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BOUNDARY BEHAVIOR AND QUASI-NORMALITY OF 
FINITELY VALENT HOLOMORPHIC FUNCTIONS 

DAVID C. HADDAD 

A function denned in a domain D is w-valent in D if f(z) — w0 has at most 
n zeros in D for each complex number w0. Let i^ = i^ (r0, n) denote the class 
of nonconstant, holomorphic functions / in the unit disc that are n-valent in 
each component of the set {z: | / (z) | > r0}. MacLane's class se is the class 
of nonconstant, holomorphic functions in the unit disc that have asymptotic 
values at a dense subset of \z\ = 1. (For a detailed discussion of se see MacLane 

[4].) 
In [2, Theorem 3] we showed t h a t ^ <Z_sé'. Bagemihl and Seidel [1] and 

MacLane [4] independently showed that <J¥ C £&, where JV is the class of 
nonconstant holomorphic functions in the unit disc that are normal in the 
sense of Lehto and Virtanen [3]. Furthermore, Lehto and Virtanen showed [3, 
Theorem 2] that a normal function having asymptotic value c at eie has 
angular limit c at eie. 

Is there any relationship between the two classes i^ and J/t Clearly, 
^V (JLi^ since e1/CL~z) belongs to^K but not t o ^ . In this paper we show that 
i^ is a quasi-normal family of order n and each function / £ ^ is a quasi-
normal function of order at most n — 1 (the définitions are below). We show 
that this result is the best possible so that ^V ÇLJV. Furthermore, Letho and 
Virtanen's result on angular limits is true for functions in y . Thus each 
function in i^ has angular limits at a dense subset of \z\ = 1. 

A general reference on quasi-normal families is Montel [5, Chapter 2]. 
However, it is necessary for our purposes to elaborate on some of his définitions. 

A sequence of functions defined in a domain D converges subuniformly in D 
if the sequence converges uniformly on compact subsets of D. A set E C D is 
sparse in D, if E is a finite set of points or if E = {zn} is a countable set and 
the distance (on the Riemann sphere) from zn to dD tends to zero as n tends 
to infinity. 

A family Q of holomorphic functions in D is a quasi-normal family in D if 
every sequence of functions in Q has a subsequence which converges sub-
uniformly in D — E, where £ is a sparse subset of D. (In general, E depends 
on the particular subsequence.) 

If { fk} is a sequence of holomorphic functions in D converging to / sub-
uniformly in D — £ , then a point zQ G E is an irregular point for the sequence 
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{fk} if {fk] does not converge to / subuniformly in any neighborhood of z0. 
Irregular points occur only in the case when / = oo. The order of the sequence 
{ fn} is the number of irregular points for the sequence. A point z0 is a strongly 
irregular point for {fk\ if for k sufficiently large, fk(z) takes on all complex 
numbers in every neighborhood of z0. 

A sequence { fk} is strong if either it converges subuniformly in D to a holo-
morphic function or it converges subuniformly in D — E to infinity and each 
point of the sparse set E is strongly irregular. 

It is not hard to show that every sequence in a quasi-normal family has a 
subsequence that is strong. 

If Q is a quasi-normal family of holomorphic functions in D, then the order 
of Q is the supremum of the orders of the strong sequences in Q. (This defini­
tion differs from Montel's [5, p. 66]; Montel takes the supremum over all 
sequences in Q, not just the strong sequences.) 

A holomorphic function/ in \z\ < 1 is a quasi-normal fnuction of order n if 
the family { / o ^ } , where \p runs through all the Môbius transformations of 
\z\ < 1 onto itself, is a quasi-normal family of order n. (This is the obvious 
extension of Lehto and Virtanen's definition of a normal function.) 

It is convenient to introduce the following notation. If w = f(z) is a non-
constant, holomorphic function in \z\ < 1, we denote by F the Riemann 
surface o f / - 1 as a covering surface of the w-plane. Let p denote the projec­
tion from F onto the ^-plane and let / be the one-to-one conformai map of 
\z\ < 1 onto F so t h a t / = p of. If T is a curve in |JS| < 1, we let 

mr(T) = f |/'(s)| \dz\. 

A component of the set {z:\ f(z)\ = r > 0} is called a level curve of/. 
LEMMA 1. Let Q be a family of holomorphic functions in a domain D. Let 

{Dk} be a sequence of domains such that Dk (Z L), Dk C L>k+lf and US=& D* = L>. 
The family Q is quasi-normal in D if there is a sequence {jk} of positive integers 
and two distinct complex numbers a and b such thatfiz) — a and f(z) — b have 
at most jk zeros in Dk for every f Ç Q. 

Proof. That Q is a quasi-normal family in Dk of order at most j k follows from 
a theorem [5, p. 67] of Montel. Thus each sequence { /«} C. Q has a subsequence 
{ /ia} that converges subuniformly in D± — Ei} where E\ has at most j \ points. 
The sequence {/i«} has a subsequence {/2«} that converges subuniformly in 
D2 — E2 where E2 has at most/2 points. Proceeding inductively, we obtain a 
sequence {fka} C {fa} for each k such that {fka\ converges subuniformly in 
Dk — Ek, where Ek has at most jk points. The diagonal sequence {fkk) is a 
subsequence of {/«} that converges subuniformly in D minus the sparse set 
Uî=] Ek. Thus Q is a quasi-normal family in D. 

LEMMA 2. Every function f G 'f = ^ (rQ, n) takes on each value WQ(\W<\ > 2r0) 
at most q (s) times in \z\ < s, where q is a function of s and not off or w0. 
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Remark. Of course, q depends on r0 and n in addition to s. 

Proof. L e t / G *V and let {C3{r)} denote the level curves of {z\\f(z)\ = r]. 
Let Lj(r) denote the length of Cj(r), let Cj(r) = / (C,( r ) ) , and let g = / " 1 . 
Let i^ = {r'.ro < r < 2r0, and F has no branch points lying over \w\ = r). 
For each r G R, 

Li{r? = ( f. | g » | I<HV 

S 4:irr0n I |g '(^) |2 |û^| . 

If we let a denote the area of \z:r0 < | f(z)\ < 2r0}, then it readily follows that 
for each integer k, 

J ^2 Lj(r)2dr fg 4:Trr0na. 
R j=l 

Thus Z)j=i^j(^i)2 ^ 4:irr0an ^ 47rV0w for some ri ^ R and for each positive 
integer fe. 

If a component Z)(ri) of the set {z: | / (z) | > r\] meets |z| < s and if all the 
level curves of dD(r\) that meet \z\ < s are relatively compact in \z\ < 1, then 
D(ri) must be the only component of {JS:|/(JS)| > r±} meeting \z\ < s. Hence, 
f(z) assumes each value w (\w\ > 2r0) at most n times in \z\ < 5 because/ 6 i^. 

Hence, we may as well assume that every component D 2{r\) of {z\ \ f(z)\ > r\) 
meeting \z\ < s has a noncompact level curve Cj on its boundary that meets 
\z\ < s. Clearly, the length of each Cj is bounded below by 2(1 — s). If k is 
the number of components D3(ri) that meet \z\ < s, then 

46(1 - * ) 2 ^ I l i W 2 £±ic\n. 
3=1 

Thus, if \z\ < s then f(z) assumes each value w (\w\ > 2r0) at most 
nk ^ ir2r0n

2/(l — s)2 times. This completes the proof of the lemma. 

LEMMA 3. Let f be a nonconstant, holomorphic function in \z\ < 1 that is 
n-valent in a component D(r0) of {z:\f(z)\ > r0}. Let D C L)(r0) be a component 
of {z:\f(z)\ > r > r0}, and let k be the number of zeros of f in D*, the simply 
connected domain obtained by adding to D those components of {z:\f(z)\ ^ r] 
that punch holes in D. Then k rg n, and the connectivity of D is bounded above 
byk + l. 

Proof. Each component Gj of D* — D is bounded by a closed level curve 
Lj C {%«1/(2)1 = r)• By the minimum principle/ has at least one zero in G3. 
Thus the connectivity of D is bounded above by k + 1. If q3 denotes the num­
ber of zeros of / in Gh then by the argument principle ATj arg f(z) = 2-irqj. 
Since/ is n-valent in D(r0), then 

2-ïïk = 2ir^ q3- = ^ (ATja.rgf(z)) ^ 27rn. 
3 3 

Thus, k ^ n. 
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THEOREM 1. The family i^ is a quasi-normal family of order n in \z\ < 1. 

Proof. That 7^ is a quasi-normal family in \z\ < 1 follows immediately from 
Lemma 1 and Lemma 2. 

Let 

* « = *g (« - i) • 
Clearly, {gk} C ^ and {gk} is a strong sequence of order n. Hence, the order 
of 7^ is at least n. 

To obtain an upper bound on the order of ̂ , let {fk} be a strong sequence 
converging to infinity subuniformly in \z\ < 1 minus a sparse set. Choose 
s (0 < s < 1) such that \z\ = s contains no irregular points for {/*}. For k 
sufficiently large, \z\ = s lies in a component Gk of {z: \fk(z)\ > 2r0}. If q ir­
regular points for {fk} lie inside \z\ < s, then the connectivity of Gk is at least 
q + 1. By Lemma 3, n + 1 is an upper bound on the connectivity of Gk. 
Hence, q S n, and, since 5 can be chosen arbitrarily near 1, the order of { fk} 
cannot exceed n. Thus, ̂  is a quasi-normal family of order precisely n. 

THEOREM 2. Each function f Ç "f is a quasi-normal function of order at 
most n — 1. 

Proof. The family { / o \//} where ty runs through all of the Môbius transfor­
mations of \z\ < 1 onto itself is a subfamily of ̂  and hence is quasi-normal of 
order at most n. 

Suppose { fk = f o \f/k} is a strong sequence with n irregular points. Choose 
s (0 < 5 < 1) so that the n irregular points for {fk\ lie inside \z\ < s. Thus, 
we can choose k0 so that the circle \z\ = s lies in a component Gk of 
{z\\fk{z)\ > 2r0} for each k > k0. Let k > k0. By Lemma 3, fk has at most n 
zeros in \z\ < s. Hence, it follows from the argument principle that 
mF[fk(dGkr\ {\z\ < s})] ^ 47mr0. On the other hand, since / £ ^ , 
mF[fk(dGkr\ {\z\ < 1})] ^ 4:Trnro. Hence, all the level curves of dGk lie in­
side \z\ < s, and so |/A;(Z)| > 2r0 for z in the annulus A = [z\s < \z\ < 1}. 
Thus, \l/k(A) contains an annulus B = {£:t < |f| < 1} in which \f(z)\ > 2r0. 
If M = max | f | ^ | / ( f ) | , then for k sufficiently large, m'm\zi=s\ f(\f/k(z))\ > M 
since the irregular points for { fk} lie inside |JS| < s. Thus for k sufficiently large 
\pk(\z\ = s) C B, which implies yf/k{\z\ ^ s) C B. Hence, | /GMs)) | > 2r0 for 
\z\ ^ ^ and k sufficiently large. This is inconsistent with the fact that the n 
irregular points for { fk\ lie inside \z\ < s. Therefore, the order of each sequence 
{ f o ypk} is bounded above by n — 1, and consequently/ is a quasi-normal 
function of order at most n — 1. 

THEOREM 3. If a function f G ^ has asymptotic value c at eid then f has 
angular limit c at eid. 

Proof. If c is finite, Lehto and Virtanen's argument [3, pp. 52-53] shows that 
/ has angular limit c at eie whenever/ has asymptotic value c at eie. 
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Suppose / has asymptot ic value infinity a t elS bu t does not have angular 
limit infinity a t eie. T h e n by [3, Theorem 1], there is an asymptot ic pa th T 
ending a t eid on which f(z) tends to infinity and a sequence of points zk con­
verging to eie a t which f(zk) = a 5* co (fe = 1, 2, . . . ) such t h a t the hyperbolic 
distance a(T, zk) from T to zk is bounded by a cons tant b for all k. By L e m m a 3 
we can choose r > max( |a | , ro) so t h a t F has no branch points over \w\ = r 
and so t h a t the component D = D(r) of { z : | / ( z ) | > r] containing a terminal 
subarc of T is simply connected. 

L e t i ï ( ô ) = {z:<r(z, T) < b}, where <r(z, T) denotes the hyperbolic distance 
from z to T. Every neighborhood of eie contains a subsequence of {zk} in 
H(b) — D and a subarc of T in H(b) H D. T h u s we can find a sequence of 
dist inct points tk £ 3D C\ H(b) t ha t converges to eie. 

Since D is simply connected, 3D contains no compact level curves. I t follows 
from [2, Corollary 1 and Theorem 2] t h a t each level curve of 3D is a crosscut 
of \z\ < 1 ending a t points other than eid. Hence only finitely m a n y tk can 
belong to the same level curve. T h u s we m a y assume t h a t tk Ç Lkj a level curve 
of 3D ending a t points of \z\ = 1 other than eie and t h a t Lk P\ Lj = 0 for 
j =é k. Since tk £ H(b) and since H{2b) meets \z\ = 1 only a t the point eie, 
each curve Lk contains a subarc lying in H(2b) with initial point tk and termi­
nal point on 3H(2b). 

Let f = ypk(z) be a Môbius transformation of \z\ < 1 onto |f | < 1 such t h a t 
&k(h) = 0- Since / is a quasi-normal function (Theorem 2) , the sequence 
{ f o \fzjc~1} contains a subsequence { f o \j/a~

1} which converges either to a 
holomorphic function g subuniformly in |f | < 1 or to g = oo subuniformly 
in |f | < 1 minus a t most n — 1 points. 

Le t K(b) be the hyperbolic disc with center f = 0 and radius b. Since 
inf2 € ro-(s, ta) < b and sup2 € ro-(^, ta) = co for each a and since the hyperbolic 
metr ic is invar iant under one-to-one conformai mappings, each ypa(T) contains 
a subarc with one end point on 3K(b), the other on 3K(2b). Fur thermore , 
each \pa{La) contains a subarc lying in K(b) with one end point a t f = 0, 
the other on 3K(b). Hence, each of the sequences {\//a(La)} and {^/a{T)) has 
a t least one accumulat ion cont inuum / and 5 lying in |f | < 1. Since \g(Ç)\ = r 
for f 6 / , then g mus t be holomorphic in all of |f | < 1. On the other hand, 
g(f) = °° for f G Ŝ s i n c e / has asymptot ic value oo along T. Th i s contradic­
tion completes the proof of the theorem. 

T h e following corollary follows immediately from Theorem 3 and [2, 
Theorem 2]. 

COROLLARY 1. Iff G ̂  then f has angular limits at a dense subset of \z\ = 1. 

Example 1. We shall construct a function w = f(z) holomorphic in \z\ < 1 
such t h a t / is quasi-normal of order n a n d / G i^ (r0, n + 1) for each ro > 1. 
This example shows t h a t Theorem 3 cannot be improved. 

Our method is to construct a hyperbolic Riemann surface F lying over the 
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w-plane and then to l e t /be the conformai map of \z\ < 1 onto F; t hen / = p of 
where p is the projection of F onto the w-plane. 

Let Di1, Di2, . . . , Din be n copies of the unit disc \w\ < 1. Join D\ to 
Dik+1 (k = 1, 2, . . . , n — 1) by a snake-like strip lying in \w\ > 1 (see Figure 
1). The resulting surface F\ is a simply connected smooth covering of the 
w-plane. 

For each positive integer j let Fj be the surface obtained by stretching F\ 
by a factor of j , that is, Fj = jFx. We join Fj to Fj+i as follows: joint Z>/ to 
Dj+i1 by a snake-like strip Sj passing through \w\ < 1 so that Sj Pi Sj+i = 0 
(see Figure 2). The resulting surface ^consisting of Fi,Si, F2,S2, . . . , Fj,Sj, . . . 
is a smooth simply connected covering surface of the w-plane such that each 
component of F lying over \w\ > r0 > 1 has at most n + 1 points lying over 
any given point in the î^-plane. 

L e t / be a one-to-one conformai map of \z\ < 1 onto i7. Clearly, / G ^ ( f o , 
w + 1) for each r0 > 1. 

To show that / is a quasi-normal function of order n we need to produce a 
sequence {^} of Môbius transformations of \s\ < 1 onto \z\ < 1 and a set of 
points Si, s2, . . . , sn that are strongly irregular for the sequence {/ o \j/p\. 

Let Oj1, 6j2, . . . , 6jn be the n points of Fj lying over the point w = 0. Let hi 
be a one-to-one conformai map of Fi onto |f| < 1 such that hi(d\l) = 0; 
denote by fy the point hi(dij) (j= 1, 2, . . . , w). Let ;̂- be the one-to-one 

FIGURE 1 
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FIGURE 2 

conformai map of Fj onto |f| < 1 defined by hj(t) = hi(t/j). Let \f/j be a 
Môbius transformation of \s\ < 1 onto \z\ < 1 such that ^ ( 0 ) = / ~ 1 0 V ) -
Denote by Xj the map \fzj~1 of~l o hf1 of |f | < 1 into |s| < 1. 

We shall show that the sequence {XJ} has a subsequence {xa} that converges 
to a one-to-one holomorphic function from |f| < 1 into \s\ < 1 such that 
|x(f)| = If I- Let us accept this for now and proceed to show t h a t / o \pa has a 
strong subsequence with n irregular points. 

Let Sj = x(fy) (j = 1, 2, . . . , w). Since % is one-to-one and |x(f)| = If I» it 
follows that Sj 7e- SJC for j ^ k and \SJ\ < 1. Each s3- will be a strongly irregular 
point for any subsequence of { / o \f/a} converging to infinity because x«(fj) is 

a zero of / o \f/a and x«(f ;) ~^ Sj as a —• oo . 
Each surface Fj has a crosscut lying over \w\ = j that separates 0 / and 0/ . 

Hence, for each j there is a crosscut of |s| < 1 by an arc of {s:\f(\f/j(s)\ = j} 
that separates s = 0 from Xji^)- These crosscuts have at least one accumula­
tion continuum G in \s\ < 1 because x«(f2) —> s2 as a —> 00 and \s2\ 9e 1. 
Since / G ^(Vo, w + 1), then by Theorem 3, / is a quasi-normal function of 
order at most n. Thus the sequence { / o \f/a} has a subsequence which converges 
to a function g subuniformly in \s\ < 1 minus at most n points. Since g (s) = 00 
on G, it follows that g = co and s±, . . . , sn are strongly irregular points for a 
subsequence of { / o \f/a}. Hence, we will have shown / is a quasi-normal func­
tion of order precisely n once we show that a subsequence of {x^} converges to a 
one-to-one holomorphic function x on |f | < 1 such that |x(f)| ^ |f|-

Each Xj is a one-to-one holomorphic map of |f | < 1 into \s\ < 1 satisfying 
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X;(0) = 0. Thus the sequence {x^} is a normal family and hence has a sub­
sequence {x«} that converges subuniformly on |f | < 1 to a holomorphic func­
tion x with x(0) = 0. By Schwarz's lemma, |x(f) ^ |?|- Either x is one-to-one 
or x = 0 by Hurwitz's theorem. We shall show x ^ 0. 

Since |xj(r)| ^ 1 on an arc L C {|f| = 1}, we can extend %j to be holomor­
phic and one-to-one in 2£ = L U {f :|f| ^ 1}. Let g be a conformai mapping 
of K onto \s\ < 1 such that g(0) = Oand^(O) > 0. Then 

[|lx^~1(5))ILo = 7W 
since |x / (0) | ^ 1 by Schwarz's lemma. Thus 

' ^ ^ ' ^ ( I - M W W ( | S | < 1 ) 

by a distortion theorem of Koebe. Thus {xj(ç~l(s))} is uniformly bounded on 
compact subsets of \s\ < 1 and consequently {xj(£)} is uniformly bounded on 
compact subsets of K. Hence Xj is a normal family in K, and therefore a 
subsequence of the sequence {x«} converges subuniformly in K to a function 
X holomorphic in K. Thus, x ^ 0 because |x(f)| = 1 for |̂ "| > l andx( f ) = x(f) 
for |r| < 1. 
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