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We study the dynamic interaction of two gravity currents in a confined porous layer, one
heavier and one lighter, partly inspired by the practice of geological CO2 sequestration
in oil fields. Two coupled nonlinear advective-diffusive equations are derived to describe
the time evolution of the profile shape of both the upper (lighter) and lower (heavier)
currents. At early times, the upper and lower currents remain separated and propagate
independently. As time progresses, the currents approach each other and start to interact.
We have identified eight different regimes of gravity current interaction at late times,
impacted by four dimensionless parameters, representing the flow rate partition, ratio of
buoyancy over the injection force, and the viscosity contrasts between the two injecting
and displaced fluids. By defining appropriate similarity variables at either the early or
late times, the governing partial differential equations (PDEs) reduce to different ordinary
differential equations (ODEs), corresponding to the classic nonlinear diffusion solutions at
early times and eight different self-similar solutions at late times when the currents attach
to each other. It is of interest to note that in four of the eight regimes of late-time interaction
(regimes 2, 6–8), self-similar solutions can be constructed by combining appropriately
the three basic solutions (i.e. shock, rarefaction and travelling wave solutions) identified
during single fluid injection in confined porous layers. In the four other regimes (regimes 1,
3–5), implicit solutions in the form of logarithm or error functions are obtained due to the
influence of flow confinement and interaction of gravity currents. Potential implications of
the model and solutions are also briefly discussed in the context of CO2-water co-flooding
for simultaneous CO2 sequestration and oil recovery.
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1. Introduction

The flow of gravity currents became a classic research topic during the past three decades
(e.g. Huppert & Woods 1995; Acton, Huppert & Worster 2001; Pritchard, Woods &
Hogg 2001; Neufeld, Vella & Huppert 2009; Linden 2012; Pegler, Huppert & Neufeld
2014; Zheng et al. 2015a; Hinton & Woods 2018). In addition to its occurrence in nature
during magma spreading, groundwater motion and grounding line movement (e.g. Huppert
1982; Kochina, Mikhailov & Filinov 1983; Kowal & Worster 2015, 2020), there are also
important practical applications such as drainage and irrigation in soils and sands (e.g.
Boussinesq 1904; Bear 1972; Acton et al. 2001; Pritchard et al. 2001; Zheng et al. 2013;
Liu, Zheng & Stone 2017; Yu, Zheng & Stone 2017), recovery of fluid-phase resources
from porous rocks (Woods & Mason 2000; Zheng & Neufeld 2019; Nijjer, Hewitt &
Neufeld 2022), disposal of chemicals and waste water in aquifers (e.g. Huppert & Woods
1995; Hinton & Woods 2019; Bhamidipati & Woods 2020), seasonal thermal energy
storage (e.g. Dudfield & Woods 2012), transport of gas and liquids in channels and pipes
(e.g. Hallez & Magnaudet 2009; Taghavi et al. 2009; Zheng, Rongy & Stone 2015b;
Horsley & Woods 2017), and geological sequestration of CO2 (e.g. Lyle et al. 2005;
Nordbotten & Celia 2006; Hesse, Orr & Tchelepi 2008; Farcas & Woods 2009; Neufeld
et al. 2009; MacMinn, Szulczewski & Juanes 2010; MacMinn & Juanes 2013; Guo et al.
2016; Zheng & Neufeld 2019; Nijjer et al. 2022). Gravity currents also appear in ocean
and the atmosphere such as the propagation of ocean currents along the sea floor and
the generation of turbidity currents and sand storms, in which case the flow can become
turbulent and the influence of entrainment and mixing can become important (e.g. Rottman
& Simpson 1983; Thomas, Marino & Linden 1998; Marino, Thomas & Linden 2005;
Linden 2012; Sher & Woods 2015). A recent review is also available with a focus on
the influence of boundaries, including leakage, flow confinement, and converging and
deformable boundaries (Zheng & Stone 2022).

While there are many previous studies on the fundamentals of single gravity current
flows, partly inspired by the aforementioned applications in either unconfined or confined
porous rocks, the interaction of multiple gravity currents has not been thoroughly
investigated despite its practical relevance, which is the focus of the current study. We are
aware of an earlier work (Woods & Mason 2000), where the dynamic interaction of two
unconfined gravity currents in an infinitely deep porous medium was studied, in which case
the ambient fluid is effectively quiescent and the nature of spreading is nonlinear diffusive
for both currents (e.g. Pattle 1959; Gratton & Minotti 1990; Huppert & Woods 1995). Their
laboratory experiments in a Hele-Shaw cell also demonstrate that fluid mixing is negligible
during the interaction of viscous currents, and the interfaces between the injecting and
displaced fluids remain sharp within the time and length scales of interest. We are also
made aware of another work on the interaction of two viscous gravity currents into a liquid
ocean, which was inspired to describe the formation of grounding zone wedges of marine
ice sheets and shelves (Kowal & Worster 2020). Their experiments, using glycerine, golden
syrup and salt solution as mimicking fluids, also show that fluid mixing is negligible for
the parameter range considered, and the fluid–fluid interfaces remain sharp during the time
evolution.

Natural porous rocks are typically layered with significant permeability and porosity
variations between neighbouring layers (e.g. Phillips 1991; Dullien 1992; Huppert &
Woods 1995). Therefore, it is also important to study gravity current flows in confined
porous spaces of finite depth, and indeed there is a long list of previous reports on
many important and interesting facets of confined currents (e.g. Huppert & Woods 1995;
Nordbotten & Celia 2006; Gunn & Woods 2011; Pegler et al. 2014; Zheng et al. 2015a;

979 A52-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1075


Interaction of gravity currrents in a confined porous layer
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Figure 1. Dynamic interaction of two gravity currents in an infinitely long porous layer of finite thickness h0,
initially filled with another ambient fluid. The permeability and porosity of the porous layer are denoted by k
and φ, respectively, and the viscosity and density of the fluids are denoted byμi and ρi within layer i = {1, 2, 3}.
The pressure and velocity fields are denoted by pi and ui, respectively. It is assumed that ρ1 > ρ2 > ρ3, such
that a heavier gravity current is generated along the base, while a lighter gravity current is generated along
the top. The profile shapes are denoted by h1(x, t) and h2(x, t) (or ĥ2 ≡ h0 − h2, equivalently), and the frontal
locations are denoted by xf 1(t) and xf 2(t). The location where three fluids meet is denoted by (x∗, h∗). The area
injection rates of the heavier and lighter currents are denoted by q1 and q2.

Guo et al. 2016; Hinton & Woods 2018). In this paper, we are motivated to study the
dynamic interaction of two confined gravity currents, one heavier and one lighter, injected
simultaneously into a porous layer of finite depth, as shown in figure 1. Such flows are
relevant to the applications of enhanced oil recovery, geological CO2 sequestration and
cleaning of confined porous spaces.

As the currents approach each other in a confined space (due to injection) and start to
interact at late times (figure 1b), the motion of the ambient fluid has to be considered
due to the creation of a background pressure gradient along the cap rock, which is
fundamentally different from the interaction of unconfined currents (Woods & Mason
2000). Most importantly, the viscosity contrast between the injecting and displaced fluids
becomes an important factor that can significantly impact the outcome of the flow (e.g.
Zheng et al. 2015a). Correspondingly, the nature of gravity current spreading becomes
nonlinear advective-diffusive in confined porous layers, as the flow is driven by both
the buoyancy and pumping (injection) forces and the interplay of each driving force can
vary significantly with time and space (e.g. Huppert & Woods 1995; Pegler et al. 2014;
Zheng et al. 2015a). The interaction of confined gravity currents hence becomes more
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complicated, as we show in this paper. In particular, eight different regimes of dynamic
interaction arise eventually, as controlled by four dimensionless parameters with regards
to the viscosity ratio, buoyancy contrast and the partition of injection rates of the injecting
fluids. In particular, in four of the eight regimes (regimes 2, 6–8), self-similar solutions can
be constructed by combining appropriately the three basic solutions of shock, rarefaction
and travelling-wave solutions identified for single current injection (e.g. Huppert & Woods
1995; Pegler et al. 2014; Zheng et al. 2015a). In the other four regimes (regimes 1,
3–5), new basic flow patterns appear and the self-similar interface shape is described by
logarithm and error functions.

This paper is structured as follows. In § 2, we first present a theoretical model of two
coupled partial differential equations (PDEs) to describe the profile shape evolution of the
interacting gravity currents. Four dimensionless parameters are identified that distinguish
the flow into eight different regimes of dynamic interaction at late times. In § 3, we
discuss in detail the asymptotic behaviours of the eight different regimes of dynamic
currents interaction. We obtain asymptotic solutions in all eight regimes based on different
similarity and travelling-wave transforms. We also briefly remark on the time transition
from early-time unconfined currents to late-time interacting currents in confined porous
layers. Before we close the paper in § 4, potential implications in CO2-water co-flooding
projects in oil fields are also addressed briefly, employing geophysical and operational
parameters in practical projects.

2. Theoretical model

2.1. Governing equations
We study the dynamic interaction of heavier and lighter gravity currents in a confined
porous layer in a Cartesian configuration, as shown in figure 1. We follow and extend the
standard steps to study the dynamics of single gravity current injection into a confined
porous layer (e.g. Huppert & Woods 1995; Pegler et al. 2014; Zheng et al. 2015a) and
the interaction of two unconfined gravity currents (e.g. Woods & Mason 2000). In the
model problem, fluids 1 and 3 are both injected into a homogeneous porous layer with
finite thickness h0, initially filled with ambient fluid 2. The density and viscosity of the
fluids are denoted by ρi and μi, respectively, with i = {1, 2, 3}, and the permeability and
porosity of the porous layer are denoted by k and φ. It is assumed that ρ1 > ρ2 > ρ3 in
the current work, such that two gravity currents are generated, including a lighter one that
spreads along the top (y = h0) and a heavier one that spreads along the base (y = 0). We
neglect the influence of fluids mixing and wetting and capillary forces such that sharp
interfaces are maintained between different fluids. The profile shape of the heavier current
is denoted by h1(x, t) and that of the lighter one is denoted by h2(x, t), or ĥ2(x, t) ≡ h0 −
h2(x, t), equivalently. Meanwhile, the thickness of the displaced (ambient) layer can also
be estimated by h2(x, t)− h1(x, t) = h0 − h1(x, t)− ĥ2(x, t).

It is also assumed that the fluid–fluid interfaces are long and thin, such that the vertical
component of the Darcy velocity is small compared with the horizontal component. This
is seen directly from the continuity equation for incompressible flow ∂u/∂x + ∂v/∂y = 0,
i.e. the characteristic velocity and length scales in horizontal and vertical directions must
satisfy uc/xc ∼ vc/yc. We can hence define an aspect ratio δ ≡ yc/xc of a gravity current,
such that vc/uc ∼ δ. We must need δ � 1 for the vertical velocity scale to be negligible,
i.e. vc � uc. Accordingly, the fluid pressure follows hydro-static distribution within each
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Interaction of gravity currrents in a confined porous layer

layer and is given by

p1(x, y, t) = p0(x, t)− ρ1gy, 0 ≤ y ≤ h1, (2.1a)

p2(x, y, t) = p0(x, t)− ρ1gh1 − ρ2g( y − h1), h1 < y ≤ h2, (2.1b)

p3(x, y, t) = p0(x, t)− ρ1gh1 − ρ2g(h2 − h1)− ρ3g( y − h2), h2 < y ≤ h0, (2.1c)

where pi(x, y, t) denotes the pressure field within fluid layer i = {1, 2, 3} and p0(x, t)
denotes the background pressure distribution along the base of the porous layer (y = 0).
Here, g is gravitational acceleration. The horizontal pressure gradients that drive the flow
can then be calculated as

∂p1

∂x
= ∂p0

∂x
, (2.2a)

∂p2

∂x
= ∂p0

∂x
− Δρ1g

∂h1

∂x
, (2.2b)

∂p3

∂x
= ∂p0

∂x
− Δρ1g

∂h1

∂x
− Δρ2g

∂h2

∂x
, (2.2c)

where Δρ1 ≡ ρ1 − ρ2 > 0 and Δρ2 ≡ ρ2 − ρ3 > 0. Darcy’s Law can now be applied to
provide the horizontal velocity of the fluids within each layer

u1 = − k
μ1

∂p1

∂x
= − k

μ1

∂p0

∂x
, (2.3a)

u2 = − k
μ2

∂p2

∂x
= − k

μ2

(
∂p0

∂x
− Δρ1g

∂h1

∂x

)
, (2.3b)

u3 = − k
μ3

∂p3

∂x
= − k

μ3

(
∂p0

∂x
− Δρ1g

∂h1

∂x
− Δρ2g

∂h2

∂x

)
. (2.3c)

It is already seen that, physically, a horizontal velocity for the fluid layers can be driven by
both the background pressure gradient (∂p0/∂x) and buoyancy (∝ ∂h1/∂x or ∝ ∂h2/∂x).
We later show that ∂p0/∂x is also under the influence of injection rate, in addition to
the buoyancy of the injected fluids. It is also of interest to note that, based on (2.2), the
pressure gradient ∂pi/∂x within each fluid layer is independent of y. Accordingly, within
the same fluid layer, at any time t of interest, the Darcy velocity remains the same along
the y direction at the same horizontal position x.

In addition, local conservation of fluid volume (i.e. local continuity) in [x, x + dx] within
each fluid layer requires that

φ
∂h1

∂t
+ ∂(h1u1)

∂x
= 0, (2.4a)

φ
∂(h2 − h1)

∂t
+ ∂[(h2 − h1)u2]

∂x
= 0, (2.4b)

φ
∂(h0 − h2)

∂t
+ ∂[(h0 − h2)u3]

∂x
= 0. (2.4c)

Physically, this says that the shape evolution of a fluid layer is dependent on the net fluxes
across the vertical boundaries of an infinitely thin control volume [x, x + dx]. Then, by
substituting (2.3a,c) into (2.4a,c), we arrive at the evolution equations for the interface
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shape of the heavier current h1(x, t) and the lighter current ĥ2(x, t) ≡ h0 − h2(x, t):

φ
∂h1

∂t
− k
μ1

∂

∂x

(
h1
∂p0

∂x

)
= 0, (2.5a)

φ
∂ ĥ2

∂t
− k
μ3

∂

∂x

[
ĥ2

(
∂p0

∂x
− Δρ1g

∂h1

∂x
+ Δρ2g

∂ ĥ2

∂x

)]
= 0, (2.5b)

including a background pressure gradient ∂p0/∂x along the base of the porous layer (y =
0) that is yet to be determined.

Global conservation of the total volume of the injected fluids, meanwhile, provides that

φ

∫ xf 1(t)

0
h1(x, t) dx = q1t, (2.6a)

φ

∫ xf 2(t)

0
ĥ2(x, t) dx = q2t, (2.6b)

with q1 and q2 representing the area injection rates, and xf 1(t) and xf 2(t) representing
the time-dependent locations of the propagating front of the heavier and lighter currents,
respectively. The form of (2.6) indicates that the injection of the heavier and lighter fluids
proceeds simultaneously at constant rates q1 and q2. However, we also note that the
analysis can be extended to account for the influence of time-dependent injection rates.

Then, denoting the total injection rate as q ≡ q1 + q2, equivalently, volume conservation
requires that

q = h1u1 + (h0 − h1 − ĥ2)u2 + ĥ2u3, (2.7)

considering the contribution of all three fluid layers. Then, by substituting (2.3a–c) into
(2.7), we obtain an explicit expression for the background pressure gradient in terms of
h1(x, t) and ĥ2(x, t) as

∂p0

∂x
=

−μ1

k
q + Δρ1g[M2(h0 − h1 − ĥ2)+ M3ĥ2]

∂h1

∂x
− Δρ2gM3ĥ2

∂ ĥ2

∂x
h1 + M2(h0 − h1 − ĥ2)+ M3ĥ2

, (2.8)

where two viscosity ratios M2 and M3 have been introduced as

M2 ≡ μ1

μ2
and M3 ≡ μ1

μ3
. (2.9a,b)

Equation (2.8) indicates that there are three major contributions of the background
pressure gradient ∂p0/∂x and hence the flow: the pumping force (∝ q), the buoyancy force
of the heavier current (∝ Δρ1g) and the buoyancy force of the lighter current (∝ Δρ2g).
Meanwhile, (2.8) is ready to be substituted back into (2.5) to provide two coupled PDEs
for the time evolution of the profile shape of the heavier and lighter currents h1(x, t) and
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Interaction of gravity currrents in a confined porous layer

ĥ2(x, t):

φ
∂h1

∂t
+ ∂

∂x

⎡⎢⎢⎢⎣
qh1− Δρ1gk

μ1
[M2(h0 − h1 − ĥ2)+ M3ĥ2]h1

∂h1

∂x
+ Δρ2gk

μ3
h1ĥ2

∂ ĥ2

∂x
h1 + M2(h0 − h1 − ĥ2)+ M3ĥ2

⎤⎥⎥⎥⎦=0,

(2.10a)

φ
∂ ĥ2

∂t
+ ∂

∂x

⎡⎢⎢⎢⎣
M3qĥ2 + Δρ1gk

μ1
M3h1ĥ2

∂h1

∂x
− Δρ2gk

μ3
[M2(h0 − h1−ĥ2)+h1]ĥ2

∂ ĥ2

∂x
h1+M2(h0− h1− ĥ2)+M3ĥ2

⎤⎥⎥⎥⎦=0.

(2.10b)

Similarly, (2.10a,b) indicate that, physically, the time evolution of the profile shape of the
two currents is under the influence of the pumping force (∝ q), the buoyancy force of the
heavier current (∝ Δρ1g) and the buoyancy force of the lighter current (∝ Δρ2g). The
competition between each of them can possibly vary with space and time, and leads to
many facets of dynamic behaviours of the interacting gravity currents.

Finally, to complete the problem, appropriate initial and boundary conditions (IBCs) are
needed. In particular, we assume that, initially, there is only the ambient fluid 2 filling up
the entire space of the porous layer, which provides a set of initial conditions:

h1(x, 0) = 0 and ĥ2(x, 0) = 0. (2.11a,b)

In addition, the frontal condition of viscous gravity currents leads to a set of Dirichlet
boundary conditions at x = xf 1(t) and x = xf 2(t):

h1(xf 1(t), t) = 0 and ĥ2(xf 2(t), t) = 0. (2.12a,b)

By integrating the evolution equations (2.10a,b) from x = 0 towards x = ∞ and applying
the global conservation of fluid volume (2.6a,b), we obtain a set of flux boundary
conditions at x = 0:

qh1 − Δρ1gk
μ1

[M2(h0 − h1 − ĥ2)+ M3ĥ2]h1
∂h1

∂x
+ Δρ2gk

μ3
h1ĥ2

∂ ĥ2

∂x
h1 + M2(h0 − h1 − ĥ2)+ M3ĥ2

∣∣∣∣∣∣∣∣∣
x=0

= q1, (2.13a)

M3qĥ2 + Δρ1gk
μ1

M3h1ĥ2
∂h1

∂x
− Δρ2gk

μ3
[M2(h0 − h1 − ĥ2)+ h1]ĥ2

∂ ĥ2

∂x
h1 + M2(h0 − h1 − ĥ2)+ M3ĥ2

∣∣∣∣∣∣∣∣∣
x=0

= q2.

(2.13b)

It is important to note that to arrive at the flux conditions (2.13a,b), we have also
assumed that there is no entrainment of the ambient fluid into the gravity currents at the
location of the propagating fronts xf 1(t) and xf 2(t). That said, the fluxes at xf 1(t) and xf 2(t)
are zero. This is a typical situation of viscous gravity current flows, with experimental
evidence in many previous studies (e.g. Huppert & Woods 1995; Woods & Mason 2000;
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Pegler et al. 2014; Zheng, Christov & Stone 2014). At high Re with significant inertial
effects, however, flow entrainment can become important and the total volume of the
current can increase with time (e.g. Marino et al. 2005; Linden 2012; Sher & Woods
2015). The coupled PDEs (2.10a,b) can now be solved numerically, subject to appropriate
initial conditions (ICs) (2.11a,b) and boundary conditions (BCs) (2.12a,b and 2.13a,b).

2.2. Non-dimensionalisation
It is standard first to non-dimensionalise the governing PDEs and IBCs before looking for
asymptotic and numerical solutions. We first define dimensionless variables

H1 ≡ h1

h0
, Ĥ2 ≡ ĥ2

h0
, X ≡ x

xc
, T ≡ t

tc
and P0 ≡ p0

pc
, (2.14a–e)

based on the following characteristic scales for length, time and fluid pressure:

xc = Δρ1gkh2
0

μ1q
, tc = Δρ1gkh3

0φ

μ1q2 and pc = Δρ1gh0. (2.15a–c)

The characteristic scales in (2.15) are chosen such that the unsteady, advective and
diffusive terms in the coupled PDEs (2.10a,b) balance each other at T = O(1). We then
arrive at the dimensionless PDEs:

∂H1

∂T
+ ∂

∂X

⎡⎢⎢⎣H1 − [M2(1 − H1 − Ĥ2)+ M3Ĥ2]H1
∂H1

∂X
+ GM3H1Ĥ2

∂Ĥ2

∂X
H1 + M2(1 − H1 − Ĥ2)+ M3Ĥ2

⎤⎥⎥⎦ = 0,

(2.16a)

∂Ĥ2

∂T
+ ∂

∂X

⎡⎢⎢⎣M3Ĥ2 − [M2(1 − H1 − Ĥ2)+ H1]GM3Ĥ2
∂Ĥ2

∂X
+ M3H1Ĥ2

∂H1

∂X
H1 + M2(1 − H1 − Ĥ2)+ M3Ĥ2

⎤⎥⎥⎦ = 0,

(2.16b)

where four dimensionless parameters M2, M3, G and Q have been introduced, representing
the viscosity ratios, density difference and injection rates of the fluids. The viscosity ratios
M2 and M3 have already been defined in (2.9a,b). The ratio of the density differences G
and partition of the area injection rates Q are defined as

Q ≡ q1

q
and G ≡ Δρ2

Δρ1
. (2.17a,b)

The definition and physical meaning of the four dimensionless parameters M2, M3, G and
Q are summarised in table 1, the influence of which will be discussed later. Compared
with the model problem of single fluid injection (e.g. Zheng et al. 2015a), as governed by
a single dimensionless parameter M2 ≡ μ1/μ2, three more control parameters M3, G and
Q appear in the current problem of gravity current interaction due to the introduction of a
second current.
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Interaction of gravity currrents in a confined porous layer

Parameter Physical meaning

M2 ≡ μ1/μ2 Viscosity ratio of the injected fluid 1 over the ambient fluid 2
M3 ≡ μ1/μ3 Viscosity ratio of the injected fluid 1 over the injected fluid 3
G ≡ (ρ2 − ρ3)/(ρ1 − ρ2) Ratio of buoyancy effects of the lighter and heavier currents
Q ≡ q1/(q1 + q2) Partition of the area injection rate of the heavier gravity current

Table 1. Summary and physical meaning of the four dimensionless control parameters M2, M3, G and Q that
impact the dynamic interaction of heavier and lighter gravity current in confined porous layers.

Meanwhile, the initial and boundary conditions can also be made dimensionless based
on (2.14) and (2.15) as

H1(X, 0) = 0 and Ĥ2(X, 0) = 0, (2.18a,b)

and

H1(Xf 1(T), T) = 0, (2.19a)

Ĥ2(Xf 2(T), T) = 0, (2.19b)

H1 − [M2(1 − H1 − Ĥ2)+ M3Ĥ2]H1
∂H1

∂X
+ GM3H1Ĥ2

∂Ĥ2

∂X
H1 + M2(1 − H1 − Ĥ2)+ M3Ĥ2

∣∣∣∣∣∣∣∣
X=0

= Q, (2.19c)

M3Ĥ2 − [M2(1 − H1 − Ĥ2)+ H1]GM3Ĥ2
∂Ĥ2

∂X
+ M3H1Ĥ2

∂H1

∂X
H1 + M2(1 − H1 − Ĥ2)+ M3Ĥ2

∣∣∣∣∣∣∣∣
X=0

= 1 − Q,

(2.19d)

now with Xf 1(T) and Xf 2(T) representing the location of the propagating front of the
invading fluids 1 and 3 in the rescaled coordinate system, respectively. The dimensionless
PDEs (2.16a,b) are ready to be solved numerically, subject to IBCs (2.18) and (2.19).
Finally, it is of interest to note again that, with flux conditions (2.19c,d) imposed, the
requirement for global conservation of mass is also naturally satisfied:∫ Xf 1(T)

0
H1(X, T) dX = QT, (2.20a)∫ Xf 2(T)

0
Ĥ2(X, T) dX = (1 − Q)T. (2.20b)

Equations (2.20a,b) indicate also that the total volume of fluids 1 and 3 must also satisfy∫ Xf 1(T)

0
H1(X, T) dX +

∫ Xf 2(T)

0
Ĥ2(X, T) dX = T. (2.21)

A finite-volume scheme has been employed in the current work to solve the coupled
PDEs (2.16a,b). The scheme is centred difference in space and explicit in time. Similar
schemes have been employed in a series of earlier studies of single current propagation
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K. Yang and Z. Zheng

(e.g. Zheng et al. 2015a; Hinton & Woods 2018) and more generally to solve nonlinear
advective-diffusive PDEs (Kurganov & Tadmor 2000). The convergence of the scheme has
been tested, such that the solutions are stable and no significant differences are observed
upon grid refinement in both time and space for both the profile shape and frontal location
of the gravity current. More details of the scheme are also provided in Appendix A.

2.3. Some key features of the model

2.3.1. Feature 1: symmetric currents
We can show that if and only if

M3 = 1 and
1
Q

− 1
G

= 1, (2.22a,b)

the profile shapes H1(X, T) and Ĥ2(X, T) are related through

Ĥ2 = λH1, (2.23)

where λ = 1/G = 1/Q − 1. Physically, (2.23) indicates that by stretching the profile shape
of H1 vertically by a factor of λ, the heavier and lighter currents become exactly symmetric,
as shown in figure 2(a). The upper and lower fronts of the two currents always remain at
the same location, i.e. Xf 1(T) = Xf 2(T), even when the currents attach to each other and
interact dynamically at late times. Accordingly, the governing PDEs (2.10a,b) reduce to a
single one

∂H1

∂T
+ ∂

∂X

[
H1

M2 + (1 − M2)H1/Q

]
− ∂

∂X

[
M2H1(1 − H1/Q)

M2 + (1 − M2)H1/Q
∂H1

∂X

]
= 0, (2.24)

which includes the influence of both M2 and G, and is hence different from the governing
PDE for single current injection (in which case Q → 1−) (e.g. Zheng et al. 2015a).

More remarks can be provided on conditions (2.22a,b) of symmetric currents. First of
all, M3 = 1 means that the viscosity of the heaviest fluid 1 and that of the lightest fluid
3 must be equal. However, there is no constraint on the viscosity of the ambient fluid 2.
Meanwhile, 1/Q − 1/G = 1 implies that the pumping and gravitational forces of fluids 1
and 3 must be in balance. Any incremental change in Q or G, for example, due to variations
in injection rate or density of the fluids, will break such a balance and lead to different
flow patterns. The role of conditions (2.22a,b) will be seen more clearly when we provide
asymptotic solutions for the dynamic interaction of heavier and lighter currents in § 4.1
(when M2 = M3 = 1 in regime 1) and § 4.2 (when M2 > M3 = 1 in regime 2).

For example, subject to an incremental change of Q on the basis of 1/Q − 1/G = 1,
the balance between pumping and gravitational forces will be broken. For example, when
the lightest fluid 3 is injected at a lower rate, Q increases accordingly. Fluid 3 then pushes
upwards the heaviest fluid 1 in the neighbourhood of the inlet (X = 0), making the height
of the heavier current H1(0, T) to be higher than that of the intersection point of the
three fluids H∗, as shown in figure 2(b). Similarly, the corresponding result is shown in
figure 2(c), subject to an incremental change of G on the basis of 1/Q − 1/G = 1.

2.3.2. Feature 2: reflected currents
The dynamic interaction of heavier and lighter gravity currents can also lead to
flipped (reflected) solutions, as shown in figure 3. If we denote the solutions in
figure 3(a) as H1(X, T) and Ĥ2(X, T) with control parameters (M2,M3,Q,G), while we
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Interaction of gravity currrents in a confined porous layer
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Figure 2. Example solutions of symmetric and asymmetric currents H1(X,T) and Ĥ2(X,T) from numerically
solving the coupled PDEs (2.16a,b): (a) symmetric currents with G = 2, Q = 2/3; (b) asymmetric currents
with G = 2, Q = 4/5; (c) asymmetric currents with G = 4, Q = 2/3. We have imposed M2 = 1, M3 = 1 and
T = 100 in all cases.

denote solutions in figure 3(b) as H∗
1(X

∗, T∗) and Ĥ∗
2(X

∗, T∗) with control parameters
(M∗

2 ,M∗
3 ,Q∗,G∗), the connection of the reflected solutions in figure 3(a,b) can be

expressed as

H1(X, T) = Ĥ∗
2(X

∗, T∗), (2.25a)

Ĥ2(X, T) = H∗
1(X

∗, T∗). (2.25b)

We can further show that the reflected solutions (2.25a,b) appear if and only if the
dimensionless control parameters satisfy

M∗
2 = M2

M3
, M∗

3 = 1
M3
, G∗ = 1

G
, Q∗ = 1 − Q, (2.26a–d)

and, at the same time, the variables are subject to stretching rules

X∗ = X
GM3

and T∗ = T
GM3

. (2.27a,b)

Physically, the existence of such a symmetry is due originally to the nature of buoyancy.
For example, for the injection of a single current, there is no fundamental difference
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Figure 3. Example solutions of reflected currents: (a) H1(X,T) and Ĥ2(X,T) with M2 = 1/2, M3 = 2, G =
3/5, Q = 2/5, XR = 220 and T = 50; (b) H∗

1 (X
∗,T∗) and Ĥ∗

2 (X
∗,T∗) with M∗

2 = 1/4, M∗
3 = 1/2, G∗ = 5/3,

Q∗ = 3/5, X∗
R = 180 and T∗ = 125/3, when the transforms (2.26) and (2.27) are satisfied. Here, XR and X∗

R
represent the domain length in panels (a) and (b).

whether buoyancy acts upwards or downwards, as density difference Δρ provides the
driving force rather than the specific density of each fluid. Nevertheless, in the current
context of two current injection and interaction, additional balance is needed between
the heavier and lighter currents, in addition to the buoyancy between the injecting and
displaced fluids. Detailed analysis indeed shows that such a balance is possible, but
additional constraints are placed, for a given buoyancy ratio of the two currents, on the
partition of injection rates and viscosity of the fluids, as described by (2.26).

An easier way to verify the existence of such a transform is to start from the flux
conditions (2.19c,d). Substituting (2.25a,b) into (2.19c,d), we obtain

Ĥ∗
2 − [M2(1 − H∗

1 − Ĥ∗
2)+ M3H∗

1 ]Ĥ∗
2
∂Ĥ∗

2
∂X

+ GM3H∗
1Ĥ∗

2
∂H∗

1
∂X

M2 + (M3 − M2)H∗
1 + (1 − M2)Ĥ∗

2

∣∣∣∣∣∣∣∣
X=0

= Q, (2.28a)

H∗
1 − [M2(1 − H∗

1 − Ĥ∗
2)+ Ĥ∗

2 ]GH∗
1
∂H∗

1
∂X

+ H∗
1Ĥ∗

2
∂Ĥ∗

2
∂X

M2

M3
+
(

1 − M2

M3

)
H∗

1 +
(

1
M3

− M2

M3

)
Ĥ∗

2

∣∣∣∣∣∣∣∣
X=0

= 1 − Q, (2.28b)

which is to be compared with the original form of (2.19c,d) for the inlet fluxes of the
heavier and lighter currents in figure 3(b):

H∗
1 − [M∗

2(1 − H∗
1 − Ĥ∗

2)+ M∗
3Ĥ∗

2 ]H∗
1
∂H∗

1
∂X∗ + G∗M∗

3H∗
1Ĥ∗

2
∂Ĥ∗

2
∂X∗

M∗
2 + (1 − M∗

2)H
∗
1 + (M∗

3 − M∗
2)Ĥ

∗
2

∣∣∣∣∣∣∣∣
X∗=0

= Q∗, (2.29a)
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Interaction of gravity currrents in a confined porous layer

Ĥ∗
2 − [M∗

2(1 − H∗
1 − Ĥ∗

2)+ H∗
1 ]GĤ∗

2
∂Ĥ∗

2
∂X∗ + H∗

1Ĥ∗
2
∂H∗

1
∂X∗

M∗
2

M∗
3

+
(

1
M∗

3
− M∗

2
M∗

3

)
H∗

1 +
(

1 − M∗
2

M∗
3

)
Ĥ∗

2

∣∣∣∣∣∣∣∣∣
X∗=0

= 1 − Q∗. (2.29b)

A comparison of the coefficient of every term in (2.28a) and (2.29b), or the coefficient of
every term in (2.28b) and (2.29a), immediately leads to the connection of dimensionless
parameters (2.26) and the transform for space (2.27a). Then, imposing the same procedure
for the full PDEs (2.16), we obtain T∗/T = X∗/X, which leads to the transform for time
(2.27b).

An important implication of Feature 2 is that we do not need to cover the full range
of the dimensionless parameters (M2,M3,Q,G) to provide the basic flow patterns of
gravity current interaction. For example, we only need to consider M3 ∈ (0, 1]. This is
because when M3 ∈ (1,+∞), one can obtain reflected solutions in the (X∗, T∗) space for
M∗

3 = 1/M3 ∈ (0, 1) based on transform (2.26b), with M∗
2 , G∗, Q∗ chosen according to

(2.26a,c,d) and (X∗, T∗) stretched according to (2.27a,b). More remarks are provided in
Appendix B. In § 3, we only consider M3 ∈ (0, 1], which leads to eight distinct regimes
of dynamic interaction as governed by M2, M3, G and Q. Key features of each regime are
discussed later in § 3 and summarised in table 2 and figure 4.

2.3.3. Feature 3: single current
When Q → 1− or Q → 0+, the current problem degenerates into that of single fluid
injection (e.g. Zheng et al. 2015a), with experimental observations also documented by
Pegler et al. (2014). For example, when Q → 1−, the height of the lighter current vanishes,
i.e. Ĥ2(X, T) → 0+. In this case, the governing PDEs (2.16a,b) and boundary and initial
conditions reduce to

∂H1

∂T
+ ∂

∂X

[
H1

H1 + M2(1 − H1)

]
− ∂

∂X

[
M2H1(1 − H1)

H1 + M2(1 − H1)

∂H1

∂X

]
= 0 (2.30)

and

H1(X, 0) = 0, (2.31a)

H1(Xf 1(T), T) = 0, (2.31b)

H1

H1 + M2(1 − H1)
− M2H1(1 − H1)

H1 + M2(1 − H1)

∂H1

∂X

∣∣∣∣
X=0

= 1. (2.31c)

By denoting M ≡ 1/M2, we recover exactly the same descriptions as those of Zheng et al.
(2015a) for single fluid injection into a confined porous layer. When M2 = 1, PDE (2.30)
further reduces to the form provided by Huppert & Woods (1995) for equal-viscosity
displacement of buoyant flows. Both the early-time and late-time asymptotic behaviours
have been studied and the time transition between them has been demonstrated by
numerical solutions of PDE (2.30) that span a wide range of time and length scales by
Zheng et al. (2015a) and Pegler et al. (2014).

Specifically, four self-similar solutions are identified in the corresponding asymptotic
limits, including an unconfined nonlinear diffusive solution at early times (T � 1) and
three different branches of confined self-similar solutions at late times (T � 1), depending
on the viscosity ratio (M ≡ 1/M2): (i) a rarefaction solution when the injected fluid is
less viscous than the displaced fluid (M2 < 1); (ii) an inclined straight-line solution with
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Regimes Parameters Transforms Self-similar solutions Special points

1a M2 = M3 = 1
ζ = (X − T)/T1/2 (3.8) ζf 1 = ζf 2 = Q1/2

1/Q − 1/G = 1 ζ∗ = −Q1/2

1b M2 = M3 = 1
ζ = (X − T)/T1/2 (D1) & (D7) ζf 1, ζf 2, ζ∗: (D10)1/Q − 1/G /= 1

2a M3 = 1 < M2 η = X − T (3.13) ηf 1 = ηf 2 = M2Q
2(M2−1)

1/Q − 1/G = 1 η∗ = − M2Q
2(M2−1)

2b M3 = 1 < M2 η = X − T (3.13) & (3.17) ηf 1 = −η∗ = M2Q
2(M2−1)

1/Q − 1/G /= 1 ηf 2 = M2[1−(1−Q)(1+2G)]
2(M2−1)

3 M3 < 1 < M2 η = X − T (3.28) & (3.29) ηf 1 = M2
2(M2−1)

Q > 0 θ = X − C2T θf 2: (3.27)

4 M3 < M2 = 1 ζ = (X − T)/T1/2
(3.29) & (3.36) ζf 1 = 1, ζf 3 = −1

Q > 0 θ = X − C2T θf 2: (3.27)

5a M3 < M2 < 1 ξ = X/T (D25) & (D26) ξf 1 = 1/M2

Q <
1−M2
1−M3

θ = X − C2T θf 2, θ∗: (D23) & (D32)

5b M3 < M2 < 1 ξ = X/T (3.29) & (D33) ξf 1 = 1/M2

Q ≥ 1−M2
1−M3

θ = X − C2T θf 2: (3.27)

6 M2 = M3 < 1 ξ = X/T (D25) & (D37) ξf 1 = 1/M2

σ = (X − C2T)/T1/2 σf 2 = −σ∗ = (GM3Ĥi2)
1/2

7 M2 < M3 < 1 ξ = X/T (D47) & (D48) ξf 1 = 1/M2

ξf 2, ξ∗ : (D45) & (D49)

8 M2 < M3 = 1 ξ = X/T (D52) & (D53) ξf 1 = ξf 2 = 1/M2

ξ∗ = M2

Table 2. Key feature of the eight regimes of gravity current interaction under simultaneous injections of two
fluids: parameters, transforms, solutions and special points of dynamic interaction. The propagating speed is
C2 = 1 − (1 − M3)Q.

time-dependent slope for equally viscous injecting and displaced fluids (M2 = 1); and
(iii) an inclined straight-line solution with constant slope when the injected fluid is more
viscous than the displaced fluid (M2 > 1).

3. Interaction regimes

As time progresses, the heavier fluid 1 and lighter fluid 3 eventually attach to each other
and start to interact. We are not able to prove strictly that the currents always interact
eventually, but our numerical solutions of PDEs (2.16a,b) always show that this is always
the case. This is also consistent with the scaling behaviour of non-interacting currents at
early times that the thickness of both currents grows with time according to H1 ∝ T2/3

and Ĥ2 ∝ T2/3 when T � 1, see Appendix C. A key feature of such late-time interactions
is the existence of a touching-point of all three fluids, denoted by (x∗, h∗) in figure 1
or (X∗,H∗) in figure 2 in the rescaled coordinate system. Meanwhile, ahead of the fluid
fronts Xf 1(T) and Xf 2(T), by definition, H1(X, T) = 0 for X ≥ Xf 1(T) and Ĥ2(X, T) = 0
for X ≥ Xf 2(T). We only focus on the non-trivial part of H1(X, T) and Ĥ2(X, T) in this
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Interaction of gravity currrents in a confined porous layer

2b (1/Q – 1/G = 1)

1b (1/Q – 1/G = 1)

1a (1/Q – 1/G = 1)

2a (1/Q – 1/G = 1)

5a (Q < (1 – M2)/(1 – M3))

5b (Q ≥ (1 – M2)/(1 – M3))
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Figure 4. Regime diagram of gravity current interaction at late times (T � 1), as governed by four
dimensionless parameters M2, M3, G and Q (see table 1). We only need to consider M3 ≤ 1 based on Feature
2. Key features of the eight regimes of gravity current interaction are also summarised in table 2.

work. Meanwhile, we only discuss the flow situation of 0 < Q < 1 with injection of both
fluids. Eight regimes are identified in total as we discuss in this section.

A key assumption in this section is that symmetry condition applies at X = 0 at late
times (T � 1) when the heavier and lighter currents attach to each other, i.e.

∂H1

∂X

∣∣∣∣
X=0

= ∂Ĥ2

∂X

∣∣∣∣∣
X=0

= 0, (3.1)

which is consistent with numerical observations from solving PDEs (2.16a,b). Then, by
substituting (3.1) into the flux conditions (2.19c,d), we obtain that the inlet height of the
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gravity currents must satisfy

Hi1 ≡ H1(0, T) = Q
C1
, (3.2a)

Ĥi2 ≡ Ĥ2(0, T) = 1 − Q
C2

, (3.2b)

where the propagation speeds of the currents are

C1 ≡ 1 − (1 − M3)Q
M3

and C2 ≡ 1 − (1 − M3)Q. (3.3a,b)

We can also verify that Hi1 + Ĥi2 = 1, since the thickness of the porous layer is finite.
Meanwhile, (3.2) and (3.3) can be rearranged to provide

Hi1 = M3(1 − C2)

C2(1 − M3)
and Ĥi2 = C2 − M3

C2(1 − M3)
, (3.4a,b)

which are used later to help explain some key features of the flow.
In total, we obtain eight (or eleven) different flow regimes for the dynamic interaction

of gravity currents at late times, depending on the values of the four dimensionless
parameters M2, M3, G and Q. In this section, we describe regimes 1 to 4 and within each of
them, we provide self-similar solutions to describe the time evolution of the profile shapes.
These self-similar solutions are also verified based on a comparison with the rescaled
time-dependent numerical solutions of the full PDEs (2.16a,b). Detailed descriptions for
regimes 1b and 5 to 8 are provided in Appendix D.

3.1. Regimes 1a and 1b: M2 = M3 = 1(μ1 = μ2 = μ3)

We first evaluate the limit when the invading and displaced fluids take the same viscosity,
i.e. M2 = M3 = 1. In this case, at late times (T � 1), the governing PDEs (2.16a,b)
become

∂H1

∂T
+ ∂

∂X

[
H1 − (1 − H1)H1

∂H1

∂X
+ GH1Ĥ2

∂Ĥ2

∂X

]
= 0, (3.5a)

∂Ĥ2

∂T
+ ∂

∂X

[
Ĥ2 − (1 − Ĥ2)GĤ2

∂Ĥ2

∂X
+ H1Ĥ2

∂H1

∂X

]
= 0. (3.5b)

A similarity transformation can be defined as ζ ≡ (X − T)/T1/2, and the coupled PDEs
(3.5a,b) are then transformed into two coupled ordinary differential equations (ODEs)

ζ

2
dH1

dζ
+ d

dζ

[
(1 − H1)H1

dH1

dζ
− GH1Ĥ2

dĤ2

dζ

]
= 0, (3.6a)

ζ

2
dĤ2

dζ
+ d

dζ

[
−H1Ĥ2

dH1

dζ
+ G(1 − Ĥ2)Ĥ2

dĤ2

dζ

]
= 0. (3.6b)

The coupled ODEs (3.6a,b) can then be solved subject to BCs (3.2a,b) to provide the
self-similar solutions for the interface shape H1(ζ ) and Ĥ2(ζ ). The form of the ODEs
(3.6a,b) and BCs (3.2a,b) indicate that H1(ζ ) and Ĥ2(ζ ) depend also on G and Q, which
leads to either symmetric or asymmetric currents.
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Interaction of gravity currrents in a confined porous layer
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Figure 5. Comparison between symmetric solution (3.8) and numerical solutions of PDEs (2.16a,b) in regime
1a, when M2 = M3 = 1, G = 2/3 and Q = 2/5 (such that 1/Q − 1/G = 1): (a) time evolution of the fluid
interfaces H1 and Ĥ2 at T = {20, 40, 60, 80, 100} and (b) rescaled interfaces H1 and Ĥ2 with ζ = (X − T)/T1/2

and the self-similar solution (3.8), shown as the green lines.

3.1.1. Regime 1a: symmetric currents (1/Q − 1/G = 1)
When (1/Q − 1/G = 1), the currents are symmetric based on Feature 1, and Ĥ2(ζ ) =
H1(ζ )/G. The coupled PDEs (3.6a,b) then reduce to a single ODE for H1(ζ ) in the form
of

ζ

2
dH1

dζ
+ d

dζ

[
H1

(
1 − H1

Q

)
dH1

dζ

]
= 0. (3.7)

At leading order, an explicit solution is available as

H1 =
⎧⎨⎩

Q, ζ ≤ ζ∗,
Q
2

− ζ
Q1/2

2
, ζ∗ < ζ ≤ ζf 1,

(3.8)

which shows a straight-line frontal structure with

ζf 1 = Q1/2 and ζ∗ = −Q1/2. (3.9a,b)

Based on symmetry, Ĥ2 = H1/G is also obtained and the front of the lighter current
locates at ζf 2 = Q1/2 in the rescaled coordinate system.

We can also compare the self-similar solution (3.8) with numerical solutions of PDEs
(2.16a,b), as shown in figure 5. It is demonstrated that after appropriate rescaling based on
the transform ζ ≡ (X − T)/T1/2, the PDE numerical solutions at different times collapse
onto universal curves. Meanwhile, a further comparison with solutions (3.8) provides very
good agreement for the profile shape of both the heavier and lighter gravity currents. It
is shown that the profile shape of the heavier or lighter current maintains a straight-line
structure near the propagating front, which is also consistent with the prediction of solution
(3.8).

3.2. Regimes 2a and 2b: M3 = 1 < M2(μ2 < μ1 = μ3)

We next discuss the interaction regime when the ambient fluid that is being displaced
is less viscous than the injected fluids, while the injected heavier and lighter fluids are
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equally viscous, i.e. when M3 = 1 < M2(μ2 < μ1 = μ3). By substituting M3 = 1 into
the governing PDEs (2.16a,b), we obtain a simplified form

∂H1

∂T
+ ∂

∂X

⎡⎢⎢⎣H1 − [M2(1 − H1 − Ĥ2)+ Ĥ2]H1
∂H1

∂X
+ GH1Ĥ2

∂Ĥ2

∂X
H1 + M2(1 − H1 − Ĥ2)+ Ĥ2

⎤⎥⎥⎦ = 0, (3.10a)

∂Ĥ2

∂T
+ ∂

∂X

⎡⎢⎢⎣ Ĥ2 − [M2(1 − H1 − Ĥ2)+ H1]GĤ2
∂Ĥ2

∂X
+ H1Ĥ2

∂H1

∂X
H1 + M2(1 − H1 − Ĥ2)+ Ĥ2

⎤⎥⎥⎦ = 0. (3.10b)

We next introduce the travelling-wave transform η ≡ X − T , and PDEs (3.10a,b) are then
transformed into two coupled ODEs (after an integration):

[M2(1 − H1 − Ĥ2)+ Ĥ2]
dH1

dη
− GĤ2

dĤ2

dη
= (1 − M2)(1 − H1 − Ĥ2), (3.11a)

−H1
dH1

dη
+ [H1 + M2(1 − H1 − Ĥ2)]G

dĤ2

dη
= (1 − M2)(1 − H1 − Ĥ2), (3.11b)

for the profile shapes H1(η) and Ĥ2(η).

3.2.1. Regime 2a: symmetric currents (1/Q − 1/G = 1)
Again, the currents are symmetric when 1/Q − 1/G = 1 based on Feature 1, in which case
Ĥ2(η) = H1(η)/G. ODEs (3.11a,b) then reduce to a single one(

1 − H1

Q

)[
(1 − M2)− M2

dH1

dη

]
= 0, (3.12)

which admits an explicit solution

H1 =
⎧⎨⎩

Q η ≤ η∗,
Q
2

−
(

1 − 1
M2

)
η η∗ < η ≤ ηf 1,

(3.13)

where

ηf 1 = M2Q
2(M2 − 1)

and η∗ = − M2Q
2(M2 − 1)

. (3.14a,b)

It is easy to verify that the inlet condition (3.2) and the global mass constraint (2.20a)
are both satisfied. Accordingly, the profile shape of the lighter current Ĥ2(η) = H1(η)/G
is also available. The frontal location of the lighter current is also ηf 2 = ηf 1 = M2Q/
2(M2 − 1) due to symmetry.

We can also verify the analytical solution (3.13) based on a comparison with the rescaled
numerical solutions of PDEs (2.16a,b), as shown in figure 6. After appropriate rescaling
of the raw solutions of PDEs (2.16a,b) at different times, the PDE solutions approach a
universal curve, which is exactly the self-similar solution (3.13).
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Interaction of gravity currrents in a confined porous layer
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Figure 6. Comparison between symmetric solution (3.13) and numerical solutions of PDEs (2.16a,b) in regime
2a, when M2 = 6/5, M3 = 1, G = 2 and Q = 2/3 (such that 1/Q − 1/G = 1): (a) time evolution of the
interfaces H1 and Ĥ2 at T = {60, 120, 180, 240, 300} from numerically solving PDEs (2.16a,b); (b) rescaled
interfaces H1 and H2 with ζ = X − T , and the green lines are solution (3.13).

3.2.2. Regime 2b: asymmetric currents (1/Q − 1/G /= 1)
The currents are asymmetric in regime 2b, when 1/Q − 1/G /= 1. However, the flow
behaviour is fundamentally different from that in regime 1b. One of the key features
is that the vertical deviation of the point where three fluids meet becomes negligible at
late times, i.e. |H∗ − Hi1| → 0+ for T � 1, while in regime 1b, the deviation |H∗ − Hi1|
remains finite and time independent. Meanwhile, the frontal structure of both currents can
be approximated as straight lines at leading order, while in regime 1b, the profile shapes
are significantly curved.

In the current regime of asymmetric currents, the governing PDEs for the profile
shapes remain as (3.10a,b). The transform η ≡ X − T continues to apply, which leads to
ODEs (3.11a,b) for self-similar solutions. Indeed, the rescaled PDE numerical solutions at
different times approach a universal curve, as shown in figure 7(b), which is exactly the
self-similar solution we explore in this section. Nevertheless, (3.11a,b) do not decouple for
asymmetric currents under consideration here. Similar to regime 1b, the PDE numerical
solutions (figure 7) show that the profile shapes can still be divided into two parts: (i)
X ∈ [0,X∗(T)], where the heavier and lighter currents attach to each other (H1 + Ĥ2 = 1);
and (ii) X ∈ [X∗(T),∞), where the heavier and lighter currents do not attach to each other
(H1 + Ĥ2 < 1).

For X ∈ [0,X∗(T)], since H1 + Ĥ2 = 1, ODEs (3.11a,b) reduce to a single one which
admits a solution of constant thickness

H1 = a3. (3.15)

We expect that a3 = H∗ = Hi1 at late times (T � 1). In the frontal region, in contrast,
(3.11a,b) admit straight-line solutions for the profile shapes

H1 = a4 −
(

1 − 1
M2

)
η, (3.16a)

Ĥ2 = a5 − 1
G

(
1 − 1

M2

)
η, (3.16b)

where the constants a4 and a5 are yet unknown. It is of interest to note that the slopes of the
fronts in (3.16a,b) remain exactly the same as those in regime 2a of symmetric currents
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Figure 7. Comparison between asymmetric solutions (3.13) and (3.17), and numerical solutions of PDEs
(2.16a,b) in regime 2b, when M2 = 6/5, M3 = 1, G = 1 and Q = 2/3 (such that 1/Q − 1/G /= 1): (a) time
evolution of the interfaces H1 and Ĥ2 at T = {120, 240, 360, 480, 600} from numerically solving PDEs
(2.16a,b); (b) rescaled interfaces H1 and H2 with η = X − T , and the green lines are solutions (3.13) and
(3.17).

when 1/Q − 1/G = 1. This is not surprising since they both come from solving ODEs
(3.11a,b) directly and are independent on whether or not 1/Q − 1/G = 1.

Nevertheless, based on the global mass constraint (2.20a) for the heavier current and
inlet conditions (3.2a,b) (i.e. Hi1 = Q and Ĥi2 = 1 − Q when M3 = 1), the three constants
a3, a4, a5 can be determined conveniently, and solutions (3.15) and (3.16) can be obtained.
It turns out that the profile shape of the heavier current H1(η) remains exactly the same as
(3.13) when the currents are symmetric. In contrast, the profile shape of the lighter current
H2(η) is no longer H2(η) = H1(η)/G. Now H2(η) is given by

Ĥ2 =
⎧⎨⎩

1 − Q, η ≤ η∗,

1 − Q
(

1 + 1
2G

)
− 1

G

(
1 − 1

M2

)
η, η∗ < η ≤ ηf 2,

(3.17)

such that H1 and Ĥ2 connect at (η∗,H∗). The location of the propagating fronts and the
intersection point of the three fluids can also be determined as

ηf 1 = Q
2(1 − 1/M2)

, ηf 2 = (1 − Q)(1 + 2G)− 1
2(1 − 1/M2)

and η∗ = − Q
2(1 − 1/M2)

.

(3.18a–c)

As expected, ηf 1 and η∗ remain the same as (3.14) when the currents are symmetric, but
ηf 2 is different and now depends also on G, the buoyancy ratio of the heavier and lighter
currents. It is important to note that the approximate solution (3.17) does not satisfy exactly
the global mass constraint (2.20b) of the lighter current. Nevertheless, it can be shown that
the relative error in total volume introduced is at O(T−1) and is hence negligible at late
times (T � 1).

Equations (3.13) and (3.17) are both verified in figure 7(b) based on a comparison with
the appropriately rescaled numerical solutions of PDEs (2.16a,b) at late times, imposing
M2 = 6/5, M3 = 1, G = 1 and Q = 2/3 as an example (now 1/Q − 1/G /= 1). Indeed the
rescaled PDE solutions approach the explicit solutions (3.13) and (3.17) as time progresses.
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Interaction of gravity currrents in a confined porous layer
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Figure 8. Comparison between the asymptotic and numerical solutions of PDEs (2.16a,b) in regime 3,
with M2 = 6/5, M3 = 1/2, G = 2 and Q = 3/5: (a) time evolution of the fluid interfaces H1 and Ĥ2 at
T = {60, 120, 180, 240, 300} from numerically solving PDEs (2.16a,b); (b) rescaled interfaces H1 collapse
onto a universal shape under transform η = X − T and agree reasonably well with analytical solution (3.21);
and (c) rescaled interfaces Ĥ2 also collapse onto a universal shape under transform θ ≡ X − C2T , which agrees
well with the implicit solution (3.25) and its asymptotic approximates at two ends.

3.3. Regime 3: M3 < 1 < M2 (μ2 < μ1 < μ3)

We next discuss the flow regimes when the injected lighter fluid 3 is more viscous than
the heavier fluid 1, while both fluids 1 and 3 are more viscous than the ambient fluid 2, i.e.
when M3 < 1 < M2 (μ2 < μ1 < μ3). When both the heavier and lighter fluids are under
injection (Q > 0), the PDE numerical solutions indicate that, eventually, the heavier fluid
1 will move ahead of the lighter fluid 3 at late times, as shown in figure 8(a). That said,
fluid 3 will eventually be left behind fluid 1 and in contact only with fluid 1, while the
ambient fluid 2 will only be in contact with fluid 1 at the front of the heavier current.
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In this case, to obtain the frontal structure of the heavier current, we can simply impose
Ĥ2 = 0 in PDE (2.16), which leads to

∂H1

∂T
+ ∂

∂X

[
H1

H1 + M2(1 − H1)

]
− ∂

∂X

[
M2H1(1 − H1)

H1 + M2(1 − H1)

∂H1

∂X

]
= 0. (3.19)

We can also introduce a transform η = X − T , and PDE (3.19) reduces further to an ODE

dH1

dη
− d

dη

[
H1

H1 + M2(1 − H1)

]
+ d

dη

[
M2H1(1 − H1)

H1 + M2(1 − H1)

dH1

dη

]
= 0. (3.20)

It is convenient to verify that ODE (3.20) admits an explicit solution of straight-line
structure

H1 = 1
2

−
(

1 − 1
M2

)
η, (3.21)

which attaches to the top and bottom boundaries at

ηf 1 = 1
2(1 − 1/M2)

and ηf 3 = − 1
2(1 − 1/M2)

. (3.22a,b)

Equation (3.21) also indicates that the slope of the front depends only on the viscosity ratio
M2 ≡ μ1/μ2 between the injected heavier fluid 1 and the ambient fluid 2.

To obtain the profile shape of the injected lighter fluid 2, we impose H1 + Ĥ2 = 1 in
PDE (2.16) and arrive at

∂Ĥ2

∂T
+ ∂

∂X

[
M3Ĥ2

1 − (1 − M3)Ĥ2

]
− ∂

∂X

[
M3(1 + G)Ĥ2(1 − Ĥ2)

1 − (1 − M3)Ĥ2

∂Ĥ2

∂X

]
= 0. (3.23)

Knowing that the lighter current propagates at speed C2 at the inlet, we introduce a
transform θ ≡ X − C2T and PDE (3.23) reduces further to an ODE

− C2
dĤ2

dθ
+ d

dθ

[
M3Ĥ2

1 − (1 − M3)Ĥ2

]
− d

dθ

[
M3(1 + G)Ĥ2(1 − Ĥ2)

1 − (1 − M3)Ĥ2

dĤ2

dθ

]
= 0, (3.24)

which admits an implicit solution

θ = M3(1 + G)
2C2(1 − M3)

[
2Hi1

(
1 + ln |1 − Ĥ2

Ĥi2

∣∣∣∣∣
)

+ (Ĥi2 − 2Ĥ2)

]
, (3.25)

which satisfies the global mass constraint of the lighter current 3

∫ Ĥi2

0
XdĤ2 = (1 − Q)T. (3.26)

Notice that (3.26) is equivalent to (2.20b), since Ĥ2 is monotonic in X, but (3.26) is more
convenient to use here. Meanwhile, (3.25) indicates that the propagating front of the lighter
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Interaction of gravity currrents in a confined porous layer

current 2 locates at

θf 2 = M2
3(1 + G)(1 − C2)

C2
2(1 − M3)2

+ M3(1 + G)Ĥi2

2C2(1 − M3)
. (3.27)

To summarise, we have obtained self-similar solutions for the profile shape of both the
heavier current H1 and the lighter current Ĥ2 as

H1 =

⎧⎪⎪⎨⎪⎪⎩
1 − F1(θ), θ ≤ θf 2,

1, θ ≥ θf 2 and η ≤ ηf 3,
1
2

−
(

1 − 1
M2

)
η, ηf 3 ≤ η ≤ ηf 1,

(3.28)

and

Ĥ2 = F1(θ) for θ ≤ θf 2, (3.29)

where F1(θ) is the inverse function of implicit solution (3.25). In addition, it can be shown
that F1(θ) asymptotically approaches

Ĥ2 = M3 − C2

M3(1 + G)
(θ − θf 2), (3.30)

as Ĥ2 → 0+, and

Ĥ2 = Ĥi2 − Ĥi2 exp

[
C2

2(1 − M3)
2θ

M2
3(1 + G)(1 − C2)

]
, (3.31)

as Ĥ2 → Ĥ−
i2.

The self-similar solutions are also verified based on a comparison with numerical
solutions of PDE (2.16a,b) at different times, as shown in figure 8, imposing M2 = 6/5,
M3 = 1/2, G = 2 and Q = 3/5 as an example. In particular, the time-dependent PDE
solutions are shown in figure 8(a), which are rescaled based on η ≡ X − T in figure 8(b)
and collapse reasonably well onto a universal curve for the profile shape of the heavier
current. The straight-line solution (3.29) are further included in figure 8(b), which exhibits
good agreement with the collapsed PDE solutions. Meanwhile, the time-dependent PDE
numerical solutions are further rescaled based on θ ≡ X − C2T in figure 8(c), which, in
contrast, collapse well onto a universal curve for the profile shape of the lighter current.
The collapsed PDE solutions are also found to agree well with the implicit solution (3.25).

3.4. Regime 4: M3 < M2 = 1 (μ1 = μ2 < μ3)

We now discuss a degenerated case of regime 3 when M3 < 1 = M2. Similarly, the
injected heavier fluid 1 will move ahead of the lighter fluid 3 eventually and separate fluid
3 from the ambient fluid 2 at late times. The profile shapes of H1 and Ĥ2 are also similar
to that of regime 3. Nevertheless, there is a key difference with regards to the straight-line
frontal structure of the heavier current 1: the slope ∂H1/∂X is now time-dependent (when
M2 = 1), while the slope ∂H1/∂X remains constant in regime 3 (when M2 > 1).
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Figure 9. Comparison between the asymptotic solutions and numerical solutions of PDEs (2.16a,b) in regime
4, with M2 = 1, M3 = 1/2, G = 2 and Q = 3/5: (a) time evolution of the fluid interfaces H1 and Ĥ2 at T =
{60, 120, 180, 240, 300} from numerically solving PDEs (2.16a,b); (b) rescaled interfaces H1 collapse onto a
universal shape under transform ζ = (X − T)/T1/2 and agree reasonably well with straight-line solution (3.34);
(c) rescaled interfaces Ĥ2 also collapse onto a universal shape under transform θ ≡ X − C2T , which agrees well
with the implicit solution (3.36).

To obtain the profile shape of the heavier current H1(X, T), we impose Ĥ2 = 0 and
M2 = 1 in PDEs (2.16a,b), which leads to

∂H1

∂T
+ ∂H1

∂X
− ∂

∂X

[
H1(1 − H1)

∂H1

∂X

]
= 0. (3.32)

A similarity transform ζ ≡ (X − T)/T1/2 can then be employed and (3.32) reduces further
to an ODE

ζ

2
dH1

dζ
+ d

dζ

[
H1(1 − H1)

dH1

dζ

]
= 0, (3.33)
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Interaction of gravity currrents in a confined porous layer

which admits an explicit solution

H1 = 1
2 (1 − ζ ). (3.34)

Accordingly, the interface attaches to the top and bottom boundaries at

ζf 3 = −1 and ζf 1 = 1, (3.35a,b)

based on the straight-line structure of (3.34). It can also be verified that solution (3.34)
satisfies the global volume constraint for the injected fluid 1.

To obtain the interface shape between the injected fluids 1 and 3, we impose H1 + Ĥ2 =
1 in PDEs (2.16a,b) and again arrive at PDE (3.23). Similarly, by defining θ ≡ X − C2T ,
analytical solutions for H1 can be obtained as

H1 =

⎧⎪⎨⎪⎩
1 − F1(θ), θ ≤ θf 2,

1, θ ≥ θf 2 and ζ ≤ −1,
1
2 (1 − ζ ), −1 ≤ ζ ≤ 1,

(3.36)

which now includes solution (3.34), and F1(θ) is again the inverse function of the implicit
solution (3.25). The only difference between solutions (3.36) and (3.28) is that the leading
straight-line frontal structure of the heavier fluid is obtained under different similarity
transforms. Correspondingly, in regime 3, the slope ∂H1/∂X remains constant based on
θ ≡ X − C2T , while in regime 4, the slope ∂H1/∂X becomes time-dependent based on
ζ ≡ (X − T)/T1/2.

We can also compare the self-similar solutions in regime 4 with the PDE numerical
solutions, as shown in figure 9, imposing M2 = 1, M3 = 1/2, G = 2 and Q = 3/5 as an
example. The time-dependent PDE solutions are shown in figure 9(a), which is rescaled
according to ζ ≡ (X − T)/T1/2 in figure 9(b), and the profile shapes of the heavier current
is found to collapse onto a straight line, which also agrees with the prediction of solution
(3.34). Meanwhile, we can also rescale the PDE numerical solutions according to θ ≡
X − C2T , and the profile shapes of the lighter current are found to collapse onto a universal
curve, which agrees well with solution (3.36).

3.5. Regime diagram: eight facets of gravity current interaction
We have thus identified eight regimes of gravity current interaction at late times (T � 1)
from simultaneous injection of heavier and lighter fluids into a confined porous layer, as
distinguished by four dimensionless control parameters M2, M3, G and Q, the definition
and physical meaning of which are summarised in table 1. These eight regimes are also
allocated in a regime diagram in figure 4, with key features of the flow summarised also in
table 2. The (M2,M3) plane is divided into eight regions by three straight lines (M2 = 1,
M3 = 1, M2/M3 = 1). Regions 1 and 2 further reduce to two sub-regions depending on
whether or not 1/Q − 1/G = 1. Region 5 also leads to two sub-regions depending on
whether or not Q < (1 − M2)/(1 − M3).

In particular, in four of the eight regimes of late-time interaction (regimes 2, 6–8),
self-similar solutions can be constructed by combining appropriately the three basic
solutions (i.e. shock, rarefaction and travelling wave solutions) identified during single
fluid injection in confined porous layers (e.g. Zheng et al. 2015a. In the four other regimes
(regimes 1, 3–5), implicit solutions with logarithm dependence and described by error
functions are identified due to the influence of flow confinement and the interaction
of gravity currents. This is a key novel feature of the present study of gravity current
interaction and is fundamentally different from that of single current injection into
confined porous layers.
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Figure 10. Propagating fronts Xf 1, Xf 2, vertical fronts Hf 1, Ĥf 2, and the intersection (X∗, H∗) all undergo a
time transition from an early-time self-similar behaviour to another late-time self-similar behaviour in regime
1. The data are taken from numerically solving PDEs (2.16a,b). In panel (a), during the early-time period, the
propagation fronts obey a power-law form of Xf 1 ∝ T2/3 and Xf 2 ∝ T2/3, while the vertical fronts propagate
as Hf 1 ∝ T1/3 and Ĥf 2 ∝ T1/3. In panel (b), during the late-time period, we have Xf 1(T) ∼ T and Xf 2(T) ∼ T ,
while H1, Ĥ2 and H∗ all remain constant. The imposed parameters are M2 = M3 = 1, G = 2 and Q = 2/3.

3.6. Time transition between early-time and late-time self-similar solutions
To further illustrate the time transition between different early-time and late-time
behaviours described in §§ 2 and 3, we now solve the governing PDEs (2.16a,b)
numerically and track the location of propagating fronts Xf 1(T) and Xf 2(T), the height
of interface at the inlet X = 0 of the reservoir Hf 1(T) and Ĥf 2(T), and the location of
the intersection (X∗(T), H∗(T)) where the three fluids meet. We impose M2 = M3 = 1,
G = 2 and Q = 2/3 for an example calculation, in which case 1/Q − 1/G = 1 is satisfied
and the heavier and lighter currents are symmetric based on Feature 1, and the asymptotic
behaviour of the flow is described in regime 1 in § 3.1. The PDE numerical solutions are
shown as the symbols in figure 10.

We next impose a comparison between the PDE numerical solutions and the self-similar
solutions obtained in § 3. In particular, at early times, the interface shape evolves according
to the nonlinear diffusion equation (C1), with the fronts and heights propagating in
power-law forms

Xf 1(T) ∼ 1.48Q1/3T2/3 ∼ 1.29T2/3, (3.37a)

Xf 2(T) ∼ 1.48[GM3(1 − Q)]1/3T2/3 ∼ 1.29T2/3, (3.37b)

and

Hf 1(T) ∼ 1.30Q2/3T1/3 ∼ 0.99T1/3, (3.38a)

Ĥf 2(T) ∼ 1.30(GM3)
−1/3(1 − Q)2/3T1/3 ∼ 0.49T1/3. (3.38b)

In contrast, at late times, the time evolution of the interface shape is now influenced by
an additional advective term due to the influence of flow confinement. The propagating
fronts of the symmetric currents now locate at

Xf 1(T) = Xf 2(T) ∼ T + (QT)1/2 ∼ T + 0.82T1/2, (3.39a)

X∗(T) ∼ T − (QT)1/2 ∼ T − 0.82T1/2, (3.39b)
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Figure 11. Time-dependent locations of the leading front Xf 1(T) in regimes 1 to 8 from numerically solving
the coupled PDEs (2.16a,b). It is observed that Xf 1(T) ∼ 1.48 Q1/3T2/3 at early times, while Xf 1(T) ∝ T
at late times in all regimes. The imposed parameters {M2,M3,G,Q} are consistent with those in § 3, i.e.
{1, 1, 2/5, 2/3} in regime 1a, {6/5, 1, 2, 2/3} in regime 2a, {6/5, 1/2, 2, 3/5} in regime 3, {1, 1/2, 2, 3/5}
in regime 4, {4/5, 1/2, 2, 1/5} in regime 5a, {1/2, 1/2, 2, 1/2} in regime 6, {1/2, 4/5, 1/5, 2/5} in regime
7, and {1/2, 1, 1/5, 1/6} in regime 8. The solid line in panel (b) represents the analytical solution Xf 1(T) ∼
1.48 Q1/3T2/3.

based on the discussions in § 3.1.1, which are all linear in time T at leading order O(T).
Meanwhile, the heights Hf 1(T), Ĥf 2(T) and H∗(T) all remain constant at late times and
can be estimated conveniently based on the inlet flux condition (3.2a,b):

Hf 1(T) = H∗(T) = Hi1 = 2/3, (3.40a)

Ĥf 2(T) = Ĥi2 = 1/3, (3.40b)

when the flow is significantly influenced by the confinement effect.
The asymptotic solutions for the frontal location are also plotted in figure 10 as

a comparison with numerical solutions of the governing PDEs (2.16a,b). Very good
agreement is observed at both the early and late times of the flow. One can also look
into the profile shape evolution in figure 5, which shows that the PDE numerical solutions
approach and collapse eventually onto the self-similar solutions.

Analytical progress can also be made based on scaling analysis on how the flow
parameters can impact the regime boundaries (i.e. the transition time) for the validity of
the early-time and late-time asymptotic solutions, similar to the T–M chart in figure 10
of Zheng et al. (2015a) for single fluid injection. For example, at early times (T � 1),
for the unconfined self-similar solution from solving (C2) to apply, one requires that
H1 � min{1,M2} and Ĥ2 � min{1,M2/M3} to arrive at (C1a,b) from (2.16a,b). Hence,
we need H1 ∼ 1.48Q2/3T1/3 � min{1,M2} and Ĥ2 ∼ 1.30(GM3)

−1/3(1 − Q)2/3T1/3 �
min{1,M2/M3}. After some rearrangements, we arrive at T � Q−2min{1,M3

2} and
T � GM3(1 − Q)−2min{1,M3

2/M
3
3}, both of which must be satisfied for the early-time

self-similar solutions to apply. Notably, the validity range of the early-time unconfined
self-similar solution depends on {M2,M3,G,Q}.

To further demonstrate the influence of {M2,M3,Q,G} on the time transition between
early-time and late-time self-similar solutions, we now include numerical solutions for
the frontal location Xf 1(T) of the coupled PDEs (2.16a,b) in regimes 1 to 8, as shown in
figure 11. It is shown that the location of the leading front follows Xf 1(T) ∼ 1.48Q1/3T2/3
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at early times in all regimes, while Xf 1(T) ∝ T at late times and the prefactor depends on
{M2,M3,Q,G}. The imposed parameters {M2,M3,G,Q} are consistent with those in the
example calculations in § 3, i.e. {1, 1, 2/5, 2/3} in regime 1a, {6/5, 1, 2, 2/3} in regime 2a,
{6/5, 1/2, 2, 3/5} in regime 3, {1, 1/2, 2, 3/5} in regime 4, {4/5, 1/2, 2, 1/5} in regime
5a, {1/2, 1/2, 2, 1/2} in regime 6, {1/2, 4/5, 1/5, 2/5} in regime 7 and {1/2, 1, 1/5, 1/6}
in regime 8. To explore the specific dependence of {M2,M3,Q,G} at late times, we need
to consider a broader range of the parameters in the numerical calculations, e.g. by orders
of magnitude, which goes beyond the scope of the numerical scheme employed here.
Nevertheless, presumably this can be done with an improved numerical scheme, following
the same method for the T–M chart in figure 10 of Zheng et al. (2015a) for single fluid
injection.

4. Summary and final remarks

4.1. Potential implications
We next briefly remark on the potential implications of the model. Three example
calculations are summarised in table 3 in the practice of CO2-water co-flooding projects
for enhancing oil recovery (EOR) and geological sequestration of CO2 simultaneously,
imposing geophysical and operational parameters from practical projects and fluid
properties at reservoir conditions. In particular, we consider the recovery of both light
and heavy oils with viscosity variations by orders of magnitude, and we also cover the
influence of permeability variations of natural porous rocks.

Two CO2-water co-flooding projects are considered here that took place in the Western
Canada Sedimentary basin in Canada (Meyer, Attanasi & Freeman 2007) and East Texas
Field in the United States (Foote, Massingill & Wells 1988). The value for the permeability,
porosity, thickness of the porous layers, depth of the oil reservoir and density of oil are
made available in the reports, and we assume that the permeability, porosity and thickness
of the porous layer all remain constant and the reservoir is horizontal. We also assume
that the temperature in the rock formation increases by 2.5 ◦C per 100 m and the pressure
increases by 2.5 MPa per 100 m, which allows us to obtain the viscosity and density
of water and CO2 at reservoir conditions based on the data of the National Institute
of Standards and Technology (NIST). Representative injection rate of CO2 ranges from
3 mm2 s−1 to 12 mm2 s−1 and that of H2O is from 8 mm2 s−1 to 25 mm2 s−1 based on the
reports we read (e.g. Dai et al. 2014; IEA 2015). These area injection rates are calculated
also based on the assumption that fluids are injected through horizontal wells of length
10 km in the East Texas Field. Meanwhile, the spreading of CO2 current is much faster
than that of the H2O current, so the breakthrough of CO2 is expected to run earlier than
that of H2O. Finally, we are able to obtain the dimensionless parameters M2, M3, G and
Q, as shown in table 3, together with the geophysical and operational data of these two
projects.

It hence becomes clear that both cases 1 and 2 correspond to regime 7 of gravity current
interaction, as discussed in Appendix D.4. An example calculation is also provided for
case 2, where the length of the CO2 current reaches xCO2 ≈ 1420 m, while that of water
is only xH2O ≈ 69 m after 180 days of continuous operation, as shown in figure 12. In this
case, the area covered by CO2 is ACO2 ≈ 182 m2 and that of water is AH2O ≈ 120 m2.

We can also define a sweep/displacement efficiency as the total volume of injected
fluids divided by the rectangular area enclosed by the leading front of the currents
(max{Xf 1(T),Xf 2(T)}). Since the total volume of injected fluids is QT + (1 − Q)T = T ,
and since Xf 1(T) is always greater than Xf 2(T) when M3 ≤ 1, the sweep efficiency in this
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Interaction of gravity currrents in a confined porous layer

Description Parameter Unit Case 1 Case 2

Viscosity of water μ1 [cP] 0.67 0.43
Viscosity of oil μ2 [cP] 320 1.2
Viscosity of CO2 μ3 [cP] 0.10 0.043
Density of water ρ1 [kg m−3] 1008 999
Density of oil ρ2 [kg m−3] 957 791
Density of CO2 ρ3 [kg m−3] 943 575
Area injection rate of water q1 [mm2 s−1] 15 8
Area injection rate of CO2 q2 [mm2 s−1] 5 12
Permeability k [mD] 819 166
Porosity φ [%] 23 16
Porous layer thickness h0 [m] 11 3.7
Gravitational acceleration g [m s−2] 9.8 9.8

Characteristic pressure pc [kPa] 5.4 7.5
Characteristic length xc [m] 3.7 0.5
Characteristic time tc [s] 4.7 × 105 1.5 × 104

Viscosity ratio M2 [—] 2 × 10−3 0.4
Viscosity ratio M3 [—] 6.6 10
Buoyancy ratio G [—] 3.4 1.0
Injection rate partition Q [—] 0.75 0.40

Flow regime 7 7

Table 3. Potential implications in CO2-water co-flooding projects for geological CO2 sequestration and
enhancing oil recovery simultaneously. The geophysical and operational data of cases 1 and 2 are from Western
Canada Sedimentary basin and East Texas Field, respectively.

200 400 600 800

x/m

h/
m

1000 1200 1400

H2O

xH2O ≈ 69 m

AH2O ≈ 120 m2

ACO2 ≈ 182 m2 xCO2 ≈ 1420 m

Oil

CO2

0

1.0

2.0

3.0

3.7

Figure 12. A snapshot of the interacting CO2-water currents at day 180 of continuous operation based on the
geophysical and operational parameters of case 2. The parameters imposed in this example calculation are
M2 = 0.4, M3 = 10, G = 1.0 and Q = 0.4.

work is always ψ = T/Xf 1(T) in the current work. Accordingly, in the current context, the
efficiency of CO2 sequestration is ψCO2 ≈ 4 %, while that of oil recovery is ψH2O ≈ 2 %
up to day 180. It is also important to note that we have neglected the influence of fluid
mixing and interfacial tension in the example calculations. Meanwhile, it is also entirely
possible that gas and water are injected alternately rather than simultaneously in EOR
practice (e.g. IEA 2015), which might lead to new flow patterns that are not covered by the
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current model. Nevertheless, such issues arising in practice might inspire future studies on
the basis of the current work.

4.2. On the influence of the Saffman–Taylor instability
We would also like to remark briefly on the influence of the Saffman–Taylor instability
(e.g. Saffman & Taylor 1958; Chuoke, von Meurs & van der Poel 1959; Lenormand,
Touboul & Zarcone 1988), when an invading fluid is less viscous than the displaced fluid,
which is related to regimes 5 to 8 of the present study. For single current propagation, there
is experimental evidence that the main structure of a gravity current is not significantly
influenced by the development of the viscous fingering instability in the singular limit of
zero mixing and surface tension. The injected fluid still propagates along one boundary
as a gravity current, maintaining a monotonic interface shape, as well described by a
one-dimensional sharp-interface model, and this is due to the more dominant influence of
buoyancy/gravity segregation (e.g. Pegler et al. 2014; Zheng et al. 2015a). Nevertheless,
it is also important to note that when buoyancy segregation is not strong enough, it is
possible that the influence of the viscous fingering instability becomes non-negligible,
and, in particular, the shape of the local region near the propagating front can be
significantly impacted. In this case, one is recommended to solve the full two-dimensional
or three-dimensional problem (e.g. Nijjer et al. 2022), or to employ other transversely
averaged models that are verified by experimental or numerical solutions, to more
precisely describe the major fluid-displacement behaviours. We are currently working on
a two-dimensional model of miscible displacement to provide more quantitative insights
on the influence of mixing and the viscous-fingering instability during the dynamic
interaction of gravity currents in a confined porous layer.

4.3. Summary
We have conducted a theoretical and numerical investigation on the interaction of two
gravity currents when two fluids are injected simultaneously into a confined porous layer
initially filled with a third one. The three fluids can possibly have distinct density and
viscosity and under different injection rates, leading to a variety of interaction regimes.
Our primary focus is on the time evolution of the interfaces between them and location of
the propagating fronts.

Neglecting the influence of mixing and interfacial tension between the fluids, we
first derived two coupled nonlinear advective-diffusive PDEs (2.16a,b) to describe the
time evolution of the interface shapes. In addition to providing numerical solutions of
(2.16a,b), we also conducted detailed asymptotic analysis at both the early and late times
and identified a series of self-similar and travelling-wave solutions in both regimes. In
particular, at early times, the governing PDEs reduce to the classic nonlinear diffusion
equation (C1) that describes the propagation of unconfined gravity currents. At late times,
the currents attach to and interact with each other, and our analysis leads to eight distinct
regimes of gravity current interaction, with key features summarised in figure 4 and
table 2. The interaction is under the influence of four dimensionless control parameters:
the viscosity ratio M2 of the injected fluid 1 over the ambient fluid 2, the viscosity ratio M3
of the injected fluid 1 over the injected fluid 3, the ratio G of buoyancy of the lighter and
heavier gravity currents, and the partition Q of the area injection rate of the heavier current.
The self-similar solutions are also verified through a comparison with the appropriately
rescaled numerical solutions of PDEs (2.16a,b). By tracking the time-dependent location
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of the propagating fronts and the interface shapes, the time transition from early-time
unconfined to late-time confined self-similar flows is also illustrated.

It is of interest to note that in five of the eight regimes of late-time interaction (regimes 1,
2, 6–8), the self-similar profile shapes can be constructed by combining appropriately the
three basic solutions (i.e. shock, rarefaction, travelling-wave solutions) obtained already
during single fluid injection in confined porous layers. In the three other regimes of
late-time interaction (regimes 3–5), implicit solutions with logarithm dependence are
obtained due to the influence of flow confinement. Potential implications of the model and
solutions are also briefly discussed in the practical context of geological CO2 sequestration
in oil fields, when a certain amount of oil can also be recovered which offsets the cost of
CO2 sequestration. In the future, the influence of fluids mixing and wetting and capillary
forces in porous rock layers can also be considered on the basis of the current work.
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Appendix A. The numerical scheme

We provide a brief description here on the finite volume scheme developed to solve the
coupled PDEs (2.16a,b) for the time evolution of H1(X, T) and Ĥ2(X, T), the profile
shapes of the heavier and lighter gravity currents, respectively. Similar schemes have been
employed in a series of earlier studies of single current propagation (e.g. Zheng et al.
2015a; Hinton & Woods 2018) and for shock-capturing purposes for advective-diffusive
PDEs (Kurganov & Tadmor 2000). First of all, we denote Q1(X, T) and Q2(X, T) as the
fluxes for fluids 1 and 3:

Q1 = −H1
∂P0

∂X
, (A1a)

Q2 = M3Ĥ2

(
−∂P0

∂X
+ ∂H1

∂X
− G

∂Ĥ2

∂X

)
, (A1b)

where the background pressure gradient ∂P0/∂X is defined as

∂P0

∂X
=

−1 + [M2(1 − Ĥ2 − H1)+ M3Ĥ2]
∂H1

∂X
− GM3Ĥ2

∂Ĥ2

∂X
H1 + M2(1 − Ĥ2 − H1)+ M3Ĥ2

. (A2)

Then, the coupled PDEs (2.16a,b) can be rewritten as

∂H1

∂T
+ ∂Q1

∂X
= 0, (A3a)

∂Ĥ2

∂T
+ ∂Q2

∂X
= 0, (A3b)
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while the IBCs (2.18) and (2.19) become

H1(X, 0) = 0, Ĥ2(X, 0) = 0, (A4a)

H1(Xf 1(T), T) = 0, Ĥ2(Xf 2(T), T) = 0, (A4b)

Q1(0, T) = Q, Q2(0, T) = 1 − Q. (A4c)

The space and time grids are denoted by i = 1, 2, 3, . . . ,N and j = 0, 1, 2, . . . , J,
respectively, where ΔX and ΔT denote the (constant) space and time steps. Based on
this definition, numerical solutions for H1(X, T) and Ĥ2(X, T) can be provided at X =
(i − 1/2)ΔX and T = jΔT . The fluxes Q1 and Q2 are defined between two neighbouring
space grids at i + 1/2 for i = 1, 2, 3, . . . ,N − 1 and at the two ends of the domain when
i = 1/2,N + 1/2. We next impose the forward Euler scheme for the time evolution and
centred difference scheme for the space evolution for the coupled PDEs (A1a,b), which
leads to

Hj+1
1,i = H j

1,i − ΔT
ΔX

(Q j
1,i+1/2 − Q j

1,i−1/2), (A5a)

Ĥj+1
2,i = Ĥ j

2,i − ΔT
ΔX

(Q j
2,i+1/2 − Q j

2,i−1/2), (A5b)

for any i = 1, 2, 3, . . . ,N and j = 0, 1, 2, . . . , J. Meanwhile, for any i = 1, 2, 3, . . . ,N −
1 and j = 0, 1, 2, . . . , J, the fluxes are further approximated by

Q j
1,i+1/2 = − (H j

1,i+1 + H j
1,i)

2
∂P0

∂X

∣∣∣∣∣
j

i+1/2

, (A6a)

Q j
2,i+1/2 = M3

(Ĥ j
2,i+1 + Ĥ j

2,i)

2

(
−∂P0

∂X

∣∣∣∣ j

i+1/2
+ H j

1,i+1 − H j
1,i

ΔX
− G

Ĥ j
2,i+1 − Ĥ j

2,i

ΔX

)
.

(A6b)

The background pressure gradient in (A6a,b), in addition, is approximated by

∂P0

∂X

∣∣∣∣ j

i+1/2
=

−1 +
[

M2

(
1 − Ĥ j

2,i+ 1
2

− H j

1,i+ 1
2

)
+ M3Ĥ j

2,i+ 1
2

]
H j

1,i+1 − H j
1,i

ΔX
− GM3Ĥ j

2,j+ 1
2

Ĥ j
2,i+1 − Ĥ j

2,i

ΔX

H j

1,i+ 1
2

+ M2

(
1 − Ĥ j

2,i+ 1
2

− H j

1,i+ 1
2

)
+ M3Ĥ j

2,i+ 1
2

,

(A7)
with

H j
1,i+1/2 = H j

1,i+1 + H j
1,i

2
, Ĥ j

2,i+1/2 = Ĥ j
2,i+1 + Ĥ j

2,i

2
. (A8a,b)

Finally, based on the boundary conditions, the fluxes at two ends of the domain are given
by

Q j
1,1/2 = Q, Q j

2,1/2 = 1 − Q, (A9a)

Q j
1,N+1/2 = 0, Q j

2,N+1/2 = 0. (A9b)

Equations (A6) and (A9) for fluxes Q1 and Q2 are ready to be substituted back into (A5)
to calculate Hj+1

1,i and Ĥj+1
2,i for any i = 1, 2, 3, . . . ,N and j = 0, 1, 2, . . . , J.
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Interaction of gravity currrents in a confined porous layer

We have thus provided a finite volume scheme to solve the coupled evolution equations
(2.16a,b). Numerical solutions for the profile shapes H1(X, T) and Ĥ2(X, T) are ready
to be obtained at X = (i − 1/2)ΔX and T = jΔT for any i = 1, 2, 3, . . . ,N and j =
0, 1, 2, . . . , J, starting from the zero-thickness initial shapes:

H0
1,i = 0, Ĥ0

2,i = 0. (2.10a,b)

In addition, to ensure that we obtain physically plausible solutions, we impose

H j
1,i = 1, when H j

1,i > 1, (A11a)

H j
2,i = 1, when H j

2,i > 1, (A11b)

H j
2,i = 1 − H j

1,i, when H j
1,i + H j

2,i > 1. (A11c)

The numerical scheme described here, by construction, is second-order accurate in space
and first-order accurate in time. For any numerical solutions that we have shown in this
paper, the space and time grids are chosen to be small enough, such that the scheme is
stable and no significant differences are observed, subject to further grids refinement, for
both the numerical solutions for the frontal locations and the profile shapes of the heavier
and lighter currents.

Appendix B. More discussions on Feature 2 (reflected currents)

We provide more remarks on Feature 2 of reflected currents here. The regime diagram
in figure 4 (remade as figure 13a here) is not symmetric in M3 = 1 with M3 ∈ (0,∞).
Nevertheless, we can introduce an additional transform

M∗∗
2 = 2M2 − (M3 + 1)

2M2 + (M3 + 1)
and M∗∗

3 = M3 − 1
M3 + 1

, (B1a,b)

that satisfies

M2 = 1, M3 = 1, → M∗∗
2 = 0, M∗∗

3 = 0, (B2a)

M2 = 0, M3 = 0, → M∗∗
2 = −1, M∗∗

3 = −1, (B2b)

M2 = +∞, M3 = 0, → M∗∗
2 = 1, M∗∗

3 = −1. (B2c)

Figure 13(a) is then converted into a symmetric one in M∗∗
3 = 0, now with M∗∗

3 ∈ (−1, 1),
as shown in figure 13(b). It hence becomes clearer that we only need to consider the branch
of M3 ∈ (0, 1], as we did in § 3, since the flow behaviour in the branch of M3 ∈ [1,+∞)

can be informed conveniently based on Feature 2.

Appendix C. Non-interacting currents at early times

At early times (T � 1), the thickness of the heavier and lighter gravity currents are
both small compared with the thickness of the porous layer, i.e. H1 � 1 and Ĥ2 � 1.
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1

Figure 13. An equivalent regime diagram that is symmetric in M∗∗
3 = 0 (i.e. M3 = 1) based on transform

(B1a,b): (a) original regime diagram of figure 4 in the (M2,M3) space, and (b) equivalent regime diagram in
the (M∗∗

2 ,M∗∗
3 ) space.

The coupled PDEs (2.16a,b) degenerate into two decoupled nonlinear diffusive equations

∂H1

∂T
− ∂

∂X

(
H1
∂H1

∂X

)
= 0, (C1a)

∂Ĥ2

∂T
− GM3

∂

∂X

(
Ĥ2
∂Ĥ2

∂X

)
= 0. (C1b)

It is well known that self-similar solutions (e.g. Barenblatt 1979) can be constructed
to describe the spreading dynamics of unconfined gravity currents in porous layers at
intermediate times, subject to fluid injection at constant rates (2.20) (e.g. Huppert &
Woods 1995; Pegler et al. 2014; Zheng et al. 2015a).

For example, for the heavier current of profile shape H1(X, T), a similarity variable can
first be defined as s ≡ s−1

f XT−2/3Q−1/3 ∈ [0, 1], where sf represents the frontal location,
satisfying sf ≡ Xf 1(T)T−2/3Q−1/3 and is yet to be determined. The shape of the current
can then be imposed as H1(X, T) = s2

f T1/3f (s)Q2/3, assuming that a self-similar solution
f (s) exists. We then obtain an ODE as

d
ds

(
f

df
ds

)
+ 2

3
s

df
ds

− 1
3

f = 0. (C2)

A local analysis of (C2) near the front further provides that f (s) ∼ 2(1 − s)/3 as s →
1−. Two boundary conditions can hence be obtained as f (1) = 0 and f ′(1) = −2/3 to
numerically solve (C2) from s = 1− towards s = 0, employing a shooting procedure using,
e.g. Matlab subroutine ODE45. A comparison with the rescaled numerical solutions of
PDEs (2.16a,b) at different times indicates that very good agreement appears with the
self-similar solution for the profile shape of unconfined currents, as shown in figure 14.
Meanwhile, once f (s) is known, the constant for the frontal location sf ≈ 1.48 can be
calculated according to

sf =
[∫ 1

0
f (s) ds

]−1/3

. (C3)
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Interaction of gravity currrents in a confined porous layer
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(b)

Figure 14. Early-time profile shapes of the heavier and lighter currents, when they do not interact:
(a) numerical solutions of PDEs (2.16a,c) at T = {1, 2, 3, 4, 5} × 10−5; (b) rescaled PDE solutions show
very good data collapse and agreement with the self-similar solution from solving ODE (C2). The imposed
parameters are M2 = M3 = G = 2 and Q = 2/5.

Hence, the front of the heavier current locates at Xf 1(T) ∼ 1.48Q1/3T2/3 at early times.
It is also of interest to note that the second-order approximate f (s) ∼ 2(1 − s)/3 − (1 −
s)2/12 provides reasonable prediction for the profile shape throughout the entire region
s ∈ [0, 1].

Similarly, we expect a self-similar solution for the profile shape of the lighter current
Ĥ2(X, T). The form of the decoupled PDEs (C1a,b) and integral constraints (2.20a,b)
indicates the following stretching rules between the heavier and lighter currents:

Ĥ2f (T)
H1f (T)

≡ Ĥ2(0, T)
H1(0, T)

=
(

1 − Q
Q

)2/3

(GM3)
−1/3, (C4a)

Xf 2(T)
Xf 1(T)

=
(

1 − Q
Q

)1/3

(GM3)
1/3. (C4b)

Accordingly, a self-similar solution for Ĥ2(X, T) can be expected in the form of

Ĥ2(X, T) = s2
f T1/3f (s)(1 − Q)2/3(GM3)

−1/3, (C5a)

s = X
sf T2/3 (1 − Q)−1/3(GM3)

−1/3, (C5b)
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Figure 15. Comparison between asymmetric solutions (D1) and (D7) and numerical solutions of PDEs
(2.16a,b) in regime 1b, when M2 = M3 = 1, G = 2 and Q = 2/5 (such that 1/Q − 1/G /= 1): (a) time
evolution of the interfaces H1 and Ĥ2 at T = {20, 40, 60, 80, 100} from solving PDEs (2.16a,b) numerically;
(b) rescaled interfaces H1 and H2 with ζ = (X − T)/T1/2, and the green lines are solutions (D1) and (D7).

with the shape function f (s) and frontal constant sf ≈ 1.48 already known from solving
ODE (C2) and (C3). This is also verified in figure 14 through a comparison with the
rescaled numerical solutions of PDEs (2.16a,b).

Appendix D. Self-similar solutions in regimes 1b and 5 to 8 of late-time gravity
current interaction

D.1. Regime 1b: asymmetric currents (1/Q − 1/G /= 1) when M2 = M3 = 1
(μ1 = μ2 = μ3)

When the symmetry condition (2.22) is not satisfied (i.e. when 1/Q − 1/G /= 1), the
governing PDEs (3.6a,b) do not decouple. In this case, the heavier and lighter currents
are asymmetric. Yet, the similarity transform ζ ≡ (X − T)/T1/2 continues to apply and
PDEs (3.6a,b) can be transformed into ODEs (3.6a,b) for similarity solutions. Indeed,
numerical solutions of PDEs (2.16a,b) at different times can be rescaled according to
ζ ≡ (X − T)/T1/2 and collapse onto universal curves of H1(ζ ) and Ĥ2(ζ ), as shown in
figure 15(a,b). We next provide explicit solutions of H1(ζ ) and Ĥ2(ζ ) for asymmetric
currents.

In the neighbourhood of the propagating fronts, H1 > 0, Ĥ2 > 0, but H1 + Ĥ2 < 1, as
shown in figure 15(a,b). The PDE numerical solutions indicate that we can continue to
impose straight-line solutions for the coupled ODEs (3.6a,b) locally

H1 = a1 + b1ζ and Ĥ2 = a2 + b2ζ, (D1a,b)

where a1, a2, b1 < 0, b2 < 0 are undetermined coefficients, and hence the frontal
locations are

ζf 1 = −a1/b1 and ζf 2 = −a2/b2. (D2a,b)
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Interaction of gravity currrents in a confined porous layer

After substituting (D1) into ODEs (3.6a,b), we obtain explicit solutions for a1, a2, b1 as a
function of b2

a1 = 1
2 − 8G2b3

2[b2 − 1
2 (1 − 4Gb2

2)
1/2], (D3a)

a2 = 1
2 + (1 − 4Gb2

2)
3/2[b2 − 1

2 (1 − 4Gb2
2)

1/2], (D3b)

b1 = −1
2 (1 − 4Gb2

2)
1/2. (D3c)

Therefore, b2 < 0 is the only coefficient in (D1) and (D2) that is yet to be determined.
Close to the inlet X ∈ [0,X∗(T)], in comparison, the gravity currents attach to each other

and hence H1 + Ĥ2 = 1. Substituting Ĥ2 = 1 − H1 into ODE (3.6), we arrive at a single
ODE for the profile shape of the heavier current H1(ζ )

ζ

2
dH1

dζ
+ (1 + G)

d
dζ

[
H1(1 − H1)

dH1

dζ

]
= 0. (D4)

Assuming that the interface shape of the gravity currents is only slightly perturbed away
from a horizontal line in this region, we are allowed to impose

H1(1 − H1) = Ĥ2(1 − Ĥ2) ≈ Q(1 − Q), (D5)

based on the inlet condition (3.2) (in this case, Hi1 = Q and Ĥi2 = 1 − Q). ODE (D4)
further reduces to a linear one

ζ
dH1

dζ
+ D2

2
d2H1

dζ 2 = 0, (D6)

with D ≡ 2
√
(1 + G)Q(1 − Q), which admits an explicit solution

H1 = c
[

1 + erf
(
ζ

D

)]
+ Q, (D7)

which satisfies the inlet condition (3.2), with c being the only undetermined coefficient.
Accordingly, we also have

Ĥ2 = −c
[

1 + erf
(
ζ

D

)]
+ 1 − Q (D8)

for the profile shape of the lighter current Ĥ2(ζ ).
Thus, the profile shape of the heavier current H1(ζ ) is given by

H1 =

⎧⎪⎨⎪⎩c
[

1 + erf
(
ζ

D

)]
+ Q, ζ ≤ ζ∗,

a1 + b1ζ, ζ∗ < ζ ≤ ζf 1,

(D9)

where ζ∗ is the intersection of H1 (the heavier current) and Ĥ2 (the lighter current), and
ζf 1 is the frontal location of the heavier current. After some rearrangement, we also obtain

ζ∗ = 1 − a1 − a2

b1 + b2
and H∗ = (1 − a2)b1 + a1b2

b1 + b2
. (D10a,b)

Accordingly, the fronts and the intersection point in the (X,H) space are

Xf 1(T) = T + ζf 1T1/2, Xf 2(T) = T + ζf 2T1/2 and X∗(T) = T + ζ∗T1/2.
(D11a–c)

It is of interest to note that the coefficients b2 and c are yet to be determined up to now.
Since the intersection point (ζ∗,H∗) must also be a solution of (D9) from the side of fluid
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injection, we must have

c = H∗ − Q

1 + erf
(
ζ∗
D

) , (D12)

with H∗ and ζ∗ already given by (D10) in terms of b2, effectively. Meanwhile, by
substituting (D9) into the global mass constraint (2.20a) and eliminating T after some
rearrangement, we obtain an algebraic equation

H∗ − Q

1 + erf
(
ζ∗
D

) [ζ∗erf
(
ζ∗
D

)
+ D√

π
exp

(
− ζ 2∗

D2

)
+ ζ∗

]
+ Qζ∗ + 1

2
H∗(ζf 1 − ζ∗) = 0,

(D13)

which, for any given G and Q, can be solved for a unique value of b2 for the parameter range
we considered. Once b2 is known, we can obtain c based on (D12). Thus, solutions for the
profile shapes H1(ζ ) and Ĥ2(ζ ) and constants ζf 1, ζf 2, ζ∗ and H∗ all become available.
Finally, we can compare the explicit solution (D9) with the rescaled numerical solutions of
PDEs (2.16a,b) for the profile shapes of the interacting asymmetric currents when 1/Q −
1/G /= 1, as shown in figure 15. Indeed, very good agreement is observed between solution
(D9) and the rescaled numerical solutions.

We also note that the similarity transform ζ ≡ (X − T)/T1/2 also applies when studying
the dynamics of single current injection into shallow and confined formations and when
the injecting and displaced fluids are equally viscous (e.g. Huppert & Woods 1995; Pegler
et al. 2014; Zheng et al. 2015a). Indeed, the underlying physics is that the pumping force
of fluid injection pushes downstream the ambient one at a constant speed, while the
gravitational/buoyancy force acts at the interface of the two fluids and determines the local
shape of the front. Furthermore, the straight-line structure also appears here, even when
the governing PDEs (3.5a,b) for the interface shape of H1 and Ĥ2 are coupled, which is
similar to those identified in the earlier studies of single current injection.

D.2. Regimes 5a and 5b: M3 < M2 < 1 (μ1 < μ2 < μ3)

We next move on to regimes 5a and 5b of gravity current interaction, when the injected
heavier fluid 1 is the least viscous, while the injected lighter fluid 3 is the most viscous,
i.e. when M3 < M2 < 1 (μ1 < μ2 < μ3). Numerical solutions of PDEs (2.16a,b) indicate
that at lower partition of the heavier fluid 1, the lighter fluid 3 will remain in contact
with the ambient fluid 2, as shown in figure 16(a). In comparison, at higher partition
of fluid 1, fluid 3 will be separated from the ambient fluid 2, as shown in figure 17(b).
Such an observation motivates us to study regime 5a when Q < (1 − M2)/(1 − M3) and
regime 5b when Q ≥ (1 − M2)/(1 − M3). The critical value Q = (1 − M2)/(1 − M3)will
be derived analytically in (D30), which is independent of G.

D.2.1. Regime 5a: lower partition of fluid 1 (Q < (1 − M2)/(1 − M3))

At lower injection rates of the heavier fluid 1 (Q < (1 − M2)/(1 − M3)), the lighter fluid
3 always remains in contact with the ambient fluid 2 and will not be completely wrapped
up by fluid 1. Accordingly, there exists a location (X∗,H∗) where the three fluids meet,
and PDE numerical solutions indicate that H∗ will be greater than the inlet height Hi1, as
shown in figure 16(a).
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Figure 16. Comparison between the asymptotic and numerical solutions of PDEs (2.16a,b) in regime 5a,
imposing M2 = 4/5, M3 = 1/2, G = 2 and Q = 1/5: (a) time evolution of the fluid interfaces H1 and Ĥ2
at T = {60, 120, 180, 240, 300} from numerically solving PDEs (2.16a,b); (b) rescaled interfaces H1 collapse
onto a universal shape under transform ξ = X/T and agree reasonably well with the rarefaction solution (D16);
(c) rescaled interfaces Ĥ2 also collapse onto a universal shape under transform θ ≡ X − C2T , which agrees
well with the implicit solution (D26) and approximate solution (D22) as Ĥ2 → 0+.

Ahead of the lighter current, we impose Ĥ2 = 0 in PDEs (2.16a,b), which reduces to
(3.19) in regime 3b. Since the heavier current is less viscous than the ambient fluid (M2 <
1), we neglect the gravitational effects (the second-order derivative) in (3.19) at leading
order at late times (e.g. Zheng et al. 2015a), which leads to a nonlinear advective PDE for
the shape of the heavier current H1(X, T) as

∂H1

∂T
+ ∂

∂X

[
H1

M2 + (1 − M2)H1

]
= 0. (D14)

979 A52-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1075


K. Yang and Z. Zheng

–8 –4 –2–6 0 2 4 6
0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0

H
0.6

0.4

0.2

0.8

1.0

100 200 300 400 500 600 700 8000

T
H

X

0.4

0.6

0.8

0.2

1.0

H

H2

ODE

H1

H2

H1

H2

ODE

θ

θf 2

ξf 1

ξf 3

Xf 2 Xf 3

Xf 1

ξ

(a)

(b)

(c)

Figure 17. Comparison between the asymptotic and numerical solutions of PDEs (2.16a,b) in regime 5b,
when M2 = 4/5, M3 = 1/2, G = 2 and Q = 4/5: (a) time evolution of the interfaces H1 and Ĥ2 at T =
{120, 240, 360, 480, 600} from numerically solving PDEs (2.16a,b); (b) rescaled interfaces H1 collapse onto
a universal shape under transform ξ = X/T and agree reasonably well with the rarefaction solution (D16);
(c) rescaled interfaces Ĥ2 collapse onto a universal shape under transform θ ≡ X − C2T , which agrees well
with solution (D33).

Equation (3.19) has been well studied. For example, by introducing a similarity transform
ξ ≡ X/T , we further obtain an ODE

ξ
dH1

dξ
− d

dξ

[
H1

M2 + (1 − M2)H1

]
= 0, (D15)

which admits a rarefaction solution

H1 =
√

M2/ξ − M2

1 − M2
(D16)
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Interaction of gravity currrents in a confined porous layer

for the profile shape of the heavier current H1 at late times (T � 1). Such a solution is
independent of M3, Q and G, and the frontal location of the heavier current is

ξf 1 = 1/M2, (D17)

depending only on the viscosity ratio M2 ≡ μ1/μ2. It can be shown that the second-order
derivative is negligible at large times (T � 1) in this regime, and hence the rarefaction
solution (D16) is indeed a large-time asymptotic solution of the full advective-diffusive
PDE (Zheng et al. 2015a).

Numerical solutions of the coupled PDEs (2.16a,b) also indicate that, in the
neighbourhood of the front of the lighter current, it is plausible to assume

H1 = H∗, (D18)

but H∗ is yet to be determined. That said, the central part of the heavier current is a
horizontal line. The rarefaction solution (D16) further indicates that the horizontal-line
solution ends at

ξf 3 = M2

[M2 + (1 − M2)H∗]2 . (D19)

To obtain the shape of the lighter current Ĥ2(X, T), we first impose H1 = H∗ in PDEs
(2.16a,b), which leads to

∂Ĥ2

∂T
+ M3

∂

∂X

⎡⎣ Ĥ2 + GM3Ĥ2
2
∂Ĥ2

∂X
M2 + (1 − M2)H∗ − (M2 − M3)Ĥ2

− GĤ2
∂Ĥ2

∂X

⎤⎦ = 0. (D20)

By introducing a transform θ = X − C2T , PDE (D20) further reduces to an ODE

C2
dĤ2

dθ
− M3

d
dθ

⎡⎣ Ĥ2 + GM3Ĥ2
2

dĤ2

dθ
M2 + (1 − M2)H∗ − (M2 − M3)Ĥ2

− GĤ2
dĤ2

dθ

⎤⎦ = 0, (D21)

which can be solved for a self-similar solution of the profile shape of the lighter current.
A local analysis of (D21) near the front (as Ĥ2 → 0+) indicates that, at leading order, a
linear structure applies in the form of

Ĥ2 = b3(θ − θf 2), (D22)

with

b3 = 1
G[M2 + (1 − M2)H∗]

− C2

GM3
and θf 2 = θ∗ − 1 − H∗

b3
, (D23a,b)

and (θ∗,H∗) is the location where the three fluids meet in the self-similar space.
Finally, the injected fluids 1 and 3 attach to each other in the neighbourhood of the

inlet at late times, i.e. H1 + Ĥ2 = 1. Imposing H1 = 1 − Ĥ2 in PDE (2.16a), we obtain
PDE (3.23). Similarly, by introducing θ ≡ X − C2T , PDE (3.23) reduces to ODE (3.24),
which is now to be solved subject to boundary conditions H(θ∗) = H∗ and H1 = Hi1 as
θ → −∞. In this case, ODE (3.24) admits an implicit solution

θ = θ∗ + M3(1 + G)
C2(1 − M3)

[
Hi1 ln

∣∣∣∣∣ Ĥ2 − Ĥi2

1 − H∗ − Ĥi2

∣∣∣∣∣+ (1 − H∗ − Ĥ2)

]
, (D24)

which also includes logarithm dependence but is different from solution (3.25).
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K. Yang and Z. Zheng

Thus, we have obtained self-similar solutions for the shape of the heavier current H1
and lighter current Ĥ2 as

H1 =

⎧⎪⎪⎨⎪⎪⎩
1 − F2(θ), θ < θ∗,

H∗, θ ≥ θ∗ and ξ < ξf 3,√
M2/ξ − M2

1 − M2
, ξf 3 ≤ ξ ≤ ξf 1,

(D25)

and

Ĥ2 =
{F2(θ), θ < θ∗,

b3(θ − θf 2), θ∗ ≤ θ ≤ θf 2,
(D26)

where F2(θ) is the inverse function of the implicit solution (D24). Nevertheless, the two
constants θ∗ and H∗ are yet to be determined. That said, the location where the three fluids
meet are still unknown. We next consider the global mass conservation of the injected
fluids, which leads to solutions for both H∗ and θ∗.

We first substitute (D25) and (D26) into the global volume constraint (2.21), which is
also written as ∫ H∗

0
H1 dX +

∫ 1−H∗

0
Ĥ2 dX = T, (D27)

the leading-order balance at O(T) then leads to

H∗ = M2(1 − C2)

C2(1 − M2)
, (D28)

since H∗ < 1 in regime 5a, which also requires that

C2 > M2, (D29)

or, equivalently,

Q <
1 − M2

1 − M3
. (D30)

This is exactly how we obtain a critical flow rate that distinguishes regime 5a from regime
5b, depending on whether or not H∗ = 1. Meanwhile, since M2 > M3, we always have
H∗ > Hi1 in regime 5a, comparing (D28) and (3.4).

With H∗ known, b3 and ξf 3 can also be obtained as

b3 = C2

G

(
1

M2
− 1

M3

)
and ξf 3 = C2

2
M2
. (D31a,b)

Eventually, by substituting (D26) into the global volume constraint (2.20b), we obtain

θ∗ = (1 − H∗)2

2b3Ĥi2
+ M3(1 + G)(H2∗ − H2

i1)

2C2(1 − M3)Ĥi2
. (D32)

Thus, both H∗ and θ∗ are determined in solutions (D25) and (D26) for the self-similar
profile shape of the heavier current H1 and lighter current Ĥ2.

Equations (D25) and (D26) are also verified based on a comparison with the rescaled
numerical solutions of PDEs (2.16a,b). For example, the raw numerical solutions of PDEs
(2.16a,b) are shown in figure 16(a) at several representative times. The PDE solutions are
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Interaction of gravity currrents in a confined porous layer

then rescaled according to ξ ≡ X/T in figure 16(b), which exhibit good collapse near the
front of the heavier current. The rarefaction solution (D16) is also plotted and agrees well
with the collapsed profile shapes near the front of the heavier current. In addition, the
PDE solutions are rescaled according to θ ≡ X − C2T in figure 16(c), which, in contrast,
exhibits good collapse for the profile shape of the lighter current. Solutions (D26) and
(D22) are also plotted in figure 16(c), which exhibit good agreement with the collapsed
profile shapes in the corresponding regions.

D.2.2. Regime 5b: higher partition of fluid 1 (Q ≥ (1 − M2)/(1 − M3))

At higher injection rates of the heavier current 1 (Q ≥ (1 − M2)/(1 − M3)), the PDE
numerical solutions indicate that the lighter current 3 only attaches to the heavier current
1 and does not make contact with the ambient fluid 2. In this regime, the profile shape of
the heavier current H1 remains the same as (D25) near the propagating front and (3.28)
where the two currents are in contact (H1 + Ĥ2 = 1). To summarise, H1 is given by

H1 =

⎧⎪⎪⎨⎪⎪⎩
1 − F1(θ), θ < θf 2,

1, θ ≥ θf 2 and ξ < ξf 3,√
M2/ξ − M2

1 − M2
, ξf 3 ≤ ξ ≤ ξf 1,

(D33)

in regime 5b. Meanwhile, the profile shape Ĥ2 of the lighter current can still be described
by solution (3.29) in regime 3. We have also provided a comparison between self-similar
solutions (D33) and (3.29) and rescaled PDE numerical solutions in figure 17, imposing
M2 = 4/5, M3 = 1/2, G = 2 and Q = 4/5 as an example.

D.3. Regime 6: M2 = M3 < 1 (μ1 < μ2 = μ3)

In this regime, numerical solutions of the coupled PDEs (2.16a,b) indicate that the
thickness of the heavier current remains approximately constant H1 = Hi1 at late times
except in the neighbourhood of the front, where the frontal structure of the heavier current
H1 can be described by a rarefaction solution (D16), as shown in figure 18(a). Accordingly,
the profile shape of the heavier current attaches to H1 = 0 and H1 = Hi1 at

ξf 1 = 1
M2

and ξf 3 = M2

[M2 + Hi1(1 − M2)]2 . (D34a,b)

The PDE numerical solutions suggest that away from the front, deviation from the
horizontal-line solution H1(X, T) = Hi1 is most significant in the neighbourhood of the
joint point (X∗,H∗) at intermediate times, but such a deviation shrinks with time and
becomes negligible eventually. In fact, since M2 = M3 in regime 6, we must always
have H∗ = Hi1 at late times based on (D28) and (3.4), which is why the PDE solutions
eventually approach the horizontal-line solution H1(X, T) = Hi1.

Meanwhile, to obtain the profile shape of the lighter current Ĥ2, we impose H1 = Hi1
in PDEs (2.16a,b), which leads to

∂Ĥ2

∂T
+ C2

∂Ĥ2

∂X
− GM3

∂

∂X

[
(1 − C2Ĥ2)Ĥ2

∂Ĥ2

∂X

]
= 0, (D35)

where C2 = 1 − (1 − M3)Q. PDE (D35) can also be transformed into an ODE

σ

2
dĤ2

dσ
+ GM3

d
dσ

[
(1 − C2Ĥ2)Ĥ2

dĤ2

dσ

]
= 0, (D36)
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Figure 18. Comparison between the asymptotic and numerical solutions of coupled PDEs (2.16a,b) in regime
6, when M2 = M3 = 1/2, G = 2 and Q = 1/2: (a) time evolution of the interfaces H1 and Ĥ2 at T =
{60, 120, 180, 240, 300} from numerically solving PDEs (2.16a,b); (b) rescaled interfaces H1 collapse onto
a universal shape under transform ξ = X/T and agree well with the rarefaction solution (D16); (c) rescaled
interfaces Ĥ2 also collapse onto a universal shape under transform σ ≡ (X − C2T)/T1/2, which agrees well
with solution (D37).

by introducing a similarity transform σ ≡ (X − C2T)/T1/2, and ODE (D36) admits an
explicit solution

Ĥ2 =
⎧⎨⎩

Ĥi2, σ < σ∗,
σf 2

2GM3
(σf 2 − σ), σ∗ ≤ σ ≤ σf 2,

(D37)

where σ∗ = σf 2 − 2GM3Ĥi2/σf 2, and σf 2 represents the frontal location of the lighter
current. Finally, based on global volume constraint (2.20b) for the lighter current, we
obtain

σf 2 = (GM3Ĥi2)
1/2 and σ∗ = −(GM3Ĥi2)

1/2. (D38a,b)
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Interaction of gravity currrents in a confined porous layer

As expected, the straight-line solution (D37) indicates that the slope is time-dependent
when M2 = M3 (μ2 = μ3), i.e. when the lighter current and the ambient fluid are equally
viscous. This is to be compared with the straight-line solution (D22) in regime 5a, which
indicates that the slope remains constant for the lighter current when the lighter current is
more viscous than the ambient fluid for M3 < M2 (μ2 < μ3).

We can also compare the asymptotic solutions (D25) and (D37) with the rescaled
numerical solutions of PDEs (2.16a,b), as illustrated in figure 18, imposing M2 = M3 =
1/2, G = 2 and Q = 1/2 as an example. The time-dependent PDE solutions are shown
in figure 18(a). The PDE solutions are then rescaled according ξ ≡ X/T in figure 18(b),
and good collapse is observed for the profile shape of the heavier current. The collapsed
profile shape is also found to agree well with the rarefaction solution (D25) in the
neighbourhood of the front. Meanwhile, the PDE numerical solutions are also rescaled
based on σ ≡ (X − C2T)/T1/2 in figure 18(c), and in this case, good collapse is observed
for the profile shape of the lighter current. A further comparison with the self-similar
solution (D37) also indicates good agreement at late times.

D.4. Regime 7: M2 < M3 < 1 (μ1 < μ3 < μ2)

Finally, we study the dynamics in regime 7 when the viscosity of the injected heavier
fluid 1 is less than that of the lighter fluid 2 and ambient fluid 3, i.e. when M2 < M3 < 1
(μ1 < μ3 < μ2). Numerical solutions of PDEs (2.16a,b) indicate that the solution curves
can be divided into four regions (figure 19): (i) X ∈ [0,X∗] where H1 = Hi1 and H2 = Hi2;
(ii) X ∈ [X∗,Xf 2] where H1 and Ĥ2 are both rarefaction-shaped; (iii) X ∈ [Xf 2,Xf 3] where
H2 = 0 and H1 is a constant that is yet-to-be determined; and (iv) X ∈ [Xf 3,Xf 1] where
Ĥ2 = 0 and H1 is rarefaction-shaped, as shown in figure 19(a). The central idea in this
section is to determine the exact shape of the rarefactions in each region and the location of
the joints X∗(T), Xf 2(T), Xf 3(T) and Xf 1(T). This is all performed in the self-similar spaces
(ξ,H1) and (ξ, Ĥ2), by introducing the same transform ξ ≡ X/T in various advective
regimes of the coupled PDEs (2.16a,b), when the influence of buoyancy is neglected at
leading order.

Starting from region (iv), we expect that the profile shape H1(X, T) is described by the
rarefaction solution (D16) and the frontal location is ξf 1 = 1/M2 based on (D17). In region
(iii), we denote

H1 = a6, (D39)

with a6 being an unknown constant. Combining (D17) and (D39), we then obtain

ξf 3 = M2

[M2 + a6(1 − M2)]2 . (D40)

In region (ii), the PDE numerical solutions indicate that H1(X, T) and Ĥ2(X, T) are
symmetric and satisfy

H1 = a6 + b4Ĥ2, (D41)

where b4 = (Hi1 − a6)/Ĥi2 and depends only on a6 (since the inlet heights Hi1 and
Ĥi2 are already known). We then substitute (D41) into PDEs (2.16a,b) and neglect the
second-order terms for buoyancy effects, which leads to an advective PDE for the evolution
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Figure 19. Comparison between the numerical solutions of the coupled PDEs (2.16a,b) and the self-similar
solutions obtained in regime 7 when M2 = 1/2, M3 = 4/5, G = 1/5, Q = 2/5: (a) time evolution of the profile
shapes H1(X,T) and Ĥ2(X,T) at T = {60, 120, 180, 240, 300}; (b) rescaled profile shapes H1(ξ) and Ĥ2(ξ)

after imposing ξ = X/T , and the green curves represent solutions (D47) and (D48).

of H2(X, T):

∂Ĥ2

∂T
+ ∂

∂X

[
M3Ĥ2

M2 + a6(1 − M2)+ [b4(1 − M2)+ (M3 − M2)]Ĥ2

]
= 0. (D42)

By introducing ξ ≡ X/T , we arrive at an ODE

ξ
dĤ2

dξ
− d

dξ

[
M3Ĥ2

M2 + a6(1 − M2)+ [b4(1 − M2)+ (M3 − M2)]Ĥ2

]
= 0, (D43)

which admits a rarefaction solution

Ĥ2 =
√

[M2 + a6(1 − M2)]M3/ξ − [M2 + a6(1 − M2)]
b4(1 − M2)+ (M3 − M2)

, (D44)

in the current regime of M2 < M3 ≤ 1. Based on (D44), the frontal location ξf 2 between
fluid 2 and fluid 3 can also be obtained as

ξf 2 = M3

M2 + a6(1 − M2)
. (D45)

Finally, by substituting (D44) into (D41), we can also obtain the self-similar profile shape
for H1(X, T) a

H1 = b4
√

[M2 + a6(1 − M2)]M3/ξ + a6M3 − (b4 + a6)M2

b4(1 − M2)+ (M3 − M2)
. (D46)
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Interaction of gravity currrents in a confined porous layer

We have thus obtained a self-similar solution for the shape of the heavier current H1(ξ)
a

H1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Hi1, 0 ≤ ξ ≤ ξ∗,
b4

√
[M2 + a6(1 − M2)]M3/ξ + a6M3 − (b4 + a6)M2

b4(1 − M2)+ (M3 − M2)
, ξ∗ < ξ ≤ ξf 2,

a6, ξf 2 < ξ ≤ ξf 3,√
M2/ξ − M2

1 − M2
, ξf 3 < ξ ≤ ξf 1,

(D47)
and that for the shape of the lighter current Ĥ2(ξ) as

Ĥ2 =

⎧⎪⎨⎪⎩
Ĥi2, 0 ≤ ξ ≤ ξ∗,√

[M2 + a6(1 − M2)]M3/ξ − [M2 + a6(1 − M2)]
b4(1 − M2)+ (M3 − M2)

, ξ∗ < ξ ≤ ξf 2.
(D48)

In particular, in solutions (D47) and (D48), ξ∗ is the location where the three fluids meet
and is given by

ξ∗ = M3[M2 + a6(1 − M2)]

[M2 + Hi1(1 − M2)+ Ĥi2(M3 − M2)]2
= C2

2[M2 + a6(1 − M2)]
M3

, (D49)

knowing that Hi1 = a6 + b4Ĥi2 based on symmetry condition (D41).
It is important to note that a6 in solutions (D47) and (D48) is yet to be determined. The

other constant b4 depends only on a6 according to b4 = (Hi1 − a6)/Ĥi2. Similar to the
treatment in other regimes, by substituting (D47) into the global volume constraint (2.20a)
for the heavier current, we can obtain a third-order algebraic equation for a6, which leads
to an explicit solution for the constant a6 as

a6 = M2(1 − C2)

C2(1 − M2)
∈ [0,Hi1]. (D50)

Note that we have dropped two other solutions a6 = 1 and a6 = M2/(M2 − 1) < 0 that
are not physical. It turns out that a6 is exactly the same as H∗ in regime 5a, as given by
(D28). The constant b4 can also be obtained as

b4 = Q(M3 − M2)

(1 − Q)(1 − M2)
. (D51)

Hence, the self-similar solutions (D47) and (D48) for the profile shapes H1(ξ) and Ĥ2(ξ)
are obtained.

We can also compare the self-similar solutions (D47) and (D48) in regime 7 with
numerical solutions of the coupled PDEs (2.16a,b), as shown in figure 19. We first impose
M2 = 1/2, M3 = 4/5, G = 1/5 and Q = 2/5 as an example in figure 19(a,b) and compare
the raw PDE solutions with the self-similar solutions (D47) and (D48), in which case
a6 = 2/23 and b4 = 2/5. It is observed that the rescaled PDE numerical solutions collapse
onto universal curves at late times based on the same transform ξ ≡ X/T , which also agree
reasonably well with the self-similar solutions (D47) and (D48).
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Figure 20. Comparison between the numerical solutions of the coupled PDEs (2.16a,b) and the self-similar
solutions obtained in regime 8 when M2 = 1/2, M3 = 1, G = 1/5 and Q = 1/6: (a) time evolution of
the profile shapes H1(X,T) and Ĥ2(X,T) at T = {60, 120, 180, 240, 300} from numerically solving PDEs
(2.16a,b); (b) rescaled profile shapes H1(ξ) and Ĥ2(ξ) after imposing ξ = X/T , together with the degenerated
solutions (D52) and (D53).

D.5. Regime 8: M2 < M3 = 1 (μ1 = μ3 < μ2)

This can be considered as a degenerated case of that in regime 7, now with M3 = 1. The
heavier and lighter currents in this case are symmetric based on Feature 1 (in the advective
limit), such that H1(ξf 1) = H1(ξf 2) = 0. We hence obtain H1(ξf 3) = 0 and also a6 = 0
based on (D50). Thus, b4 = Hi1/Ĥi2 = Q/(1 − Q) and H∗ = Hi1 = Q. In addition, we
obtain ξ∗ = M2 based on (D49), and ξf 2 = ξf 3 = 1/M2 based on (D40) and (D45). That
said, ξf 2 = ξf 3 = ξf 1 = 1/M2 based on (D17).

Meanwhile, solutions (D47) and (D48) reduce to

H1 =

⎧⎪⎪⎨⎪⎪⎩
Q, 0 ≤ ξ ≤ M2,

Q
1 − M2

(√
M2

ξ
− M2

)
, M2 < ξ ≤ 1/M2,

(D52)

and

Ĥ2 =

⎧⎪⎪⎨⎪⎪⎩
1 − Q, 0 ≤ ξ ≤ M2,

1 − Q
1 − M2

(√
M2

ξ
− M2

)
, M2 < ξ ≤ 1/M2.

(D53)

We next compare the self-similar solutions (D52) and (D53) in regime 8 with numerical
solutions of the coupled PDEs (2.16a,b), as shown in figure 20. We have imposed M2 =
1/2, M3 = 1, G = 1/5 and Q = 1/6 in this example calculation, and it is observed that
the rescaled PDE numerical solutions eventually collapse onto universal curves based on
the same transform ξ ≡ X/T . The universal profile shapes also agree reasonably well with
the self-similar solutions (D52) and (D53) that we derived here.
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