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In a paper read before the Research Branch of the Royal
Statistical Society (Ref. 1, p. 150) the following case was considered:

n
Let the expression S (yt — ca,)2 be given; introduce, for c, a linear

t = I
n

form in yjt viz. c = 2 6^- and obtain
3 = 1

S .(Vi-aii bm)*. (1>
f = 1 3 • • 1

If the yt are sample values from a normal population with unit
variance, then it is known (Ref. 2) that (1) is distributed as S^Zj,

i

where z< varies as chi-squared with one degree of freedom and the I.
are the latent roots of the matrix of the quadratic form. If these
latent roots are / times unity and n—/ times zero, then this reduces to
a chi-squared distribution with / degrees of freedom. I t was shown
that Sflj&i = 1 was a necessary but not a sufficient condition for such

i

a distribution with f = n — 1 to arise and it was mentioned that the
latter is the case if we take the least-square solution for the bt. As
will be seen from what follows, the least-square solution is, in fact,
the only choice for the 64 which leads to a chi-squared distribution
with n— 1 degrees of freedom.

In the following lines we investigate problems related to a more
general expression, viz., in matrix notation,

(y-Ac)'(y-Ac) (2)
where y is a column matrix of order n, c a column matrix of order m
and A is a matrix of order n x m and of rank m. We introduce
c = By, where B is a matrix of order m X n, thus obtaining

(y-ABy)'{y-A By) =y'M'My. (3)

The matrix of the latter quadratic form is seen to be M'M, where M
is defined as /„ — AB.

The rank of M is the same as that of M'M, and the first theorem
which we shall prove states that

The rank of M (and hence that of M'M) cannot be less than n m.
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We show this by applying a transformation P~lMP with non-
singular P, so that the rank of the transformed matrix is the same as
that of M.

We write A as J , where A1 is a square matrix of order TO X m

which may, without loss of generality, be assumed to be non-singular.
Similarly, B = [Bt Bz~] where Bt is square. Let then P be equal to

2 - ' n -

and hence P ~ 1 equal to

i - o -1
~A2A^ In_m\

[Im-AlB1 -AtBs
We remember that M = In — AB = . „ T

and find P'^MP = f/m ~ ̂ ^ ~ B*

Since the lower right-hand corner is not zero, the rank of this matrix
cannot be lower than n — m, as was to be proved. It also follows:
For M to have precisely rank n — m it is necessary and sufficient that

Im -BA = 0. (5)

We ask now under what conditions the latent roots of M'M are
zero (m times) and unity (n — m times). Condition (5) is clearly
necessary, but not sufficient. A further necessary condition is given
by the requirement that the trace (spur) of M'M must be n — m-
More explicitly, we require

tr (/„ - AB)' (/„— AB) = tr / n - 2 tr AB + tr (AB)' {AB)=n-m. (6)

The first term equals n and the second equals 2m in view of (5).
Thus (6) reduces to

tr (AB)' (AB) = TO. (7)

We can now show that (5) and (7) are sufficient for the discriminant
to have as its latent roots m times zero and n — m times unity, by the
following argument.

A

It is known that the least square solution, i.e. that matrix B
-which makes (3) a minimum, has the latent roots just mentioned
(Ref. 3). B is, in fact, the solution of

A'y = A'Ac = A'ABy.
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Since this is an identity, we have

B=(A'A)-1A' (8)
A

and it will be seen at once that B satisfies (5) and (7). If we can
show that (5) and (7) admit only one solution, then it must be identical
with B and hence (5) and (7) are also sufficient to produce the
required latent roots. We have therefore to show that

(5) and (7) have only one real solution.
A A

Let one solution be B and assume that B + D is also a solution-
It follows from (5) that

DA = 0. (9):

Furthermore, (7) requires that

tr [A(B + D)]'[A(B + D)]

= tr (AB)' (AB) -i- 2 tr (AD)' (AB) + tr (AD)' (AD) = m.

The first term equals m because of (7). The second term is 2 tr D'A'AB
which is equal to 2 tr D'A' by virtue of (8), and hence zero by virtue of
(9). There remains as a condition tr (AD)' (AD) — 0. It follows that
AD = 0 and hence D = 0. This completes the proof.

The theorem just proved can be expressed by saying: there is
only one choice of B which leads to a quadratic form having a chi-
squared distribution with n—m degrees of freedom.
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