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Abstract. Let R be a complete intersection ring, and let M and N be R-modules.
It is shown that the vanishing of Exti

R(M, N) for a certain number of consecutive
values of i starting at n forces the complete intersection dimension of M to be at most
n − 1. We also estimate the complete intersection dimension of M∗, the dual of M, in
terms of vanishing of cohomology modules, Exti

R(M, N).
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1. Introduction. In this paper, we study the relationship between the vanishing
of Exti

R(M, N) for various consecutive values of i, and the complete intersection
dimensions of M and M∗, the dual of M. The vanishing of homology was first
studied by Auslander [3]. For two finitely generated modules M and N over an
unramified regular local ring R, he proved that if TorR

i (M, N) = 0 for some i > 0,
then TorR

n (M, N) = 0 for all n ≥ i. In [17], Lichtenbaum settled the ramified case. It is
easy to see that a similar statement is not true in general, with Tor replaced by Ext. In
[15], Jothilingam studied the vanishing of cohomology by using the Rigidity Theorem
of Auslander. For two non-zero modules M and N over a regular local ring R, he proved
that if M satisfies (Sn) for some n ≥ 0 and Exti

R(M, N) = 0 for some positive integer
i such that i ≥ depthR(N) − n, then Extj

R(M, N) = 0 for all j ≥ i. In [16], Jothilingam
and Duraivel studied the relationship between the vanishing of Exti

R(M, N) and the
freeness of M∗. For two non-zero modules M and N over a regular local ring R, they
proved that if Exti

R(M, N) = 0 for all 1 ≤ i ≤ max{1, depthR(N) − 2}, then M∗ is free.
In this paper we are going to generalize these results.

An R-module M is said to be c-rigid if for all R-modules N, TorR
i+1(M, N) =

TorR
i+2(M, N) = · · · = TorR

i+c(M, N) = 0 for some i ≥ 0 implies that TorR
n (M, N) = 0

for all n > i. If c = 1, then we simply say that M is rigid.
The aim of this paper is to study the following question.

QUESTION 1.1. Let R be a Gorenstein local ring, and let M and N be R-modules.
Assume that n ≥ 0, c > 0 are integers and that N is c-rigid. If Exti

R(M, N) = 0 for all i,
1 ≤ i ≤ max{c, depthR(N) − n}, then what can we say about the Gorenstein dimensions
of M and M∗?

In Section 2, we collect necessary notations, definitions and some known results
which will be used in this paper.
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In Section 3, we study Question 1.1 for rigid modules. Over the Gorenstein local
ring R, given non-zero R-modules M and N such that N has reducible complexity, we
show that if N is rigid and Exti

R(M, N) = 0 for all i, 1 ≤ i ≤ max{1, depthR(N) − n}
and some n ≥ 2, then G-dimR(M∗) ≤ n − 2, which is a generalization of [16, Theorem
1]. In particular, if M satisfies (Sn), then G-dimR(M) = 0 (see Theorem 3.2). As a
consequence, for two non-zero modules M and N over a complete intersection ring R, it
is shown that if N is rigid and Exti

R(M, N) = 0 for some positive integer i ≥ depthR(N),
then CI-dimR(M) = sup{i | Exti

R(M, N) �= 0} < i (see Theorem 3.5).
In Section 4, we generalize [15, Corollary 1] for modules over a complete

intersection ring. For two modules M and N over a complete intersection ring R
with codimension c, it is shown that if M satisfies (St) for some t ≥ 0, Exti

R(M, N) = 0
for all i, n ≤ i ≤ n + c and some n > 0 and depthR(N) ≤ n + c + t, then CI-dimR(M) =
sup{i | Exti

R(M, N) �= 0} < n (see Corollary 4.3).

2. Preliminaries. Throughout the paper, (R,m) is a commutative Noetherian
local ring and all modules are finite (i.e. finitely generated) R-modules. The codimension
of R is defined to be the non-negative integer embdim(R) − dim(R), where embdim(R),
the embedding dimension of R, is the minimal number of generators of m. Recall that
R is said to be a complete intersection if the m-adic completion R̂ of R has the form
Q/(f ), where f is a regular sequence of Q, and Q is a regular local ring. A complete
intersection of codimension one is called a hypersurface. A local ring R is said to be an
admissible complete intersection if the m-adic completion R̂ of R has the form Q/(f ),
where f is a regular sequence of Q and Q is a power series ring over a field or a discrete
valuation ring. Let

· · · → Fn+1 → Fn → Fn−1 → · · · → F0 → M → 0

be the minimal free resolution of M. Recall that the nth syzygy of an R-module M is the
co-kernel of the Fn+1 → Fn and denoted by �nM, and it is unique up to isomorphism.
The nth Betti number, denoted as βR

n (M), is the rank of the free R-module Fn. The
complexity of M is defined as follows:

cxR(M) = inf{i ∈ � ∪ {0} | ∃γ ∈ � such that βR
n (M) ≤ γ ni−1 for n � 0}.

Note that cxR(M) = cxR(�iM) for every i ≥ 0. It follows from the definition that
cxR(M) = 0 if and only if pdR(M) < ∞. If R is a complete intersection, then the
complexity of M is less than or equal to the codimension of R (see [12]). The complete
intersection dimension was introduced by Avramov et al. [6]. A module of finite
complete intersection dimension behaves homologically like a module over a complete
intersection. Recall that a quasi-deformation of R is a diagram R → A � Q of local
homomorphisms, in which R → A is faithfully flat, and A � Q is surjective with
kernel generated by a regular sequence. The module M has finite complete intersection
dimension if there exists such a quasi-deformation for which pdQ(M ⊗R A) is finite.
The complete intersection dimension of M, denoted as CI-dimR(M), is defined as
follows:

CI-dimR(M) = inf{pdQ(M ⊗R A) − pdQ(A) | R → A � Q is a quasi-deformation }.
The complete intersection dimension of M is bounded above by the projective
dimension, pdR(M), of M, and if pdR(M) < ∞, then the equality holds (see [6,
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Theorem 1.4]). Every module of finite complete intersection dimension has finite
complexity (see [6, Theorem 5.3]).

The concept of modules with reducible complexity was introduced by Bergh [7].
Let M and N be R-modules, and consider a homogeneous element η in the

graded R-module Ext∗R(M, N) = ⊕∞
i=0 Exti

R(M, N). Choose a map fη : �
|η|
R (M) → N

representing η, and denote by Kη the pushout of this map and the inclusion
�

|η|
R (M) ↪→ F|η|−1. Therefore, we obtain a commutative diagram

0 −−−−→ �|η|M −−−−→ F|η|−1 −−−−→ �|η|−1M −−−−→ 0⏐⏐�fη

⏐⏐�
⏐⏐�‖

0 −−−−→ N −−−−→ Kη −−−−→ �|η|−1M −−−−→ 0.

with exact rows. Note that the module Kη is independent, up to isomorphism, of the
map fη chosen to represent η.

DEFINITION 2.1. The full subcategory of R-modules comprising the modules having
reducible complexity is defined inductively as follows:
(i) Every R-module of finite projective dimension has reducible complexity.

(ii) An R-module M of finite positive complexity has reducible complexity if there
exists a homogeneous element η ∈ Ext∗R(M, M) of positive degree such that
cxR(Kη) < cxR(M), depthR(M) = depthR(Kη) and Kη has reducible complexity.

By [7, Proposition 2.2(i)], every module of finite complete intersection dimension
has reducible complexity. In particular, every module over a local complete intersection
ring has reducible complexity. On the other hand, there are modules having reducible
complexity but whose complete intersection dimension is infinite (see, for example, [9,
Corollary 4.7]).

The notion of the Gorenstein(or G-) dimension was introduced by Auslander [2],
and developed by Auslander and Bridger in [4].

DEFINITION 2.2. An R-module M is said to be of G-dimension zero whenever
(i) the biduality map M → M∗∗ is an isomorphism.

(ii) Exti
R(M, R) = 0 for all i > 0.

(iii) Exti
R(M∗, R) = 0 for all i > 0.

The Gorenstein dimension of M, denoted as G-dimR(M), is defined to be the
infimum of all non-negative integers n such that there exists an exact sequence

0 → Gn → · · · → G0 → M → 0

in which all Gi have G-dimension zero. By [4, Theorem 4.13], if M has finite
Gorenstein dimension, then G-dimR(M) = depth R − depthR(M). By [6, Theorem
1.4], G-dimR(M) is bounded above by the complete intersection dimension,
CI-dimR(M), of M, and if CI-dimR(M) < ∞, then the equality holds.

Let R be a local ring, and let M and N be finite non-zero R-modules. We say the
pair (M, N) satisfies the depth formula provided:

depthR(M ⊗R N) + depth R = depthR(M) + depthR(N).
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The depth formula was first studied by Auslander [3] for finite modules of finite
projective dimension. In [13], Huneke and Wiegand proved that the depth formula
holds for M and N over complete intersection rings R, provided TorR

i (M, N) = 0 for
all i > 0. In [9], Bergh and Jorgensen generalize this result for modules with reducible
complexity over a local Gorenstein ring. More precisely, they proved the following
result.

THEOREM 2.3 [9, Corollary 3.4]. Let R be a Gorenstein local ring, and let M and
N be non-zero R-modules. If M has reducible complexity and TorR

i (M, N) = 0 for all
i > 0, then depthR(M ⊗R N) + depth R = depthR(M) + depthR(N).

We denote by G(R) the Grothendieck group of finite modules over R, that is,
the quotient of free abelian group of all isomorphism classes of finite R-modules by
the subgroup generated by the relations coming from short exact sequences of finite
R-modules. We also denote by G(R) = G(R)/[R] the reduced Grothendieck group. For
an abelian group G, we set G� = G ⊗� �.

Let P1
f→ P0 → M → 0 be a finite projective presentation of M. Applying

the functor (−)∗ := HomR(−, R), the coker f ∗, which is unique up to projective
equivalence, is called the transpose of M and denoted by Tr M. Hence, there exists
the exact sequence:

0 → M∗ → P∗
0 → P∗

1 → Tr M → 0. (2.1)

Note that the minimal projective presentations of M represent isomorphic transposes
of M. Two modules M and N are called stably isomorphic, and we write M ≈ N if
M ⊕ P ∼= N ⊕ Q for some projective modules P and Q. Note that M∗ ≈ �2 Tr M by
the exact sequence (2.1).

The compositions Tk := Tr �k−1 for k > 0 were introduced by Auslander and
Bridger in [4]. If Exti

R(M, R) = 0 for some i > 0, then it is easy to see that TiM ≈
�Ti+1M.

We frequently use the following theorem by Auslander and Bridger.

THEOREM 2.4 [4, Theorem 2.8]. Let M be an R-module, and n ≥ 0 be an integer.
Then there are exact sequences of functors:

0 → Ext1
R(Tn+1M,−) → TorR

n (M,−) → HomR(Extn
R(M, R),−) → Ext2

R(Tn+1M,−),
(2.2)

TorR
2 (Tn+1M,−) → (Extn

R(M, R) ⊗R −) → Extn
R(M,−) → TorR

1 (Tn+1M,−) → 0.

(2.3)

For an integer n ≥ 0, we say M satisfies Serre’s condition (Sn) if depthRp
(Mp) ≥

min{n, dim(Rp)} for all p ∈ Spec(R). If R is Gorenstein, then M satisfies (Sn) if and
only if Exti

R(Tr M, R) = 0 for all 1 ≤ i ≤ n (see [4, Theorem 4.25]). In particular, M
satisfies (S2) if and only if it is reflexive, i.e. the natural map M → M∗∗ is bijective,
where M∗ = HomR(M, R) (see [11, Theorem 3.6]).

The following results will be used throughout the paper.

THEOREM 2.5. Let R be a local complete intersection ring, and let M and N be R-
modules. Then TorR

i (M, N) = 0 for all i � 0 if and only if Exti
R(M, N) = 0 for all i � 0.

Moreover, if R is a hypersurface and TorR
i (M, N) = 0 for i � 0, then either pdR(M) < ∞

or pdR(N) < ∞.
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Proof. See [5, Theorem 6.1 and Proposition 5.12]. �
THEOREM 2.6. Let R be a local ring, and let M and N be non-zero R-modules. If

Exti
R(M, N) = 0 for all i � 0, then the following statements hold true.

(i) If CI-dimR(M) < ∞, then CI-dimR(M) = sup{i | Exti
R(M, N) �= 0}.

(ii) If G-dimR(M) < ∞ and CI-dimR(N) < ∞, then

G-dimR(M) = sup{i | Exti
R(M, N) �= 0}.

Proof. See [1, Theorem 4.2] and [21, Theorem 4.4]. �
THEOREM 2.7. Let R be a local ring, and M, N two R-modules. If CI-dimR(M) = 0,

then Exti
R(M, N) = 0 for all i > 0 if and only if TorR

i (Tr M, N) = 0 for all i > 0.

Proof. First note that CI-dimR(Tr M) = 0 by [21, Lemma 3.3] and M ≈ Tr Tr M.
Now the assertion is clear by [21, Proposition 3.4]. �

3. Vanishing of Ext for rigid modules. We start this section by estimating the
Gorenstein dimension of the transpose of M in terms of vanishing of cohomology
modules, Exti

R(M, N).

LEMMA 3.1. Let R be a Gorenstein ring, and let M and N be non-zero R-modules.
Assume that n ≥ 0 is an integer, and that the following conditions hold.

(1) Exti
R(M, N) = 0 for all 1 ≤ i ≤ max{1, depthR(N) − n}.

(2) N is rigid.
(3) N has reducible complexity.
Then G-dimR(Tr M) ≤ n and TorR

i (Tr M, N) = 0 for all i > 0.

Proof. If Tr M = 0, then G-dimR(Tr M) = 0 and we have nothing to prove, so let
Tr M �= 0. As Ext1

R(M, N) = 0, TorR
1 (T2M, N) = 0 by the exact sequence (2.3). Since

N is rigid, we have TorR
i (T2M, N) = 0 for all i > 0. It follows from the exact sequence

(2.3) again that Ext1
R(M, R) ⊗R N = 0, and since N is non-zero, Ext1

R(M, R) = 0. Now
it is easy to see that T1M ≈ �T2M and so TorR

i (Tr M, N) = 0 for all i > 0. Therefore,
we have the following equality.

depthR(Tr M ⊗R N) + depth R = depthR(Tr M) + depthR(N) (3.1)

by Theorem 2.3. Set t = depthR(N) − n. We argue by induction on t. If t ≤ 1, then
depthR(N) ≤ n + 1. If depthR(N) = 0, then it is clear that depthR(Tr M) = depth R
by (3.1) and so G-dimR(Tr M) = 0 by the Auslander–Bridger formula. Now let 0 <

depthR(N) ≤ n + 1. As M ≈ Tr Tr M, we obtain the following exact sequence:

0 → Ext1
R(M, N) → Tr M ⊗R N → HomR((Tr M)∗, N) → Ext2

R(M, N)

from the exact sequence (2.2). As Ext1
R(M, N) = 0, we get the following exact sequence:

0 → Tr M ⊗R N → HomR((Tr M)∗, N) → Ext2
R(M, N). (3.2)

Therefore, AssR(Tr M ⊗R N) ⊆ AssR(HomR((Tr M)∗, N)) ⊆ AssR(N) by the exact
sequence (3.2). Hence, depthR(Tr M ⊗R N) > 0. Now by (3.1), it is easy to see that
depthR(Tr M) ≥ depth R − n and so G-dimR(Tr M) ≤ n.
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Now suppose that t > 1 and consider the following exact sequence,

0 → �M → F → M → 0, (3.3)

where F is a free R-module. From the exact sequence (3.3), we obtain the following
exact sequence:

0 → M∗ → F∗ → (�M)∗ → �(M) → �(F) → �(�M) → 0,

where �(X) ≈ Tr X for all R-modules X by [4, Lemma 3.9]. As Ext1
R(M, R) = 0, we

get the following exact sequence:

0 → �(M) → �(F) → �(�M) → 0. (3.4)

Note that �(F) is free. As Exti
R(�M, N) ∼= Exti+1

R (M, N) = 0 for all 1 ≤ i ≤
depthR(N) − n − 1, we have G-dimR(Tr �M) ≤ n + 1 by induction hypothesis.
Therefore, G-dimR(Tr M) ≤ n by the exact sequence (3.4). �

THEOREM 3.2. Let R be a Gorenstein ring, and let M and N be non-zero R-modules
such that N has reducible complexity. Assume that N is rigid and that n ≥ 0 is an integer.
Then the following statements hold true:

(i) If Exti
R(M, N) = 0 for all 1 ≤ i ≤ max{1, depthR(N) − n} and M satisfies (Sn),

then G-dimR(M) = 0.
(ii) If Exti

R(M, N) = 0 for all 1 ≤ i ≤ max{1, depthR(N) − n}, then G-dimR(M∗) ≤
n − 2.

Proof. (i) First note that G-dimR(Tr M) = sup{i | Exti
R(Tr M, R) �= 0} by [4,

Theorem 4.13]. As M satisfies (Sn), Exti
R(Tr M, R) = 0 for all 1 ≤ i ≤ n by [4,

Theorem 4.25]. On the other hand, G-dimR(Tr M) ≤ n by Lemma 3.1. Therefore,
G-dimR(Tr M) = 0 and so G-dimR(M) = 0 by [4, Lemmm 4.9].

(ii) Note that M∗ ≈ �2 Tr M. By Lemma 3.1, G-dimR(Tr M) ≤ n and so
G-dimR(M∗) ≤ n − 2. �

The following is a generalization of [16, Theorem 1].

COROLLARY 3.3. Let R be a complete intersection, and let M and N be non-zero
R-modules. Assume that N is a rigid module of maximal complexity. If Exti

R(M, N) = 0
for all i, 1 ≤ i ≤ max{1, depthR(N) − 2}, then M∗ is free.

Proof. By Lemma 3.1, TorR
i (Tr M, N) = 0 for all i > 0. As M∗ ≈ �2 Tr M,

TorR
i (M∗, N) = 0 for all i > 0 and so cxR(M∗) + cxR(N) ≤ codim R by [5, Theorem II].

Since N has maximal complexity, it follows that cxR(M∗) = 0. Therefore, pdR(M∗) =
G-dimR(M∗) = 0 by Theorem 3.2(ii). �

It is well known that over a regular local ring, every finite module is rigid. In the
following we collect some other examples of rigid modules.

EXAMPLE 3.4.

(i) A class of rigid modules was discovered by Peskine and Szpiro [19]. They proved
that if R is local, and the minimal free resolution of M over R is of the form

0 → Rm → Rk+m → Rk → 0,
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for some m > 0 and k > 0, then M is rigid. In [22], Tchernev discovered a new
class of rigid modules. He showed that if R is local, and the minimal free resolution
of M over R is of the form

0 → Rk → Rm+1 → Rm → 0,

for some m > 0 and k > 0, then M is rigid [22, Theorem 3.6].
(ii) Let R be an admissible hypersurface with isolated singularity, and let N be an

R-module. If [N] = 0 in G(R)�, then N is rigid [10, Corollary 4.2].
(iii) Let (R,m) be a local hypersurface ring such that R̂ = S/(f ), where (S, n) is a

complete unramified regular local ring and f is a regular element of S contained
in n2. Let M be an R-module of finite projective dimension. Then M is rigid [17,
Theorem 3].

In the following, we generalize [15, Corollary 1].

THEOREM 3.5. Let R be a local complete intersection ring, and let M and N be
non-zero R-modules. Assume that the following conditions hold:

(i) N is rigid.
(ii) M satisfies (Sn) for some n ≥ 0.

(iii) Exti
R(M, N) = 0 for some positive integer i such that i ≥ depthR(N) − n.

Then CI-dimR(M) = sup{j | Extj
R(M, N) �= 0} < i.

Proof. Set L = �i−1M. Note that L satisfies (Sn+i−1) and Ext1
R(L, N) = 0. Now by

Theorem 3.2(i), CI-dimR(L) = G-dimR(L) = 0. By Lemma 3.1, TorR
j (Tr L, N) = 0 for

all j > 0 and so Extj
R(L, N) = 0 for all j > 0 by Theorem 2.7. Therefore, Extj

R(M, N) =
0 for all j ≥ i and so CI-dimR(M) = sup{j | Extj

R(M, N) �= 0} < i by Theorem 2.6. �
The following is a generalization of [15, Corollary 2]

THEOREM 3.6. Let R be a local complete intersection ring, and let M and N be
non-zero R-modules. Suppose that N is rigid, and that M satisfies (Sn) for some n ≥ 0.
If depthR(N) − n ≤ CI-dimR(M), then for all i > 0 in the range depthR(N) − n ≤ i ≤
CI-dimR(M), we have Exti

R(M, N) �= 0.

Proof. If Exti
R(M, N) = 0 for some depthR(N) − n ≤ i ≤ CI-dimR(M), then

Ext1
R(�i−1M, N) ∼= Exti

R(M, N) = 0. Note that �i−1M satisfies (Sn+i−1). Now
by Theorem 3.2(i), we have CI-dimR(�i−1M) = G-dimR(�i−1M) = 0. Therefore,
CI-dimR(M) < i by [6, Lemma 1.9], which is a contradiction. �

Let R be a hypersurface, and let M and N be R-modules such that lengthR(N) < ∞.
It is well known that if Exti

R(M, N) = 0 for some i > CI-dimR(M), then Extn
R(M, N) =

0 for all n > CI-dimR(M) (see for example [8, Corollary 3.5]). In special cases, we can
remove the condition that i > CI-dimR(M).

COROLLARY 3.7. Let (R,m) be a local hypersurface ring such that R̂ = S/(f ), where
(S, n) is a complete unramified regular local ring and f is a regular element of S contained
in n2. Let M and N be non-zero R-modules such that lengthR(N) < ∞. If Extn

R(M, N) =
0 for some n ≥ 1, then the following statements hold true:

(i) CI-dimR(M) = sup{i | Exti
R(M, N) �= 0} < n.

(ii) Either pdR(M) < ∞ or pdR(N) < ∞.
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Proof. First note that N is rigid by [13, Theorem 2.4]. It follows from Theorem 3.5
that CI-dimR(M) = sup{i | Exti

R(M, N) �= 0} < n. As Exti
R(M, N) = 0 for all i � 0,

either pdR(M) < ∞ or pdR(N) < ∞ by Theorem 2.5. �

As an application of Theorem 3.2, we have the following result.

COROLLARY 3.8. Let R be an admissible hypersurface, and let M and N be non-
zero R-modules such that cxR(N) = 1. Assume that the minimal free resolution of N is
eventually periodic of period one, and that M satisfies (Sn) for some n ≥ 0. Then the
following statements hold true:

(i) If depthR(N) − n ≤ CI-dimR(M), then for all i > 0 in the range depthR(N) − n ≤
i ≤ CI-dimR(M), we have Exti

R(M, N) �= 0.
(ii) If Exti

R(M, N) = 0 for some positive integer i such that i ≥ depthR(N) − n, then
pdR(M) < i.

(iii) If Exti
R(M, N) = 0 for all i, 1 ≤ i ≤ max{1, depthR(N) − 2}, then M∗ is free.

Proof. Note that N is rigid by [10, Corollary 5.6]. Now the first assertion is clear
by Theorem 3.6.

(ii) By Theorem 3.5, Extj
R(M, N) = 0 for all j ≥ i. Therefore, pdR(M) < ∞ by

Theorem 2.5 and so pdR(M) < i.
(iii) Note that N has maximal complexity. Therefore, the assertion is clear by

Corollary 3.3. �

Let R be an admissible hypersurface with isolated singularity of dimension d > 1.
By [10, Theorem 3.4], every R-module of dimension less than or equal to one is rigid.
As an immediate consequence of Theorem 3.5, we have the following result.

COROLLARY 3.9. Let R be an admissible hypersurface with isolated singularity of
dimension d > 1, and let M and N be non-zero R-modules such that dimR(N) ≤ 1.
If Extn

R(M, N) = 0 for some n > 0, then CI-dimR(M) = sup{i | Exti
R(M, N) �= 0} < n.

Moreover, either pdR(M) < ∞ or pdR(N) < ∞.

In the case of dimension 2, we have the following result.

PROPOSITION 3.10. Let R be an admissible hypersurface of dimension 2. Assume
further that R is normal. Let M and N be non-zero R-modules such that depthR(N) ≤
depthR(M) + 1. If Ext1

R(M, N) = 0, then CI-dimR(M) = 0 and Exti
R(M, N) = 0 for all

i > 0. Moreover, either M is free or N has finite projective dimension.

Proof. First note that N is rigid by [10, Corollary 3.6]. If depthR(N) ≤ 1, then
the assertion is clear by Theorem 3.5. Now let N be maximal Cohen–Macaulay. Then
depthR(M) > 0 and so

CI-dimR(M) = sup{i | Exti
R(M, R) �= 0} = 2 − depthR(M) ≤ 1. (3.5)

By Theorem 2.4, TorR
1 (T2M, N) = 0. As N is rigid, TorR

i (T2M, N) = 0 for all i > 0. It
follows from Theorem 2.4 again that Ext1

R(M, R) = 0 and so M is maximal Cohen–
Macaulay by (3.5). Now it is easy to see that Tr M ≈ �T2M and so TorR

i (Tr M, N) = 0
for all i > 0. Therefore, Exti

R(M, N) = 0 for all i > 0 by Theorem 2.7 and so either M
is free or N has finite projective dimension by Theorem 2.5. �
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4. Vanishing of Ext over complete intersection rings. Let R be a local complete
intersection ring of codimension c, and let M and N be R-modules. In [18], Murthy
proved that if TorR

n (M, N) = TorR
n+1(M, N) = · · · = TorR

n+c(M, N) = 0 for some n > 0,
then TorR

i (M, N) = 0 for all i ≥ n. It is easy to see that a similar statement is not true
in general, with Tor replaced by Ext. In the following, we prove a similar result for Ext
with an extra hypothesis. The following result is a generalization of [14, Corollary].

THEOREM 4.1. Let R be a local complete intersection ring of codimension c, and let
M and N be non-zero R-modules. Assume n is a positive integer. If Exti

R(M, N) = 0, for
all i, n ≤ i ≤ n + c and depthR(N) ≤ n + c, then CI-dimR(M) = sup{i | Exti

R(M, N) �=
0} < n.

Proof. Without loss of generality we may assume that R is complete. We have
R = Q/(x) with Q a complete regular local ring and x an Q-sequence of length c
contained in the square of the maximal ideal of Q. We argue by induction on c. If
c = 0, then R is a regular local ring and so pdR(M) = sup{i | Exti

R(M, N) �= 0} < n
by [15, Corollary 1]. For c > 0, set S = Q/(x1, . . . , xc−1). Therefore, R ∼= S/(xc). Note
that depthR(N) = depthS(N).

The change of rings spectral sequence (see [20, Theorem 11.66])

Extp
R(M, Extq

S(R, N)) ⇒
p

Extp+q
S (M, N)

degenerates into a long exact sequence

· · · → Exti
R(M, N) → Exti

S(M, N) → Exti−1
R (M, N) → Exti+1

R (M, N) → · · · .

It follows that Exti
S(M, N) = 0 for all i, n + 1 ≤ i ≤ n + c, and so by

induction hypothesis we conclude that CI-dimS(M) = sup{i | Exti
S(M, N) �= 0} < n +

1. Therefore, Exti−1
R (M, N) ∼= Exti+1

R (M, N) for all i > n. As c > 0, it is clear that
Exti

R(M, N) = 0 for all i ≥ n and so CI-dimR(M) = sup{i | Exti
R(M, N) �= 0} < n by

Theorem 2.6. �
In special cases, one can improve Theorem 4.1 slightly. The following is a

generalization of Corollary 3.7.

PROPOSITION 4.2. Let (R,m) be a local ring such that R̂ = S/(f ) where (S, n) is a
complete unramified regular local ring and f = f1, f2, . . . , fc is a regular sequence of S
contained in n2. Assume that n ≥ 0 is an integer and that M and N are non-zero finite
R-modules such that lengthR(N) < ∞. If Exti

R(M, N) = 0 for all i, n + 1 ≤ i ≤ n + c,
then CI-dimR(M) = sup{i | Exti

R(M, N) �= 0} ≤ n.

Proof. Without loss of generality we may assume that R is complete and R = S/(f )
where (S, n) is a complete unramified regular local ring and f = f1, f2, . . . , fc is a regular
sequence of S contained in n2. We argue by induction on c. If c = 1, then the assertion
holds by Corollary 3.7. For c > 1, set Q = S/(f1, . . . , fc−1). Therefore, R ∼= Q/(fc).
Note that lengthQ(N) < ∞. The change of rings spectral sequence

Extp
R(M, Extq

Q(R, N)) ⇒
p

Extp+q
Q (M, N)

degenerates into a long exact sequence

· · · → Exti
R(M, N) → Exti

Q(M, N) → Exti−1
R (M, N) → Exti+1

R (M, N) → · · · .
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It follows that Exti
Q(M, N) = 0 for all i, n + 2 ≤ i ≤ n + c, and so by induction

hypothesis we conclude that CI-dimQ(M) ≤ n + 1 and Exti
Q(M, N) = 0 for all i >

n + 1. Therefore, Exti−1
R (M, N) ∼= Exti+1

R (M, N) for all i > n + 1. As c > 1, it is clear
that Exti

R(M, N) = 0 for all i > n and so CI-dimR(M) = sup{i | Exti
R(M, N) �= 0} ≤ n

by Theorem 2.6. �
As an application of Theorem 4.1, we can generalize [15, Corollary 1] as follows.

COROLLARY 4.3. Let R be a local complete intersection ring of codimension c, and
let M and N be non-zero R-modules. Assume that n > 0 and t ≥ 0 are integers and that
the following conditions hold:

(i) Exti
R(M, N) = 0 for all i, n ≤ i ≤ n + c.

(ii) M satisfies (St).
(iii) depthR(N) ≤ n + c + t.
Then CI-dimR(M) = sup{i | Exti

R(M, N) �= 0} < n.

Proof. We argue by induction on t. If t = 0, then the assertion is clear by
Theorem 4.1. Now suppose that t > 0 and consider the universal push forward of
M,

0 → M → F → M1 → 0, (4.1)

where F is free. It is easy to see that M1 satisfies (St−1). From the exact sequence (4.1),
it is clear that

Exti
R(M, N) ∼= Exti+1

R (M1, N) for all i > 0. (4.2)

Therefore, Exti
R(M1, N) = 0 for all i, n + 1 ≤ i ≤ n + c + 1. By induction hypothesis,

we conclude that Exti
R(M1, N) = 0 for all i > n. By (4.2), Exti

R(M, N) = 0 for all i ≥ n
and so CI-dimR(M) = sup{i | Exti

R(M, N) �= 0} < n by Theorem 2.6. �
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