Can. J. Math,, Vol, XXV, No. 4, 1973, pp. 812-819

BOUNDARY BEHAVIOR AND QUASI-NORMALITY OF
FINITELY VALENT HOLOMORPHIC FUNCTIONS

DAVID C. HADDAD

A function defined in a domain D is n-valent in D if f(3) — w, has at most
n zeros in D for each complex number w,. Let ¥~ = ¥ (ry, ) denote the class
of nonconstant, holomorphic functions f in the unit disc that are n-valent in
each component of the set {z:| f(z)| > 7o}. MacLane’s class &7 is the class
of nonconstant, holomorphic functions in the unit disc that have asymptotic
values at a dense subset of |z| = 1. (For a detailed discussion of 27 see MacLane
[4].)

In [2, Theorem 3] we showed that¥” C.2/. Bagemihl and Seidel [1] and
MacLane [4] independently showed that 4" C &7, where 4 is the class of
nonconstant holomorphic functions in the unit disc that are normal in the
sense of Lehto and Virtanen [3]. Furthermore, Lehto and Virtanen showed [3,
Theorem 2] that a normal function having asymptotic value ¢ at e? has
angular limit ¢ at e®.

Is there any relationship between the two classes ¥~ and A? Clearly,
N ¥ since €02 belongs to4 but not to?”. In this paper we show that
¥ is a quasi-normal family of order #» and each function f € ¥ is a quasi-
normal function of order at most # — 1 (the definitions are below). We show
that this result is the best possible so that¥” ¢ .4, Furthermore, Letho and
Virtanen's result on angular limits is true for functions in ¥”. Thus each
function in 7~ has angular limits at a dense subset of |3| = 1.

A general reference on quasi-normal families is Montel [5, Chapter 2].
However, it is necessary for our purposes to elaborate on some of his definitions.

A sequence of functions defined in a domain D converges subuniformly in D
if the sequence converges uniformly on compact subsets of D. A set E C D is
sparse in D, if E is a finite set of points or if E = {z,} is a countable set and
the distance (on the Riemann sphere) from z, to dD tends to zero as # tends
to infinity.

A family Q of holomorphic functions in D is a quasi-normal family in D if
every sequence of functions in Q has a subsequence which converges sub-
uniformly in D — E, where E is a sparse subset of D. (In general, E depends
on the particular subsequence.)

If { fi} is a sequence of holomorphic functions in D converging to f sub-
uniformly in D — E, then a point 2y € E is an drregular point for the sequence
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{ fu} if { fi} does not converge to f subuniformly in any neighborhood of z,.
Irregular points occur only in the case when f = 0. The order of the sequence
{ fu} is the number of irregular points for the sequence. A point 3, is a strongly
irregular point for { fi} if for k sufficiently large, f;(z) takes on all complex
numbers in every neighborhood of z,.

A sequence { f3} is stromg if either it converges subuniformly in D to a holo-
morphic function or it converges subuniformly in D — E to infinity and each
point of the sparse set E is strongly irregular.

It is not hard to show that every sequence in a quasi-normal family has a
subsequence that is strong.

If Q is a quasi-normal family of holomorphic functions in D, then the order
of Q is the supremum of the orders of the strong sequences in Q. (This defini-
tion differs from Montel's [5, p. 66]; Montel takes the supremum over all
sequences in Q, not just the strong sequences.)

A holomorphic function f in |z| < 1 is a quasi-normal fnuction of order = if
the family { f o ¢}, where ¥ runs through all the M&bius transformations of
|z2] < 1 onto itself, is a quasi-normal family of order #n. (This is the obvious
extension of Lehto and Virtanen’s definition of a normal function.)

It is convenient to introduce the following notation. If w = f(z) is a non-
constant, holomorphic function in |3] < 1, we denote by F the Riemann
surface of f—! as a covering surface of the w-plane. Let p denote the projec-
tion from F onto the w-plane and let f be the one-to-one conformal map of
lz| < 1onto Fsothatf = pof. If Tisacurvein |z < 1, we let

(D) = | 1@ ld].

A component of the set {z:| f(z)| = » > 0} is called a level curve of f.

LEmMmA 1. Let Q be a family of holomorphic functions in a domain D. Let
{D;} be a sequence of domains such that Dy C D, Dy C Dyy1, and \Use, Dy = D.
The family Q is quasi-normal in D if there is a sequence {ji} of positive integers
and two distinct complex numbers a and b such that f(z) — a and f(z) — b have
at most jy, zeros in Dy, for every f € Q.

Proof. That Q is a quasi-normal family in D;, of order at most j; follows from
a theorem [5, p. 67] of Montel. Thus each sequence { f,} C Q has a subsequence
{ fi«} that converges subuniformly in D; — E;, where E; has at most j; points.
The sequence { fi.} has a subsequence { f} that converges subuniformly in
D, — E, where E; has at most j» points. Proceeding inductively, we obtain a
sequence { fro} C { fo} for each k such that { fia} converges subuniformly in
D, — E;, where E; has at most j; points. The diagonal sequence { fiz} is a
subsequence of { f,} that converges subuniformly in D minus the sparse set
UY=; Ei. Thus Q is a quasi-normal family in D.

LEMMA 2. Every functionf € ¥~ =¥ (ry, n) takes on each value w,(|wo| > 27)
at most q(s) times in |z| < s, where q is a function of s and not of f or w,.

https://doi.org/10.4153/CJM-1973-083-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1973-083-9

814 DAVID C. HADDAD

Remark. Of course, ¢ depends on 7, and % in addition to s.

Proof. Let f € ¥ and let {C;(r)} denote the level curves of {z:| f(z)| = }.
Let L;(r) denote the length of C,(r), let C,(r) = f(Cj(r)), and let g = f“.
Let R = {riro < r < 2r;, and F has no branch points lying over |w| = r}.
For each » € R,

Lyr)* = (f“ ¢ )] dul)

< 4mnﬁ g’ @)|*|dw].
Cj(r)

If we let  denote the area of {z:7, < | f(2)| < 270}, then it readily follows that
for each integer £,

k
f > L,()dr £ 4wrona.
R j=1

Thus Yj1L;(r1)? £ 4rrean < 4x’ren for some 71 € R and for each positive
integer k.

If a component D(r1) of the set {z:| f(z)| > r1} meets [z| < s and if all the
level curves of 0D (r1) that meet |3| < s are relatively compact in |z| < 1, then
D (r1) must be the only component of {z:]| f(z)| > 7.} meeting |z| < s. Hence,
f(z) assumes each value w (Jw| > 2r,) at most » times in |z| < s because f € 7.

Hence, we may as well assume that every component D;(r1) of {z:| f(z)| > 71}
meeting |z| < s has a noncompact level curve C; on its boundary that meets
|z] < s. Clearly, the length of each C; is bounded below by 2(1 — s). If % is
the number of components D;(r;) that meet |z| < s, then

k
4k(1 — 5)* £ L,(r)* £ 4x'ron.
=1

Thus, if |z] <s then f(z) assumes each value w (Jw| > 2ry) at most
nk < wtron?/(1 — s)? times. This completes the proof of the lemma.

LemMa 3. Let f be a nonconstant, holomorphic function in |z| < 1 that is
n-valent in a component D (ro) of {z:| f(z)| > ro}. Let D C D (ro) be a component
of {z:| f(z)| > r > ro}, and let k be the number of zeros of f in D*, the simply
connected domain obtained by adding to D those components of {z:| f(z)| < 7}
that punch holes in D. Then k < n, and the connectivity of D is bounded above
by k + 1.

Proof. Each component G; of D* — D is bounded by a closed level curve
T; C {z:| f(z)| = r}. By the minimum principle f has at least one zero in G;.
Thus the connectivity of D is bounded above by & + 1. If ¢; denotes the num-
ber of zeros of f in Gj, then by the argument principle A, arg f(z) = 2mq;.
Since f is n-valent in D (r¢), then

27k = 270, q; = 2 (Ap arg f(z)) < 2mn.
7 7

Thus, & = =n.
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THEOREM 1. The family ¥V is a quasi-normal family of order n in |z < 1.

Proof. That¥” is a quasi-normal family in || < 1 follows immediately from
Lemma 1 and Lemma 2.
Let

2 (2) = ij:I: (z — i) .

Clearly, {gx} C ¥ and {g;} is a strong sequence of order n. Hence, the order
of ¥ is at least #.

To obtain an upper bound on the order of ¥, let {f,} be a strong sequence
converging to infinity subuniformly in |z| < 1 minus a sparse set. Choose
s (0 < s < 1) such that |z| = s contains no irregular points for { f;}. For &
sufficiently large, |z| = s lies in a component Gy of {z:| fi(z)| > 2ro}. If ¢ ir-
regular points for { f} lie inside |z| < s, then the connectivity of G; is at least
g + 1. By Lemma 3, n + 1 is an upper bound on the connectivity of G;.
Hence, ¢ £ #, and, since s can be chosen arbitrarily near 1, the order of { f;}
cannot exceed #. Thus,?” is a quasi-normal family of order precisely #.

THEOREM 2. Each function f € ¥~ is a quasi-normal function of order at
most n — 1.

Proof. The family { f o ¢} where ¢ runs through all of the M 6bius transfor-
mations of |z| < 1 onto itself is a subfamily of ¥” and hence is quasi-normal of
order at most #.

Suppose { fx = f 0 ¥} is a strong sequence with # irregular points. Choose
s (0 < s < 1) so that the » irregular points for { f;} lie inside |z| < s. Thus,
we can choose ko so that the circle |3] = s lies in a component G, of
{z:| fu(2)| > 2ro} for each k& > k. Let & > ky. By Lemma 3, f; has at most z
zeros in |z| < s. Hence, it follows from the argument principle that
mp[ fr (0G, N {|z] < s})] = 4xnr,. On  the other hand, since f €%,
mp[ fr(0G, M {|z| < 1})] = 4wnre. Hence, all the level curves of 9G; lie in-
side |z| <'s, and so | fx(z)| > 27y for z in the annulus 4 = {z:s < |2]| < 1}.
Thus, ¢, (4) contains an annulus B = {{:¢ < [¢| < 1} in which | f(z)| > 2.
If M = max¢ <, f(¢)|, then for k sufficiently large, min,,—s| f(¥r(2))| > M
since the irregular points for { f;} lie inside |z| < s. Thus for % sufficiently large
¥ (]z| = s) C B, which implies y;(|3] < s) C B. Hence, | f(¥x(2))| > 2ro for
|z| = s and k sufficiently large. This is inconsistent with the fact that the »
irregular points for { f;} lie inside |z] < s. Therefore, the order of each sequence
{ f oy} is bounded above by #» — 1, and consequently f is a quasi-normal
function of order at most # — 1.

THEOREM 3. If a function f € ¥ has asymptotic value ¢ at e* then f has
angular limit ¢ at e®.

Proof. If ¢ is finite, Lehto and Virtanen’s argument [3, pp. 52-53] shows that
f has angular limit ¢ at ¢*® whenever f has asymptotic value ¢ at .
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Suppose f has asymptotic value infinity at e*® but does not have angular
limit infinity at e®. Then by [3, Theorem 1], there is an asymptotic path T°
ending at ¢ on which f(z) tends to infinity and a sequence of points z; con-
verging to e®® at which f(z;) = a # 00 (k = 1,2,...) such that the hyperbolic
distance o (T, 2;) from T to z; is bounded by a constant b for all k.. By Lemma 3
we can choose r > max(|a|, 7o) so that F has no branch points over |w| = r
and so that the component D = D(r) of {z:| f(z)| > r} containing a terminal
subarc of T is simply connected.

Let H() = {z:0(z, T) < b}, where o(z, T') denotes the hyperbolic distance
from z to T. Every neighborhood of ¢* contains a subsequence of {z;} in
H(b) — D and a subarc of 7" in H(b) M D. Thus we can find a sequence of
distinct points & € D M H(b) that converges to e®.

Since D is simply connected, dD contains no compact level curves. It follows
from [2, Corollary 1 and Theorem 2] that each level curve of 4D is a crosscut
of |z] < 1 ending at points other than e*. Hence only finitely many ¢ can
belong to the same level curve. Thus we may assume that ¢, € Ly, a level curve
of @D ending at points of |z| = 1 other than e and that Ly, N\ L; = @ for
j # k. Since #; € H(b) and since H(2b) meets |z| = 1 only at the point e,
each curve L; contains a subarc lying in H (2b) with initial point ¢, and termi-
nal point on dH (2b).

Let { = yi(2) be a Mobius transformation of |3| < 1 onto |¢| < 1 such that
¥, () = 0. Since f is a quasi-normal function (Theorem 2), the sequence
{ fo s~} contains a subsequence { fo,~!} which converges either to a
holomorphic function g subuniformly in [¢| < 1 or to g = o subuniformly
in [¢| < 1 minus at most # — 1 points.

Let K(b) be the hyperbolic disc with center { = 0 and radius b. Since
inf, cpo (2, t.) < b and sup,cro(2, t.) = 00 for each a and since the hyperbolic
metric is invariant under one-to-one conformal mappings, each ¢,(7") contains
a subarc with one end point on 8K (b), the other on 0K (2b). Furthermore,
each ¥.(L.) contains a subarc lying in K(b) with one end point at { = 0,
the other on 9K (b). Hence, each of the sequences {¢u(L.)} and {¢.(7")} has
at least one accumulation continuum J and S lying in [¢| < 1. Since |g(¢)| = 7
for ¢ € J, then g must be holomorphic in all of [{| < 1. On the other hand,
g(t) = o for ¢ € S since f has asymptotic value oo along 7'. This contradic-
tion completes the proof of the theorem.

The following corollary follows immediately from Theorem 3 and |2,
Theorem 2].

COROLLARY 1. If f € ¥ then f has angular limits at a dense subset of |z| = 1.

Example 1. We shall construct a function w = f(z) holomorphic in 3| < 1
such that f is quasi-normal of order # and f € ¥~ (ro, n + 1) for each r, > 1.
This example shows that Theorem 3 cannot be improved.

Our method is to construct a hyperbolic Riemann surface F lying over the
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w-plane and then to let f be the conformal map of |z| < 1 onto F; thenf = p of
where p is the projection of F onto the w-plane.

Let Dy!, D:?, ..., Di* be n copies of the unit disc |w| < 1. Join D,* to
D1 (k =1,2,...,n — 1) by a snake-like strip lying in |w| > 1 (see Figure
1). The resulting surface F; is a simply connected smooth covering of the
w-plane.

For each positive integer j let F; be the surface obtained by stretching F,
by a factor of j, that is, F; = jF1. We join F; to Fy;. as follows: joint D;* to
Dy 1! by a snake-like strip S; passing through |w| < 1 so that S; N\ S;;1 =90
(see Figure 2). The resulting surface F consisting of Fy, Sy, Fs, Ss, . . ., Fj, S, . ..
is a smooth simply connected covering surface of the w-plane such that each
component of F lying over |w| > ro > 1 has at most # 4 1 points lying over
any given point in the w-plane.

Let f be a one-to-one conformal map of |z| < 1 onto F. Clearly, f € ¥ (ro,
n + 1) for each 7o > 1.

To show that f is a quasi-normal function of order # we need to produce a
sequence {yg} of M&bius transformations of |s| < 1 onto |z| < 1 and a set of
points sy, $2, ..., S, that are strongly irregular for the sequence { f o ¥;}.

Let 6,4, 6,2, ..., 6 be the n points of F; lying over the point w = 0. Let &,
be a one-to-one conformal map of Fy onto |¢| < 1 such that Ay(6:') = 0;
denote by ¢, the point 4,(6:7) (j =1, 2,...,n). Let &; be the one-to-one

N\

Fi1Gure 1
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FIGURE 2

conformal map of F; onto |{| < 1 defined by %;{¢) = hi(t/7). Let ¢; be a
Mébius transformation of |s| < 1 onto |z| < 1 such that ¥,(0) = f—1(8,%).
Denote by x; the map ¢, o f =1 o h;~1 of |¢| < 1into |s| < 1.

We shall show that the sequence {x;} has a subsequence {x.} that converges
to a one-to-one holomorphic function from |¢| < 1 into |s| < 1 such that
|x(£)] = |¢]- Let us accept this for now and proceed to show that f o ¢, has a
strong subsequence with # irregular points.

Lets, = x(¢;) G=1,2,...,n). Since x is one-to-one and |x(¢)| =< |¢], it
follows that s; ## s for j # k and |s;| < 1. Each s; will be a strongly irregular
point for any subsequence of { f o .} converging to infinity because x.({;) is
a zero of f o ¢, and x.(¢;) — s, as @ — .

Each surface F; has a crosscut lying over |w| = j that separates ;! and 6,%.
Hence, for each j there is a crosscut of |s| < 1 by an arc of {s:| f(¥,;(s)| = j}
that separates s = 0 from x;({2). These crosscuts have at least one accumula-
tion continuum G in |s| < 1 because x.({2) — sz as @ — o and |sof = 1.
Since f € ¥ (ro, n + 1), then by Theorem 3, f is a quasi-normal function of
order at most #. Thus the sequence { f o ¥.} has a subsequence which converges
to a function g subuniformly in |s| < 1 minus at most % points. Since g(s) = o
on G, it follows that g = o and sy, ..., s, are strongly irregular points for a
subsequence of { f o ¢.}. Hence, we will have shown f is a quasi-normal func-
tion of order precisely # once we show that a subsequence of {x;} converges to a
one-to-one holomorphic function x on [¢| < 1 such that |x(¢)| < [¢]-

Each x; is a one-to-one holomorphic map of |¢| < 1 into |s| < 1 satisfying
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x;(0) = 0. Thus the sequence {x;} is a normal family and hence has a sub-
sequence {x.} that converges subuniformly on |¢| < 1 to a holomorphic func-
tion x with x(0) = 0. By Schwarz’s lemma, |x(¢) £ |¢|. Either x is one-to-one
or x = 0 by Hurwitz's theorem. We shall show x = 0.

Since |x;(¢)| = 1 onan arc L C {|¢| = 1}, we can extend x; to be holomor-
phic and one-to-one in K = L\U {¢:]¢| # 1}. Let ¢ be a conformal mapping
of K onto [s| < 1such thatg(0) = 0and¢’(0) > 0. Then

[ %Xf@“(s)) Lo <L

g (0)
since |x;/ (0)] £ 1 by Schwarz’s lemma. Thus

PACEONES (sl < 1)

Is|

1 - IsD’ (0
by a distortion theorem of Koebe. Thus {x;(¢~'(s))} is uniformly bounded on
compact subsets of |s| < 1 and consequently {x;(¢)} is uniformly bounded on
compact subsets of K. Hence x; is a normal family in K, and therefore a
subsequence of the sequence {x.} converges subuniformly in X to a function
x holomorphicin K. Thus, x # Obecause |x(¢)| = 1for|¢| > land % (¢) = x(¢)
for |¢] < 1.

REFERENCES

1. F. Bagemihl and W. Seidel, Koebe arcs and Fatou points of normal functions, Comment.
Math. Helv. 36 (1962), 9-18.

2. D. C. Haddad, Asymptotic values of finitely valent functions, Duke Math. J. 39 (1972),
362-367.

3. O. Lehto and K. 1. Virtanen, Boundary behaviour and normal meromorphic functions, Acta.
Math. 97 (1957), 46-65.

4. G. R. MacLane, Asymptotic values of holomorphic functions, Rice University Studies 49,
No. 1 (1963).

5. P. Montel, Legons sur les familles normales de fonctions analytiques et leurs applications
(Gauthier-Villars, Paris, 1927).

West Virginia College of Graduate Studies,
Institute, West Virginia

https://doi.org/10.4153/CJM-1973-083-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1973-083-9

