a,b)U(b9a) = S. 

Proof. Let ati a2,..., an be elements in S which are not in F Fix up any 
element a,-, l < / < n . Then as [FUj^}) and [FUiaJ ) are comparable for every 
i in {1, 2 • • • n} we may assume without loss of generality that 

[ F U W s t F U l o , . } ) , i e { l , 2 - - - n } . 

Hence for some / in F, 

f A at < ai ; i G {1, 2 • • • n}. 

If a1va2V' " v a n exists and is in F then 

/ A ( a ! v a 2 v • •vaB) = ( / A a 1 ) v ( f A a 2 ) v • -v( /Aa n ) 

by primeness of S. But as / e F and ^ v ^ v • • v a n G F we have 

/ A ( a 1 v a 2 v - • - v a n ) e F 

i.e. 

( / A a 1 ) v ( / A a 2 ) v • -v(/Aan)<EF 

But then 

( / A a 1 ) v ( / A a 2 ) v • -vC/AaJ^a,-

implies that ai eF, which is a contradiction. Hence a 1 v a 2 v - • • van<£F, proving 
that F is prime. Let us assume that J = (a,b)U(b, a) be proper. Hence by 
Theorem 2, there exists a prime filter Q disjoint with J. By hypothesis we may 
assume that 

[QU{a})ç[QU{6}). 

Hence for some q in Q we have q A a < b, i.e. q e (a, b) and hence qeQHJ, 
contradicting the choice of J and hence (a, b)U(b, a) = S. 

DEFINITION (see [4]). Let P be a bounded poset. An element b is called a 
complement of a if the only upper bound of a and b is 1 and their only lower 
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bound is 0. This fact is expressed by avb = l and aAb = 0 even when the 
operations A and v are undefined for some pairs of P. Interestingly we have, 

THEOREM 9. Let S be a prime semilattice with 0 and 1 in which complement of 
every maximal ideal is a maximal filter. Then S is complemented. 

Proof. As S is prime semilattice, by Theorem 8, (a, 0) is an ideal for any a 
in S. Assume that a has no complement. Then a v x ^ l for all x in <a, 0). 
Consider the set 

A = {{a, x}u :xe(a, 0)} 

and let J — A\ where for any non-empty subset Y of S, Yu and Yl denote the 
set of all upper bounds of Y and the set of all lower bounds of Y respectively. 
As / is a proper ideal in S and 1 e S, J must be contained in some maximal 
ideal say M in S. Hence by assumption S - Af is a maximal filter. As aeS-M 
there exists b in S - M such that a A b = 0. Hence 6 e ( a , 0 ) ç M gives that b is 
in M. Thus beMD(L-M), a contradiction. So our assumption that a has no 
complement is false. Hence the proof. 

3. Prime semilattices that are compactly packed by filters. 
In any semilattice S with 1, if a filter Q is contained in UT=i ^ where Ft's 

(1 < / < n) are prime filters of S then it can be verified that Q^Ft for some i. 
Define a semilattice S with 1 to be compactly packed by filters if S satisfies (*) 
if a filter Q ç U A S A ^ where FA's are prime filters of S, then Q^FK for 
some À. 

For prime filters in a semilattice which is compactly packed by filters we have 

THEOREM 9'. Every prime filter of a semilattice which is compactly packed by 
filters, is a radical of a principal filter. 

Proof. Let there be a filter Q such that Q ^ rad [x) for any x in S. Hence, by 
definition of rad [x], there exists a prime filter Fx in S containing x but not Q. 
Clearly Q ç UxeQ^x- S being compactly packed by filters, Q^FX for some x 
in Q, which is a contradiction. Hence the result. 

Equivalent formulation of the condition (*) of compactly packedness by 
filters in a prime semilattice with 1, is given in the following 

THEOREM 10. A prime semilattice S with 1 is compactly packed by filters if 
and only if it satisfies (**).Ifa prime filter F ç |J XeA Fx, where FK are prime filters 
of S then F^F^ for some'k e A. 

Proof. As only if part follows directly from the definition, we will prove if 
part only. Let S satisfy (**) and Q Ç I J ^ A ^ Clearly I = S-[J 

\eA *\ is an 
ideal and IDQ = 0. By Theorem 1 there exists a prime filter F' such that 
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F H1= 0 and Q ç F ' , i.e. Q g F ' ç UA6A *V Hence Q^F'çFK for some A G A, 
by (* *), proving that S is compactly packed by filters. 

By using the property (**) we now give the characterization of prime 
semilattices which are compactly packed by filters. 

THEOREM 11. A prime semilattice S with 1 is compactly packed by filters if 
and only if every prime filter of S is a principal filter. 

Proof, In view of Theorem 2 and Theorem 10 we need only prove the "if" 
part. Let every prime filter of S be a principal filter. If the prime filter 
Q ^ UxeA^V we get [x )ç UxeA^x» where Q = [x), for some x in S. Hence 
X G F X for some A G A, i.e. Q^FK for some A G A. Hence S is compactly packed 
by filters. 

If J(S) denotes the poset of all join-irreducible elements of a semilattice S 
then J(S) is isomorphic with {[x):xeJ(S)} when S is a prime semilattice. 
Hence by Theorem 11, if 9 denotes the family of all prime filters of S, we have 

COROLLARY 12. If S is a prime semilattice with 1 that is compactly packed by 
filters then 9 is isomorphic with J(S). 

The authors are thankful to the referee for making various suggestions which 
helped to improve the earlier version of the paper. 

REMARK. The referee has very kindly supplied the following counterexam
ple; it says in essence that the existence of ^ v • - v o ^ n ^ 3 , in a meet 
semilattice does not imply in general the existence of a1va2. 
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This led the referee to suggest the following interesting question which we 
state here for the consideration of others also: 

"Is the following condition sufficient for a meet semilattice S to be prime? If 
Xj v x2 exists then for each x e S, (x A X{) V (X A X2) exists and equals x A (xt v x2)." 

The authors are also indebted to the referee for inviting their attention 
towards the above question. 
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