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BIPLANAR SURFACES OF ORDER THREE II 

TIBOR BISZTRICZKY 

A surface of order three P in the real projective three-space P 3 is met 
by every line, not in P, in a t most three points. F is biplanar if it contains 
exactly one non-differentiable point v and the set of tangents of F a t v 
is the union of two distinct planes, say T\ and r2. 

In [2], we examined the biplanar surfaces containing the line n C\ r2. 
In the present paper, we classify and describe the biplanar F with the 
property tha t n C\ r2 C\ F = {v}. 

We denote the planes, lines and points of P 3 by the letters 
a, ft, . . . , L, M, . . . and p, q, . . . respectively. For a collection of flats 
a, L, p, . . . , (a, L, p, . . . ) denotes the flat of P 3 spanned by them. For a 
set M in P 3 , (^) denotes the flat of P 3 spanned by the points of - # . 

1. Surfaces of order three . In this section we formally define a 
surface of order three, introduce some notat ion and list some required 
results. 

1.1 A surface of order three F in P 3 is a compact and connected set such 
tha t every intersection of F with a plane is a curve of order ^ 3 and there 
is a plane section of order three not containing any lines of P. 

1.2 Let T be a (plane) curve of order k, k g 3 (see [1], 1.3). If k = 1, 
then r is a (straight) line. If k = 2, then T is an isolated point or a pair 
of lines or the image S1 of a different ia te parameter curve of order two. 
If k = 3, then T is (i) the union of a line and a V of order two or (ii) the 
image P*1 of a differentiable parameter curve of order three plus possibly 
an Sl or an isolated point either disjoint from P*1. We denote a T of order 
three satisfying (ii) by P1 . 

1.3 Let P be a surface of order three, p 6 F. Let a be a plane through 
p. Then p is regular in P[a f̂  P] if there is a line N in P 3 [a] such that 
p (z N and |A^H P| = 3. Otherwise, p is irregular in P[a H P] . An P l 

has a t most one irregular point v and such a z; is a cusp, double point or 
isolated point ([1], 1.4). 

A line P is a tangent of P a t p if P is a tangent of some r C P a t p 
([1], 1.5). Let r(p) be the set of tangents of P a t p. Then/? is differentiable 
if p is regular (in P) and r(p) is a plane 7r(p) ; otherwise, p is singular. 
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We assume tha t every regular p is differentiable and ir(p) depends 
continuously on p. 

We denote by l(p)[l(p, a)], the number of lines of F[a P\ F] passing 
through p and by 1(a) the number of lines o f a H F. From 1.2, / (a ) ^ 3. 

Let £ be regular and l(p) = 0. Then p is an isolated point, cusp or 
double point of ir(p) Pi F ([1], 2.3) and we call £> elliptic, parabolic or 
hyperbolic respectively. Let E, I and i f denote the set of elliptic, parabolic 
and hyperbolic points of F respectively. 

Let v be irregular in F. If F is non-ruled, t ha t is, 

1(F) = \{LCP*\LC F}\ < oo, 

then v Ç F Cr(v) if and only if either z; G T d F or T C\ F = {v\. 
Moreover, r(v) is a plane or a union of two distinct planes or a cone of 
order two with vertex v; cf. [5]. 

1.4 Let ^ be a closed, connected subset of an S1 or an P*1. We call 
P a subarc [subcurve] if the end points of J^~ are dist inct [equal]. 

Let p be regular. LetJ^(p) be the set of all subarcs J^~ of order two 
in J ^ such tha t p G # ~ £ TT(£) ; { J O , J O } C J O p ) - Then J O and 
J O are p-compatible if there is a /3 C Fz\{p\ and an open neighbourhood 
U(p) of p in P 3 such t ha t [/(£) H ( J O U J O ) is contained in a closed 
half-space of P 3 determined by 0 and ir(p). Otherwise, J O and J O are 
p-incompatible. 

A pair of subarcs J^~ and J ^ ' are compatible [incompatible] if there 
is a £ G J r P J ^ ' such t ha t { J O F ' l C ^ (p) and J O J ^ are p-
compatible [^-incompatible]. 

We consider a subcurve of order two as an element of ^(p) if it 
contains a subarc J r such t ha t £> G J r C ^~(p). 

1.5 We describe a surface F by determining the existence and the 
distr ibution of elliptic, parabolic and hyperbolic points in F. By way of 
preparat ion, we list the following results. 

1. If p is regular in F and isolated i n a H P, then p G E and a = ir(p) 

([1], 2.3.7). 

2. Let £> be regular, l(p) = 0. Then p d H ii and only if there exist 
incompatible J r and J ^ in J O ^ ) with £ G (int J O Pi (int J ^ ) ([1], 
2.5.7). 

3. Let p\[a\] be a sequence of points [planes] converging to p[a] ; 
px G c*x for each X. 

(a) If a P F is not of order two or a P F does not contain an isolated 
point, then lim (ax C\ F) = a P F ( [ l ] , 2.4.3). 

(b) If p\ is a cusp [isolated point] of «x H F for each X, then l(p) — 0 
implies t ha t p is a cusp [cusp or isolated point] and a P P = L \J Sl 

implies t ha t L P S 1 = {£} ([1] 2.4.6 and 2.4.9). 
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4. Let 7 P\ F be of order two. Then y C\ F consists of a pair of line 
L T^ L' and either L' C T(L) {Lf C ir(p) for each regular p G L) or 
L C T T C L ' ) ([1], 2.2.3). 

5. Let G be an open region in F such t ha t a0 r\ G = 0 for some aQ, 
bd (F\G) = bd (G), (bd (G) ) is a plane and each r G G is regular. Then 
G H £ 5* 0 ([3], 3.7). 

6. Let F be non-ruled, / (F) > 0. Then H 9e 0, E is open and 7 = 
{p (z H C\ Ë\ l(p) = 0 and £ is regular} is nowhere dense in F ([3], 3.8 
and 3.9). 

2. Biplanar surfaces. 

2.0 Let F be a surface of order three. A point v G i7 is a binode if z; is 
irregular in F and r(z;) is the union of two distinct planes. F is biplanar 
if F is non-ruled and contains a binode z; as its only irregular point. 

Henceforth, Fis biplanar with the binode v, T(V) is the union of distinct 
planes n and r2, No = n H r2 and N0 C\ F = {v}. As v (z T C r(z/) if 
and only if either z; G T C F or T C\ F = {v}, No Ç£ F implies t ha t 
/(z>) = Z(z;, r i ) + /(z;, r 2 ) . Since each r* contains a t least one point of F 
distinct from v, we obtain t ha t 2 ^ /(z;) ^ 6. 

2.1 LEMMA. Ze/ ZJ G /? s^c/z £Aa£ fi C\ rtis a line Ni} i = 1,2. 
1. / / N0 = Ni = iV2, then v is the cusp of /3 H F. 
2. If N1 ^ No ^ iV2 and /(£) = 0, then v is the double point of 0 H F. 
3. If Nj C F and Nk H F = {v}, /Aew j 3 H F consists of Nj and an Sl 

such that \Nj H S'\ = 2 and z; G iV,- H S1 ; {j, £} = {1,2}. 
4. 7/ TVi U N2 C F, then fi C\ F consists of three non-concurrent lines. 

Proof. This is immediate since v is irregular in (3 H F and v G L (£_ 
n U r2 implies tha t |L H F | = 2. 

2.2 LEMMA. /(r2) = 1 or 3 for i = 1,2. 

Proof. Since /(r*) > 0, there is a line ikf * d Ttr\ F through v;i = l,2. 
Suppose tha t n H F = Mi \J Mx', M1 C\ Mi' = {v}. Then either 

Mx C ir(Mi') or Mi' C T(MI) by 1.5.4. 
Since M2 ÇL ri, 2.1.4 implies tha t 

(MU M2)C\ F = Mi U M 2 W Lia and 

<Mi', M 2 ) n ^ = Mi' U M 2 U Lia7, say, 

where ^ L 1 2 U Z>i2'. Then M 2 C TT(MI H L12) H TT(MI ' H L i / ) yields 

t ha t Mi (Z TT(MI) and Mi ÇL T(MI), a contradiction. 

The preceding argument is symmetric in n and r2. 
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2.3 T H E O R E M . Let F be biplanar with the binode vy J\ P r2 P F = {v}. 
Then F is one of the following types: (1) 1(F) = 3 and l(v) = 2, (2) 
1(F) = 7 and l(v) = 4 and (3) 1(F) = 15 and l(v) = 6. 

Proof. By 2.2, l(v) is 2, 4 or 6. Now apply 2.1.4. 

We note t ha t 2.3 and [2], 2.3 provide a classification of biplanar sur­
faces. In particular, a biplanar F with the binode v is identified by the 
ordered pair (1(F), l(v)) equal to ( 1 . 1 ) , ( 2 , 1 ) , ( 2 , 2 ) , ( 3 , 2 ) , ( 3 , 3 ) , 
( 4 , 3 ) , ( 6 , 4 ) , ( 7 , 4 ) , (10, 5) or (15 ,6 ) . 

2.4 Before examining the surfaces listed in 2.3, we introduce the 
following definitions and notat ions. 

a) Let v 6 (3, l(fi) = 0. By 2.1, v is a cusp or a double point of /3 P F. 
In either case, there is a unique inflection point pp £ /3 P F. 

If z; is a cusp of fi P F, then 

pr^ F = / ' u ^ 
where J ^ P ^ = {v, ^ } and { J ^ J ^ } C ^ " O M -

If v is a double point of (3 P F, then 

where i f H ( J S U J S ) = M , #~i H J S = {v, p&\, { ^ S , J S } C 
<^~(pp) andJ^7 is the /oô > (the subcurve of order two) of (3 P F. We note 
tha t 0 P n and (3 C\ T2 are the tangents of /3 P F a t z;. W7e will always 
assume tha t lim (v, r) = f3 P rt as r 9^ v tends to v in J ^ ; z 5̂  1,2. 

b) Let py q, r and s be four mutual ly dist inct collinear points. WTe say 
tha t p, q separates r, 5 if no segment of (p, q) bounded hyp and q contains 
both r and s. Otherwise, p, q does not separate r, s. 

In an obvious manner, we extend the preceding definition to coplanar 
lines. 

c) Let L C F and r d F\L such tha t (L, r) P F consists of L and an 
Sl. We denote this S1 by S'(L, r). 

d) Let J^~ be a subarc or a subcurve, either of order two; a = (&~). 
We define 

e(^) = \p G a \ J ^ | £> lies on a tangent of ^ a t r for some r G ^~S 

a n d i ( F ) = a\{e(^) U J H -

We note t ha t a = i ( # " ) \J # ~ V) e(^) and & = Sl implies t ha t i(Sl) 
is the open disk of (Sl) bounded by S1. 

Let &~ be a subarc of order two, r £ i n t ( J r ) . Then the tangent 
T of & a t r supports # ~ a t r a n d T C e ( ^ ~ ) U {r}. Let r £ iV C a, 
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N 9* P. Then N cuts #~ at r and N P i (^~) ^ 0 ^ ,V P g(P). Thus 

r 6 (NfM(F)) P (NTVejF)). 

2.5 THEOREM. Le/r &g regular such that l(r) = 0 and { J ^ J ^ j C ^ ( r ) 

r e (int #~) P (int J ^ ) and r (? g ^ ) r\ e(^). 

TA^n r is hyperbolic. 

Proof. Let T[T'] be the tangent of J H ^ ' ] at r. Since 

2.4 (d) yields that ( & ) P <^r'> is a line TV distinct from T and P'. 
Hence (P, N) = <P), (V, N) = ( P ) , r ^ T', ir(r) = <P, P'>, iV cuts 
both ^ and J ^ at r and 

r 6 (N C\e(^)) P (NC\e(^')). 

Then 

r (? e ^ P i e G ^ ' ) = TV P e(^)r\e(^') 

and the preceding imply that N P e(^) and N P e(& ') are one-sided 
neighbourhoods of r in N. Thus there is an open neighbourhood U(r) of 
r in P 3 such that 

U(r) P e(^) * 0 ^ E/(r) H g ( ^ ) 

and 

[ / ( f j n ^ f j n ^ F ) = 0. 

Then g( #~) P g ^ ' ) C iV and iV £ 7r(r) imply that for any 0 C 
P3 \{r}, £/(r) P (7VH e(^)) and C/(r) P (TV P e(^')) are not con­
tained in the same half-space of P 3 bounded by fi and ir(r). This is pos­
sible only if U(r) P J ^ and ï/(r) P J^~' are also not contained in the 
same half-space of P 3 bounded by (3 and ir(r). Thus r Ç # by 1.4 and 
1.5.2. 

COROLLARY. 7f //?g fag ( ^ Q P ( #" ' ) w wo/ //̂ g tangent of &~ or &"' 
at r, then r $_ g(#~) P g( J*"') tf and only if r g i ( ^ " ) CM(^'). 

3. P with three lines. 

3.0 Let F be biplanar with the binode v, 1(F) = l(v) + 1 = 3. Let 
Mf denote the line of P through v in rz-, i = 1, 2. By 2.1.4, (Mi, M2) P P 
contains a line L such that v Q L. Let L P AP be the point wz-. 

Let r ^ , l(r) = 0. By 2.1, v is the cusp of (N0, r) P P and 

O P , r ) P P = M ^ U S H M . r ) 
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where 

v 6 Mt r\ S^Mt, r) and \Mt C\ S'iMi, r)\ = 2. 

We note that Sl(Mu r) £ ^(r) and if Mt C\ Sl(Mu r) = {v, pi), then 

w(Pi) = (Mt,r);i = 1,2. 

If L <t 7r(r), then {L,r)C\F = L U 5 x ( i , 0 and S 1 ^ , r) Ç F(r). 

3.1 Let &i and ^ 2 be the closed half-spaces of P 3 determined by n 
and T2. Put {i,j} = {1, 2} and let &C.SPu K&) = 0. Then N0 C P and 
1/ is the cusp of 0 C\ F = J S U J S . 

Let 5x be a sequence of planes tending to (3 such that v (^ fa ^ 13 and 
/(ftO = 0 for each X. Then v is the double point of 

(ifx, being the loop of fa H F) by 2.1.2. Since lim fa = fa 1.5.3 implies 
that 

lim(j£fx U #"1)X U JF2;X) = ^ i U J S . 

We note that (for each X) ^£\ and JS .x U Ĵ ~2,x are not contained 
in the same &\ or & 2 and limJ^fx is a curve of order ^ 2 . Then J S VJ 
^ 2 C ^ z and ( J S VJ J S ) H ^ - {̂ } imply that 

^ i . x U JS.x C ^ * a n d ^ x C ^ , 

for j3\ sufficiently close to fa Thus 

l im(J r
1 ) X W JS ) X ) = J ^ U J S a n d l i m i f x = {v}. 

Finally, v (I L implies that ^ \ C\ L = 0 and therefore 

( i f x \ { v } ) n ( ¥ i U M 2 U L ) = 0 

for Jzf x sufficiently close to v. 

3.2 For i = 1, 2, let ^ n and <^\2 be the open quarter-spaces of « ^ 
determined by (Mu M2). Put Fik = ^ r\ F, k = 1, 2. Then 

Fn VJ F12 VJ F21 U F22 = {r Ç F| /(r) = 0} 

and 

F = FnU F12 VJ F21 VJ F22 VJ M i U M2KJ L. 

From 3.1, there is a sequence of loops J£\ in each P n VJ Fi2 VJ {z;} such 
that l i m ^ x = M- It is easy to check that there is such a sequence of 
loops in each Fik VJ {v}. Then the continuity of the plane sections of F 
through v yields that (for each i, k = 1,2) there exists a sequence fa such 
that v is the double point of 
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pyr\ F = <£yc\ ^1<y u «F2|7, 

ft H Ff* = i ? 7 \ M a n d l i m £7 = (Mu M2). 

Since l i m ( ^ T V J ^~i i 7 U J S ^ ) = ¥ i U J I f 2 U L and l imi^ 7 is a 
curve of order ^ 2 , we readily obtain that limJz^7 is a triangle in Mi U 
M2 W Z, with vertices w b ra2 and v. Thus F a is a bounded triangular 
region with 

bd(Fik) C Mi U M2 U L; i, k = 1, 2. 

3.3 THEOREM. £ Pi T7^ is a non-empty proper subset of Fik with v in 
its boundary; i, k = 1,2. 

Proof. From 3.2, there is a sequence of loops J£\ C Fik \J {v\ con­
verging to v. Since Fik is a bounded region with bd (Fik) C Mi VJ M2 W L, 
we obtain that (for each 7) ££y is the boundary of an open region 
Fik(J^y) C ^i* such that 

UmC\(Fik(^y)) = [v\ 

asJ^y tends to v. Clearly, Fik(^y) satisfies 1.5.5 for each 7 and thus 

E H Fik(^y) 9* 0and 

v G ËTVJ~k. 

Let r Ç i7^. Then 

(Mi, r) H £ = Mx U S'iMu r) 

where 

Mi H Sl(Mu r) = {v,p},p 5*v and TT(£) = (Mi, r). 

We note that p ^ mx and thus 

L H S U M i , r ) = 0. 

Then r 6 Fik implies that 

p e Mi n F«. 

Since I Mi H S1 (Mi, r) | = 2, 1.5.3 yields that p g £ and F a g £. 

3.4 We have shown that F is the union of the regions Fik, each of which 
contains elliptic, parabolic and hyperbolic points. We still need to deter­
mine the ''positions" of the Fik to obtain a representation of F; cf. 
Figure 1. 

Let r £ 0>ir\ F such that l(r) = 0 and {L,r)C\F = L\J Sl(L, r), 
i G {1,2}. Then (L, r ) H r z n £ = {m,} implies that 

{wi, w2} C « ( S 1 ^ , r)) and S^L, r) C int(<^\). 
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FIGURE 1 

Let Sf be the space of all planes of P 3 through L and put 

yi^{a^y\ar\F = l U ^ a n d ^ 1 C ^ M , i - 1,2. 

If at £ bà{yt), then clearly at = (Mi, M2) or a ^ H F = Z, or atH 
F = L yj {ri\ where rt is some point in &t C\ F with l(rf) = 0. Thus 
a ^ y i n y 2 implies that 

a = (Afi, M2) or a H P = L. 

Since y7* = y\(Mu Af2> is connected and ^ * H ^ and y7* H ^ 2 

are non-empty and closed inj^7*, we obtain that 

y*r\y,r\y, * 0or^\(^1utr2) ^ 0. 
In either case, there is an a0 (î y such that a0 C\ F = L. 
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Let 2 and 2' be the closed half-spaces of P 3 determined by (Mh M2) 
and a0 and let v be the cusp of 0 P F = J S U J S C ^\-, i 6 {1, 2}. 
Then J S U ^ \ meets both F n and Fi2. Since 0 H (Mi, M2) supports 
/ 3 P P a t ^ J S U #"2 is contained in either â o r «S', say 2. As l(r) = 0 
for r G F a \J Fi2, this implies that 

Fa C ^ n P 2 and F12 C ^ i 2 n l 

Since each Fik is connected, we obtain that 

Fnr\ Fi2 = (^nL)u(n i , 
N, wi, w2} C Fn n A* C I i U M2 

and 

Fn P P12 P F2i P A2 = {z>, nti, m2\ ;i, k = 1,2. 

We determine completely the positions of the Fih if the following 
result ([4], p. 10) about algebraic biplanar surfaces is valid for F: UA 
plane turning about its edge (No) cuts the surface in a curve with a cusp 
which changes direction to the opposite one whenever the turning plane 
has passed through one of the two real nodal planes (TJ) ." 

Since 0 P F C & % P 2, the quote is true if there is a ft' such that v 
is the cusp of p' P F and & P F C ^ H 2'; {i,7} = {1, 2}. Since 
/(r) = 0 implies that v is the cusp of (N0, r) P P, it is sufficient to prove 
that 

i n t ( ^ - P 2') P F ^ 0. 

As in 3.1 let fa tend to 0, z> the double point of fa P F = ^ U ^ U 
JS,x for each X. Then J S U ^ S C ^ t implies that 

&\ C ^ and i^ x P (Mi U Af2 U L ) = {v\ 

for /3x sufficiently close to fa Clearly, &\ \J ^ \ C 2 implies that 
J ^ x W J r

2 ,x is also contained in i2 for fa sufficiently close to /3. Then 

v ^ 2C\2', \v\ = ^ \ P ( J S , X U JS,X) 

and the preceding imply that J ? x C i2 ' for^x sufficiently close to v. Thus 

i n t ( ^ P â ' ) ^ 0. 

We observe that the surface in P 3 (suitably coordinatized) defined by 

Xo3 + x0(xi2 + x2
2) + XiX2x3 = 0 

satisfies 3.0 with 

Mi = Xo = Xi = 0, Mi = Xo = x2 = 0 and L = x0 = x3 = 0. 
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3.5 THEOREM. Let F be a biplanar surface satisfying 3.0. Then 

F = FnVJ Fu U F21 U f t 2 U l ! U I 2 U L 

where Fik is an open region described in 3.2 and 3.4 with v G E C\ Fik, 
i,k=l, 2. 

4. F with seven lines. 

4.0 Let F be biplanar with the binocle v, 1(F) = l{v) + 3 = 7. Let M?-
(i G ^4//

4 = {1, 2, 3, 4J) denote the lines of F through v such that 

T] n F = Mi U M2 U M3 and r2 H F = M4. 

Then (M4, M,) H F contains a line Lj with i; g Ljt j G vK3 = {1, 2, 3}. 
Clearly Lx, L2 and L3 are mutually disjoint. 

Let r G F, l(r) = 0. Then z; is the cusp of (iV0, r) C\ F and 

(M„ r)C\ F = Mt\J Sl(Mu r) where 

w G M, H S1 CM,, r) and |M, H S 1 ^ , r)\ = 2, i G --^/
4. 

Clearly, r is not an isolated point of (L^, r) C\ F and thus 

< L „ r ) n F = L i W 5 1 ( ^ , r ) ; i G ^ 

We note that 

For j G ^ 3 , let nijllj] be the point of intersection of Lj and MA[MJ]. 

Finally, we assume that Mi, M3 separate 7V0, M2. 

4.1 Let SPX and ^ 2 [<S 0 and j22] be the closed half-spaces of P 3 deter­
mined by n and T2 [(M4, M I ) and (M4, M3)]. We assume that No CZ ~̂ o» 
thus 

Finally, let i2oi and i2o3 be the closed quarter-spaces of i2o determined by 
r2 with <M4, Mk) C <Sot, £ = 1 , 3 . Then 

P3 = j22 VJ ^o 

= i22 U i20 1 VJ ^03 

= â2 u (^\ r\ 2n) vj (^2 n i2„i) u (^! n i203) 
u (^2nâ 0 3 ) . 

Let F2 = £2r\ F and FiJt = int(^\- H <S0*) ^ ^, * 6 ! 1, 2} and fe £ 
{1, 3 j . We observe that all the lines of F are contained in Fv and 

Fn U 7?w W 7̂ 21 VJ F23 = K ^ n F | / ( r ) = 0}. 
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4.2 Let a C &ok, <* 3̂  r2 and 1(a) = 1, k £ {1, 3}. By 2.1, there is an 
r 6 F such that 

a H F = ¥ 4 n S 1 ^ , r) and i¥4 H S 1 ^ , r) = {v, qr], v ^ gr. 

Thus 

a = 7r(qr), qr £ [mu w2, m3}, S 1 ^ , r) Pi ^ * F^ 0 and 

F« ^ 0 , i = 1,2. 

Since Z(r') = 0 for r' £ S 1 ^ , r)\MA, we obtain that 

5HM4, r) = ( F u H 5UM4, r)) U {», gr} U (F2k r\ SHMh r)). 

Thus gr £ A* ^ A*. 
If a = (S^MA, r)) tends to <M4, M*> in ^0*, then lim(M4 W S 1 ^ , r)) 

= MA W Af* W Lfc and lim 5 1(^4, 0 , a curve of order two, imply that 

limS^M^r) = MkVJ Lk, 

lim (Fik H S^M*, r)) C Mk\J (& < C\ Lk) 

and 

lim qr = mk, i = 1, 2. 

If a = (Sl(M4,r)) tends to r2, then v G lim 5X(M4, r) Q M*. If 
g 7e- v in lim ^(Tl^ , r), then it is easy to check that w(q) = r2 and thus 
q $ |wi, W2, W3). This implies that Af4 H ^ is the closed segment 
(of MA) bounded by v and mk such that 

{m2lmr} C\ (MAC\ Fik) = 0;{k,l\ = (1,3) and i 6 {1,2}. 

Therefore mi, ra3 separates v, m2. 
By a similar consideration of (Mk, r) C\ F for r £ T *̂, we obtain that 

Mk C\ Fik is a closed segment bounded by v and 4. Thus bd(F^) is a 
triangle in Af4 W if* W £& with vertices v, mk and //c, i £ {1, 2} and 
* G {1,3}. 

4.3 THEOREM. £ H F w ^ 0 m//* v G TTrVF\k, i = 1,2 and k = 1, 3. 

Proof. Let p be the cusp oi (3 C\ F = ^ \ \J J S and let ft converge 
to & such that » is the double point of ft H T7 = i f x W «^"1>x U J S i X for 
each X. From 2.1, we may assume that |3 C ^ j , {h j} = {1, 2}. Then 
(cf. 3.1) 

l im(jr i i X W JS,X ) = / i U J S , lim ^ x = {»} 

and for ft sufficiently close to ft 

^"i,x V JS ,x C ^ , ifx C ^ \ , /(r) = 0 

for r G <^x\{^} and thus J?fx is contained in either i§o or j22. 
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Let /3X be arbitrari ly close to 0. As p C\ ( n U r2) = i V 0 C «âo, this 
implies t ha t £x H ( n U r2) C ^ o and hence i f x C ^ * H â 0 . Clearly, 
J^x is contained in & t C\ j20 i or 0* iC\ i203 and there exist /3\ such tha t 
^£\ converges to v in Fik VJ {v}. 

We may apply 3.3. 

4.4 From 4.2, Af4 H / ^ = MA H ^2/t is the segment bounded by v 
and mk not containing m2 or mx\ moreover, ir(q) C =2ofc for each q G 
M 4 H F u , {fe, /} - {1 ,3} . T h u s MA H F 2 is the segment of M4 , bounded 
by mi and w3 , containing m2. 

Let r G ^, l(r) = 0. Then 

(L2,r)r\ F = L2\J Sl{L2,r), 

(L2, r) C\ r2 H F = {ra2} and 

| ( L 2 , r ) n r 1 n ^ | = 3. 

Hence 

<m2, <L2, r ) H TVo) C e(S'(L2, r)) (cf. 2.4), 

h G i (5 1 (^2 , r ) ) and 

\L2nSl(L2,r\ = 2. 

4.5 LEMMA. Let r Ç 7?2, /(^) = 0. Y 7 ^ |(m2, r ) H ^ | = 3. 

Proof. Since Lu L2 and L 3 are mutual ly disjoint, Sl(L2jr) meets 
i i [ I 3 ] a t a point ^ W ] say. Since l2 Ç if2 Pi i(Sl(L2,r)), Sl(L2)r) 
meets Mi[_M3] a t Wi*[m3*] say. Clearly, ra2, w t * and 4* are collinear, 
fe = 1 , 3 . 

Let J^o and J ^ 2 be the closed half-planes of (Sl(L2}r)) determined 
by (m2, nil*) and (m2, ra3*), L2 C ^ 2 . Then 

^ o = &,C\ {SlÇL2,r),œ2 = â 2 n (5 1 (^ 2 , r ) ) 

and r G JT 2 . T h u s (m2, (L2, r ) H 7V0) C ^ o H e(51(^2, 0 ) implies tha t 
|L H T7! = 3 for any Z, C ^ i \ H0, and in particular, \{m2, r) C\ F\ = 3. 

4.6 T H E O R E M . Every r ^ F2 such that l(r) — 0 is hyperbolic. 

Proof. Let r G F2 , l(r) = 0. Then 

(M4 , r ) C ^ 2 ) ( I f 4, r ) n F2 = MAKJ S^M*, r) and Z(r') = 0 

for r' e Sl(MA, r ) \ M 4 . From 4.5, | (ra2, r ' ) H ^ | = 3 for each such r' and 
this implies t ha t m2 Ç i (5 x (M 4 , r ) ) . Hence 

| 5 1 ( M 4 , r ) n 5 1 ( i > 2 , r ) | = 2. 
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This and m2 G e(Sl(L2, r)) imply 

eiS'iU, r))C^e(Sl{Mh r)) = 0. 

Since {Sl(L2, r), Sl{M,, r)} C ^ ( r ) , r £ H hy 2.5. 

4.7 We observe that the shape of the surface (Figure 2) is simple about 
MA and complex near n . The latter reflects the degeneration of the 
curves /3 C\ F = J S U J S with y is a cusp into Mi VJ M2 U M3 as 0 
tends to n . 

FIGURE 2 

We also note that fi C\ F C ^ \ W #~2 through z; changes ''direction" 
as j3 passes through n and r2. (Consider i22 as a plane; that is, identify 
M2 and M3, and argue as in 3.4.) 

Finally, the surface in P 3 defined by 

^0 3 + X0Xi2 — XQX2
2 + X1X5.X3 = 0 
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satisfies 4.0 with 

Mi = %i = x0 + x2 = 0, M2 = Xi = x0 = 0, Mz = xx = x0 — x2 = 0, 

MA = x2 = x0 = 0, L\ = x0 + x2 = Xi — x3 = 0, L2 = x0 = x3 = 0 

and 

L3 = xo — x2 = Xi + x3 = 0. 

4.8 THEOREM. Let F be a biplanar surface satisfying 4.0. Then 

F = F2VJ Fn U Fn VJ F21 U F23 

where 1) every r £ F2 such that l(r) = 0 is hyperbolic and 2) F -̂, is an open 
region described in 4.1 to 4.3; i = 1,2 awd fe = 1, 3. 

5. F with fifteen lines. 

5.0 Let F be biplanar with the binode v, 1(F) = 15 and /(z/) = 6. Let 
Mi, M2, M3[M4, M5, M6] denote the lines of F through v in TI[T2]. We 
assume that Mi, Mz separates N(}, M2 and if4, MQ separates No, M5. Let 

JV = (1,2,3) - {i,j , k) and^K* = {4,5,6} = {\, fx,v}. 

For (i, X) G J/ X ^ * , (Af*, Mx) C\ F contains a line LiX with z; g LiX. 

Let r e F, l(r) = 0. For t £ JS \J J^*, 

{Mur)C\ F = Mt\J Sl(Mt,r) 

where 

M ^ ^ U ^ r ) = | » , g r ' | , i ; ^ ^ , i r ( g r ' ) = (M„r> and 
5HM,, r) G ^ ( r ) . 

For (i, \ ) Ç / X ^ * , 

<Z,,x, r)^ F = LiXyj S^L*, r) with ^ ( ^ A , r) G ^ ( r ) . 

5.1 Let (i, \ ) C / X ĉ K*. Since LiX meets M\ and Mx, we obtain that 

L*n (Mj U M* U MM U M,) = 0. 

It is now immediate that L?x meets each of Ljti, Ljv, LklJL and L^ and none 
of Lifi, Liv, LJX and Lk\. Thus each of the following flats is a plane: 

( L i 4 , L 2 5 , Z/36/, \Ln, L 2 6 , ^ 3 5 / , W 1 5 , ^ 2 4 , ^ 3 6 / , 

( L i 5 , L 2 6 , Z/34/, W16> L24, -L35), V^16> ^ 2 5 , ^ 3 4 / . 

Let Lf\ (Z a such that /(a) = 1, that is, a is distinct from (Mi} M\), 
(Ljfi, Lkv) and (Ljv, Lktl). Then a meets Mj, Mk, MM, Mv, Lifl, Liv, LjX and 
Lk\ outside of LiX. Thus 

\a n TI n F| = |« n r2 n F| = 3, 
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and 

a C\ F = LiX U S^Lix, r) for some r € F, l{r) = 0. 

Let SP i\ and SP t\* be the closed half-spaces of P 3 determined by 
(LjfJi,Lkv) and (Ljv,Lkfi). We assume tha t (M2-, M x ) C &i\ and thus 
i; g ^ x * . Finally, let ^ V and SPV' be the closed quarter-spaces of & xx 
determined by (M*, M x ) . 

5.2 LEMMA. Let a = (LiX, r ) C ^\-x, / ( 0 = 0 anrf (i, À ) ^ l X ^ * . 

p/zew 

l ) ^ H i V o e e(S^LiX,r)) 

and 

2) M , H Z,x[Afx H LiX] e iiS^L*, r)) if and only if i = 2[X = 5]. 

Proa/ . 1) Since l(r) = 0, a C ^ * x ' say. Suppose tha t a H iV0 Ç 
i(S1(Lixf r)). Then the continuity of the plane sections of F through Z,fX 

implies tha t 

a ' H i V o e HS^L^r')) 

for each a ' = (SHLtx,r')) C &*• 
Let a' = (S^Lix, r')) tend to (Mt, Mx). Then 

lim a ' r\ F = Mi \J Mx U LiX and 

l i m ^ C i ^ r ' ) = M , U M X . 

As Mtr\ Ltx ^ Mxr\LiX, this implies tha t |L,x H ^ ( X A, O I = 2 fora7 

sufficiently close to (Mi} Mx). 
Let £ G Ltx\(Mi W M x ) . Since lim a ' = ( ¥ f , M x ) , we obtain tha t 

a' C\ (No, p) = (a H No, p) tends to (v, p). 

By 2.1, z; is the cusp of (No, p) C\ P a n d this implies tha t 

\a! H (No, p) H F\ = k where k is either 1 or 3 

for each a sufficiently close to (Mu Mx). 
If k = 1, then « ' H <7V0, p) C\ F = {p} and £ £ ^ ( P z x , r ' ) ) . If 

jfe = 3, then a ' C\ (NQ, p) H P = {p,r1}r2\ (say) where {ri, r2} C 
Sl(Lix, rf) and fi, r2 separates a ' P\ 7V0, p. Thus a' r\ N0 (: i(S1(Lix, r')) 
implies tha t p £ e(S1(Lix, r')). 

Since £ is any point of L{x\(M\ \J Mx), it is immediate t ha t 

LiKnSl(Ltx,r') = 0 

for ( S ^ L ^ , r ' ) ) sufficiently close to (Mu Mx); a contradiction by the 
preceding. Thus a P\ 7V0 £ e(S1(Lix, r)). 

2) This is immediate since a C\ No G e(S1(Lixy r)), \a C\ T3, C\ F\ = 3 
and Mi, MZ[MA, M6] separates iV0, M2[iV0, M 5 ] ; j = 1, 2. 
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FlCiURE O 

We now determine the configuration (cf. Figure 3) of the lines of F, or 
more precisely, the configuration of the lines of F not containing v. Since 
Lt\ intersects Mu Af\,Ljfl1 LjVf Lhii and Lkv (cf. 5.1), it is sufficient to 
determine the distribution of these points of intersection in LiX, 
(i, X) (E J/ X ^ * . 

5.3 Let a = {Sl(Li\,r')) be a sequence of planes tending to a; 
1(a) = 3 and |L^X ^ 51(L ix, r')\ = 2 for a ' sufficiently close to a. Pu t 

^ x ( r ' ) = i f t n S H i f t . r ' ) . 

Then lim M*x(r') is the set consisting of the point(s) of intersection of 

LiX with the other lines of a H F. 
Let £P\ and &\ be the closed half-spaces of P 3 determined by n and T2. 

i) Let (51(^25, r)> C ^ 2 5 . From 5.2, 

^25 H (M2 W Af5) C i (5 1 ( i25 , 0 ) 
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and therefore, |M2o(V)| = 2 and either 

^ 2 5 ( 0 C ^ i o r ^ 2 5 ( r ) C ^ 2 . 

We assume that <i14f L36) C ^ V , (L16t Lu) C ^ 2 5 " and Jé^(r') C 
^ 1 for some ( S 1 ^ , r')> C ^25' . Then clearly JVn{r)C&i and 
M25(r) H ^ 2 = 0 for each {Sl{L2b, r)) C ^25' . As ^ V is bounded by 
(M2, M5) and (Lu, Z,36), this implies that 

L25 H (L14 U Z36) C ^ 1 . 

The continuity of the plane sections of -^25 P ^ through L25 and the 
preceding imply that M2B(r) C ^ 2 and ~#25(V) C\ SPx = 0 for each 
<51(^25, r)> C ^25" . Thus <L16, Z34) C ^ 2 5 " yields that 

£25 H (L16 H L34) C ^ 2 . 

Hence M2 P L25, M5 Pi L25 separates L14 H L25, L16 H L25 but neither 
Lu P Z25, Z36 P Z25 nor Li6 P Z,25, £34 H L25. 

ii) Let (51(^2x, r)> C ^ 2 x , X G ^ * \ { 5 } . From 5.2, 

M2nZ,2x G ^(51(^2x,0)and 

i f x n 5 1 ( ^ 2 x , r ) Ç e(Sl(L2}i,r)). 

Thus |^2x(^) | = 2 and 

l^xWn^M = |^2X(r)n^2 | = 1. 

As (51(L2X, r)) varies between (LiM, Z,3„) and (Li„, Z,3M) in <^2x, we obtain 
that 

if2 P L2x, Afx P L2\ separates both LlM Pi L2x, £3. P £2x and 

L\v P Z/2X, -̂ >3M P L2x-

By a similar argument, we obtain that 

MiC\ Ltf, M5 P Lz-5 separates both L^C\ Lfo, Lke P Li5 and 

Z/j-6 P Ltf, Lki P L2-5 

fori £ ^\{2}. 
iii) Let ( ^ ( I A , r)) C ^ , x , 1 € ^ { 2 } and X € ^ \ { 5 } . Then 

L , X P (M<UMX ) C ^ S H i i x . O ) 

by 5.2. By arguing as in the preceding cases, we obtain that 

Mt P Lt\y M\ P Lf\ does not separate Ljfi U Lt-x, £*,, P Lt\ or 

-Lj^ / 1 Lf\j Ljcp f \ L{\. 

iv) We note that it must still be determined whether Mt P LiK, 
Mx P LiX separates Ljti P LiX, £,> ^ £;x for (i, X) f J/ X ^ * \ { (2, 5)1. 
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Consider 7 = (Lu, Lu, LVo). Let y C\ Mt[y C\ Li}] be the point 
pt[l*],t Ç ^ U y K * a n d ( i , X ) e ^ X ^ * \ { ( 1 , 4 ) , (2,6), (3,5)}.Then 

{p\, pi, ho, he} C LUt {p2, pe, ho, hi} C £26, {^3, £5, /16, hi} C ^35 

and 7 H ,^1 and 7 P\ ^ 2 are the closed half-planes of 7 determined by 
(Pup2tpz) and (p*, ps, ps). Finally, 7 ^ N0 = (pu P*) C\ (pi, ps) and 
£1» ^3[^4, £e] separates 7 H 7V0, ^ 2 [ T ^ ^0, £4]. 

Since £1, £4 does not separate L26 H Lu, £35 H L i 4 from iii), we assume 
that Lu H (Z126 ̂  £35) C &\ say. From ii), pz, pb separates Lu H L30, 
L26 H L35 and therefore L26 H L35 6 ^ 2 . Since }/25} = (p2, ps) f^\ Lu 

and {/3e} = (£3, £e) H Lu, we obtain (cf. Figure 4) that {/25, /3e} C SP\ 
and thus £1, £4 does not separate /25, £26 C\ Lu or /36, L35 H L14. 
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Similarly, p2, pe does not separate lu, Lu H L26 or lu, £35 H L2& and 
pz, p*> does not separate /24, Lu H L35 or /i6, L26 H Z35. Then ii) yields 
that (p2, pe separates l15, Z35 C\ L2& and /34, £14 ^ Z26 and) £3, £5 separates 
/16, Z/14 r\ Lro and /24, Z26 ^ Z35. 

By arguing as in the preceding for suitable i and X, we obtain that for 
(»,x) e^x^ /*\{(2 !5)î , 

Af* C\ Li\, M\ H L̂ x separates [does not separate] Ljtx C\ LiX, 
Ljp f \ L {\ 

if X = 5[X 7* 5]. 

5.4 LEMMA. Le/r G /%/(r) = 0. Then {Sl{L2,, r)) r\.N0 £ e(51(i>25,r)) 
if awd only if r Ç ^ 2 5 . 

Proof. We recall that ^25* is the closed half-space of P 3 bounded by 
(L14, L3e) and (Z16, L34) and not containing (M2, Af5). Hence we can 
choose {Sl(L2$, r)) C ^25* to vary continuously between (L14, L36) and 
(Zi6, L34). Then <Jé2z(y) varies between L25 P\ (Z14 U Z,3e) C ^ 1 and 
L25 H (L16 U L34) C ^ 2 from 5.3 (i). As Jé2h{r) C\ (M2 U M6) = 0, 
this implies that there is an a* = (Sl{L2b, r*)) C ^25* such that 

^ 2 5 (r*) = L . n ^ f c r * ) = 0. 

Hence L 2 5 H (M2 U M5) C e(51(i25, r*)) and a* H 7V0 G i{Sl(L2h, r*)). 
It is now immediate that (Sl{L2b,r)) C\ NQ £_ i(Sl(L2b,r)) for each 
( 5 1 ( ^ 2 5 , r ) ) C ^ 2 5 * . 

The converse follows from 5.2. 

5.5 From 5.3 (i) and (iii), we obtain that 

{L14 n L25 , z36 n z25, L u n z36} c ^\ 
and 

{£16 n L25 , I34 r\ z25, l ie n z34} c ^2. 
By an argument similar to the one in 5.3(iv) with 7 = (Z14, L25, L36), we 
obtain that either Lu, Z25 and L36 are concurrent or they determine a 
triangle Ai in (Lu, Z36) C\ SPx such that 

a) Ai C\ (Mt U LiX) = 0 for * € J/ \J JY* and 

(i,X) ^J/ X ^ * \ { ( 1 , 4 ) , (2,5), (3,6)}. 

Similarly, either L1Q, L2h and Z34 are concurrent or they determine a 
triangle A2 in (L16, Z34) f~\ &2 such that 

b) A2 C\ (Mt U LiX) = 0 for ££ «yK U ^K* and 

(i,X) Ç^K X ^K*\{(1,6), (2,5), (3,4)}. 

Let fé% denote the interior of the cone with vertex v and base Af, 

https://doi.org/10.4153/CJM-1980-064-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-064-1


858 TIBOR BISZTRICZKY 

i = 1,2. I t is immediate tha t no line of F meets tf t and M f P\ Af = 0 
for / 6 J/ \J J/^ implies t ha t ( n U r2) H ^ \ = {v}. Let L , be a line 
through w in ^% such tha t L*P i At- = 0. Then Lz- (£ n U r2 implies 
(cf. 1.3) t ha t Ltr\ F = {v, rt} where r< ^ v and r< £ G / = 9% P\ F. It 
follows tha t G / is an open region such t ha t A* C b d ( G / ) C A* U {̂ } 
and /(r) = 0 for each r £ G / , i = 1, 2. 

Let f\ be a sequence of points in G / U GJ converging to v. Let T be a 
line_of accumulation of (v, fx). Clearly T Ç _ n U T2. Bu t r\ £ _G/ W_G2' 
C ^ i W ^ 2 imp l i e s jha t fe, rx> C r ^ i U ^ 2 and hence r C ^ i W <£%. 
Since ( n W r2) H ( ^ i U ^ 2 ) = {v}, this is a contradiction. 

T h u s b d ( G / ) = A* and G / satisfies the hypotheses of 1.5.5, i = 1,2. 
I t is easy to check tha t a ) , b) and the cont inui ty of the plane sections 

of F through Z2 5 yield tha t G / U G2' C ^ 2 5 * . Finally, this and 5.4 
readily imply t ha t (Lu, L3 6) C\ N0 and Ai[(Li6 , ^34) H iV0 and A2] are 
contained in the same closed half-plane of (L i 4 , L3 6)[(Li6, £34)] deter­
mined by Lu and L36 [Pi6 and L3 4]. 

If Lu, L25 and Z36[Li6 , L25 and L34] are concurrent , let Gi[G2] denote 
their point of intersection. Otherwise, let G\ = Gi[G2 = G2

/]. We sum­
marize our results. 

5.6 T H E O R E M . / / G?- is wo/ a point, then Gi is a closed triangular region 
in ^ 2 5 * such that l{r) - 0 /o r each r £ mt(Gt) and Gt C\ E ^ 0, i = 1, 2. 

5.7 Pu t {i,j} = j l , 2} and let 0 C ^ \ - , /(£) = 0. Then v is the cusp of 
p r\ F = J S U J S by 2.1. Let 07 tend to 0 such tha t v is the double 
point of pyr\ F =&y\J ^x.yKJ ^2,y for each 7. Then (cf. 3.1) 
J^lty U J S i 7 tends to J S U ^~ 2 in ^ \ - , i ^ 7 tends to v in ^ and i ^ 7 C\ 
LkK = 0 for i f 7 sufficiently close to v and (fe, X) G Jf X ^ * . 

Let i 2 0 and i2 0 * be the open half-spaces of P 3 determined by (Mi, M\) 
and <M3, M 6 ) . We assume tha t 7V0 C Qo and Af2 U Mb C Ço*. I t is 
immediate t ha t lim fiy = /3 implies t ha t 

£7 P\ ( n W r2) C câo a n d ^ 7 C J?o 

for /37 sufficiently close to /3. 
We observe tha t i 2 0 P\ <^\- is the union of two disjoint connected_sets. 

Clearly, there is a sequence of loops i f 7 converging to z; not only in i2o O 
^ { bu t also in the closure (in P 3 ) of each component of i 2 0 C\ & t. 

From 5.5, Lu ^ £36 G ^ 1 and thus one component of i2o O ^ 2 is 
bounded by ru r2 and ( i f 1, M4> and the other by n , r2 and (M3 , M 6 ) . We 
denote these components by J 3 4 4 and i2 3 6 respectively. 

Let Fkli = £LU yj F; (fe, M) = ( 1 , 4 ) , (3, 6) . I t is clear t ha t 

Fk, C\ ( n U r2) C Mk \J M, 

and hence 

b d ( T ^ ) C MkKJ M^VL, 
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T h u s a line of F passing through some point of Fkli is Mk, AfM or Lkll. Since 
FkfJL C £kn and £kll Pi (Mk U AfM U L ^ ) = 0 by definition, we obtain 
t h a t / ( r ) = 0 for r G i V 

As there is a sequence of loops in Fkfl VJ {y} converging to v, this implies 
t ha t b d ( ^ M ) is a triangle, determined by Mk, AfM and L ^ , and FkpL con­
tains a sequence of elliptic points converging to v (cf. 3.2 and 3.3), 
(*,M) = (1 ,4 ) , ( 3 , 6 ) . 

We wish to determine a region similar to Fu and F 3 6 in each of the 
components of i 2 0 P ^ V We know tha t there is a suitable sequence of 
loops in the closure of each component converging to v bu t Zi6 P L34 ( 
^ 2 implies tha t 

( â 0 P ^ i ) P ( L ] 6 U L 3 4 ) ^ 0. 

I t is easy to check tha t one component of i 2 0 P &\ meets L16 and the 
other meets Z34. Hence, we consider the subsets of i2 0 P ^ 1 bounded by 
n , r2 and either (Mi, Af6) or (.¥3, MA). 

Let i 2 ^ be the maximal open connected subset of i2 0 P SP\ bounded 
by n , 72 and (Mlt Mv)\ (/, ?) = (1, 6), (3, 4) . Let Flv = j g ^ P P. By 
arguing as in the preceding, we obtain tha t bd(7*\„) is a triangle deter­
mined by Mh Mv and Llv, l(r) = 0 for r £ / ^ and 7^„ contains a se­
quence of elliptic points converging to v. 

Finally, we note tha t Fu, Fu, P34 and F 3 6 are the regions Fn, Fu, F21 
and F22 in 3.5 when we identify Mi, M2, Mz in n and MA, M&, Me in n . 
Thus the curves /3 P F = J S U J S with the cusp y change "direct ion" 
as (3 passes through n and r2. 

5.8 T H E O R E M . There exist four open triangular regions Ft\ in F such that 

1) l(r) = Oforr Ç F<x, 
2) E P F,x ^ 0 wi*A v £ EC\ FiX 

and 

3) b d ( ^ x ) C MtV MxU LiX, (i,X) e U , 3 } X {4,6}. 

5.9 Let «2 2 and â 2 * [ â 5 and «S5*] be the closed half-spaces of P 3 deter­
mined by (M2, MA) and (M2 , M 6 ) [ (M 5 , Mi) and <iUf5, M 3 ) ] . We assume 
tha t n C ^ 2 and r2 C ^ 5 . Then i V o C ^ H «S5, M 5 W L2 5 C ^ 2 * 
and M 2 U Z2 5 C ^ 5 * . 

Let M t C at, l(at) = 1; / = 2, 5. Then 

for some rt £ F and 

where v ^ p*and 7r(£,) = a, = {S1(Mt, rt)). 
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5.10 LEMMA. Mt C\ L25 G i(Sl(Mt, r)) if and only if (S^Mt, r)) C 
&u t = 2,5. 

Proof. Let a = (Sl(M2l r)) converge to n in i22. Then 

lim a C\ 72 = No and lim S1(M2, r) = Mi U M3. 

Since a H T2 is a tangent of S1(M2, r), a C\ r2 C eCSUM^, 0 ) and thus 

N0CVime(S'(M2,r)). 

As l i m S 1 ^ , r) = Mi VJ M3, this implies that lim e(51(Af2, r)) and 
lim i(S1(M2j r)) are the closed half-planes of n determined by Mi and 
i f 3. Since Mi, M% separates N0, M%, we obtain that 

M2C^mi(Sl(M2l r)). 

Hence M2C\ (L24 U Z25 U Z26) C i(Sl(M2, r)) for S 1 ^ , r) sufficiently 
close to n . The "if" condition now follows from the continuity of the 
plane sections of 2l2 C\ F through M2. 

We note that (M2, Mb) is the common boundary of two quarter-spaces 
of i22*. If there is in each quarter-space a point r such that M2 C\ Z25 f 
e(S,1(M2, r)) , then the "only if" condition follows as in the preceding. 

From the proof of 5.4, there are planes y such that y U F = Z25 U 5 ! 

and Z25 /°\ S1 = 0. Clearly, there is a 7 such that 

f n F = L2h \j s\ L25 n s1 = 0 
and 7 does not contain the points M4 P Z,24 and MQ C\ L26. 

Since L2s H 5 1 = 0, M2 H Z25 € ^CS1) and there are points fi 9^ f2 

in 5 1 such that 

M2C\L2b (E ir(fi) H 7r(f2). 

As |M 4 H L24, M& r\ L26j Pi 7 = 0, this implies that 

|7 n (M2, MA) n F\ = \y n (M2, M6) n F\ = 3 

and 

7 H (L24 U L26 VJ M2 U M4) C S1. 

Then Af2 H L25 G 7r(fi) H 7r(f2) umplies that the lines y H (M2, M3), 
7 Pi (M2, M6) do not separate L25, (M2 H L25, fi) and (M2 H L25, f2). 
Thus <Af2, Af5, L2b) C ^ 2 * yields that {fu f9] C i22*. It is clear that fl 

and r2 are not contained in the same quarter-space of i§2* determined by 
(M2, MB) and M2 H L25 € ^ ( M , , ft), i = 1,2. 

By a similar argument, we prove the result for £ = 5. 

5.11 Let F* = F\(Gi VJ G2\J Fu U Fie VJ F34 VJ F86). We claim that 
r is hyperbolic for r Ç F*, l(r) = 0 . By the symmetry between ^ 1 and 

https://doi.org/10.4153/CJM-1980-064-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-064-1


BIPLANAR SURFACES 861 

&% it is sufficient to prove the claim for r £ SP\ C\ F*. From 5.5 and 5.7, 

^ n (G2VJ F 1 4 U F36) = 0and 

^ \ H F = Gi U Fie U Fu U ( ^ i H F*). 

Let f f ^ n F*, /(f) = 0. Then v is the cusp of 

Since N0 is the tangent of both J S and J S at v, we obtain that 

OMM 0(JS)U.(JS). 
Let l3r\LiX be the point /,Xf (*, X) G J/ X ^ * . Then G2 C ^ 2 implies 
that /16, hs and /34 are mutually distinct; cf. 5.5. Since 

1; e bd(Fie) H bd(F34) and F16 n F84 = 0, 

it is clear that P P> Fie and /3 H F34 are connected one-sided neighbour­
hoods of v in jS C\ F bounded by v and In and /34 respectively. As l(r) = 0 
for r G Fi6 W F34, this implies that l*x ? j3 H (F16 U F34) and /i6, /34 
separates /25, (/ie, 3̂4) C\ N0. 

Since J S and ^ \ are subarcs of order two and (/i6, /25, 3̂4) is a line, we 
assume that 

ii) lu Ç intCJS) , /84 G i n t ( J S ) and /25 G ^ S . 

We put 

iii) U(v) = fin (Fn^J F34). 

Then U(v) is a closed neighbourhood of v in /? Pi F bounded by In and /3i 
such that /(r) = 0 for r £ U(v)\{he, /34, v). 

We note that with the possible exception that some or all of In, he and 
I25 may be coincident, all the other lt\s are mutually distinct. Since 
pC\ Mt = {0} for t £ J/\J J/* and Mi, M3[M4, M6] separates M2, 
N0[M5, No], it is easy to check that a subarc of J S U J S bounded by 

iv) /z-4 and he contains either v or li5, i (E <yK, 

and 

v) /i\ and /3x contains either v or /2X, X £ «yK*. 

We recall that G\ is either a triangular region bounded by Li4, Z25 and 
Z36 or the point /* = lu = /25 = /3e; moreover, Gi C ^25* and Ax 

(cf. 5.5) and (Li4, L^e) P -Af0 are contained in the same half-plane 
bounded by L i 4 and L36. 

Since P H ^25* is the half-plane bounded by 

(/ie, Z25, /34> and |8 H ( i n , L25, L36> with v g p n ^ 2 5 * , 

https://doi.org/10.4153/CJM-1980-064-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-064-1


802 TIBOR BISZTRiCZKY 

iii) implies that 

vi) U(v) C /? H ^ 2 5 H F and (3 F\ P 2 5* n ^ Ç ^ ( ^ U GO. 

We claim tha t either {/15, /35j or {/24,/2e} is contained in f3 F\ & 1*• 
Clearly, /* = /i4 = /»e or lu = /36 ^ /25 fe G 7r(/i4) = 7r(/36)) imply that 

0 H F - £/(*;) U ( 3 H ^ 0 5 * H F). 

Hence, we may assume tha t / n -^ /3fi. Then /2s 7 7^~2 implies / i4 7 & \ 
and /:,„ . r 2 or Il{ ->"•> and /36 -: ; f , or {/14, /36} C ^ S - If / H G &~\ 
and /;;, •>',, then ii ) and v • .^,..* imply tha t ^ 2 5 * 77 J S f ^ V C\ ^ S ] 
is the sis hare of -A 1 ̂ 7 77 bounded by / i 4 and /i6L/3 4 and /36] not containing 
v. Hence ;/i.-,,/.{.-,! C-^2; ,* by iv). By similar arguments , we prove the 
claim in the other two cases. 

1'ioni .">.',). /'.,* 7 . (.>", \J ->",); ^ 5 * P\ ( J S U J S ) ] is the subarc 
bounded by /•>•. and /':.J/i;) and 7;, i not meeting N0 and, hence, not con­
taining v. 'Thus 

{/21, /2«} or {7.i5, 7 7 contained in (3 F\ F? <i* and 

p n ^,5 n ^ - u{v) \J (0 n # 2 5 n /**) 

imply tha t 

vii) 3 r\ &>2;i r\ /7* c .77* VJ .a5*. 

Finally, we observe tha t (3 F) 67 determines the distr ibution of the 
//x's in (3 77 F. Since A4 and (LIA, L3g) 77 N() are contained in the same 
half-plane bounded by Lu and L36, it is easy to check the following: 

a) j f (3 H Gi = 0, then j[/14, /25, / 3 6 ) | = 3, [ i H ^ n F* is the subarc 
of # i U l 2, bounded by / !4 and /34, containing /25 bu t not v, and / i4, /36 

separates /25, (/i4, /se) F\ NQ. 
b) If ^ H 67 is a point, then (3 F\ Gi = {/25} and /25 = /* or /25 = 

/n 5* /se or /25 - 7 6 ^ /14. If /25 = /*, _then 0 H F* C ^ 2 5 * . If Z25 ^ /*, 
then 0 H 7 ^ H F* is the subarc of 3* 1 U # 7 ? bounded by /25 and the 
74 or /36 distinct from /25, not containing v. 

c) If 0 H 67 is neither empty nor a point, then /25 7 {/u,/3e} and 
(3 F\ 67 is the subarc of i^ 1 77 # 2 bounded by /2Ô and / i 4 or /36 and not 
containing v. If / u = 7e, then $ F\ F* C ^ 2 5 * . If lu ^ /36, then ^ H 
^ 2 5 H P* is the subarc of ffx KJ J S bounded by lu and /36 and not 
containing v and / t4, lu does not separate /25, (/14, /36) H 7V0. 

From a ) , b) and c) , we readily obtain tha t 

viii) the inflection point of j3 77 F is contained in 7^7.5 77 61 

and 

ix) r, <725, r ) ^7 J S separates /25, (/25, r ) 77 7V0 for 

r 7 int(^V) H J S . 
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5.12 THEOREM. Every r G F* such that l(r) = 0 is hyperbolic. 

Proof. As in 5.11, let f G @x H JF* with /(f) - 0 and 0 - <iV0, /; . 
Then v is the cusp of 

p r\ F = Jr
1 u Js 

= (is n ^25 n F) u (/3 n ^25* n /o 
= u(v) u (/3n GO VJ ( /3n^ 2 5 n F*) u ^ n ^ 2 5 * n F*). 

If f G /3 n ^25 H /?*, then f G ̂ 2 5 n jg2*, say, from 5.11 vii). Hence 

M2 H Z25 G i(51(i2 5 , 0 ) ^ ^ ( M 2 , f)) 

by 5.2 and 5.10 respectively. Clearly, 

\(M2 H L25, f > H F| = 3, IS1 (£25, f) H S^Mz, f)\ = 2 and 

e(5 l( i2 6 , f ) ) n ^ ( 5 i ( M 2 , r)) - 0. 

Thus r £ H by 5.0 and 2.5. 
Uf £ pn ^ 2 5 * n F*, then 

{no} = <51(̂ 25, f)) n #0 = </25, f) n iv0 c ^ s 1 ^ , 0) 
by 5.4. We note that 

n0 G ei^^Uei^o) 

from 5.11 i) and 

f G intCJS) UintCJS) 

from 5.11 viii). 
Let ie {1, 2}. If f G i n t ( # \ ) and <?(«^\) O e(Sl(L2b, ?)) = 0, then 

f G i7 by 2.5 and the theorem is proved. Suppose that 

f G in t (#\ - ) and e ( i ^ ) C\ e(Sl(L2b, ?)) * 0. 

Since (3 ^ (51(L25, f)), this implies that 

i(^x)C\i^{L^?)) * 0. 

Then no G *(#"*) C\ i(Sl(L2,, ?)) yields that 

J ^ r W C S U ^ o , f)) ^ 0. 

Since 

j r . n i(si(L2*, f)) c /s n <5l(i25,0) n /< - /25 

U (pnsl(L26,r)), 
we obtain that 

^ • n ^ ^ f e f ) ) = {/25}. 
Thus /? Pi Sl(L2$, f) = {f, r'j where f 9^ r' and f, r' does not separate 
^25» no-

We note that /25 G ^ " A ^ S implies that i = 2 and ? G i n t ( ^ V ) H «f2 

and /25 G ^~2 ^ ^""1 implies that either ? or r' is contained in int(^2 5*) 

https://doi.org/10.4153/CJM-1980-064-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-064-1


864 TIBOR BISZTRICZKY 

C\ J S . In either case, the preceding is a contradiction by 5.11 ix). Thus 

« M n (S'(L2hr)) = 0 

and f £ H. 

5.13 THEOREM. Z,e/ F be a biplanar surface satisfying 5.0. TTtew 

F=GiVG2V Fu W Fie VJ ^ 4 U 7̂36 U F* 

u>/zere 1) Ĝ  is a point or a bounded triangular region with l(r) = 0 for 

r 6 GjandEH G, ^ 0 , j = 1,2, 
2) £ H FiX ^ 0 m t t v £ EC\ FiX and l(r) = 0 /or r Ç FiX, (*, X) £ 

{1,3} X {4, 6}, and 
3) £i>er;y r £ F* such that l(r) = 0 is hyperbolic. 

We refer to Figure 5 for a representation of F with all fifteen lines 

FIGURE 5 
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\ 

34 y 

14 

F, 

FIGURE G 

depicted. In order to indicate all lines, the collinearities in 5.1 were not 
accurately represented. In Figure 6, we have a truer representation of F 
but the line L25 is not depicted. We note that for simplicity, the lines of 
F are labelled by their subscripts. 

The surface in Pz defined by x0
3 — x0(xi2 + x2

2) + X1X2X3 = 0 satisfies 
5.0 with 

Mi = x2 = x0 + Xi = 0, M2 = x2 = Xo = 0, Mz = x2 = x0 — Xi = 0, 

M4 = Xi = x0 + x2 = 0, M5 = Xi = Xo = 0, M6 = Xi = x0 — x2 = 0, 

L14 = Xo + Xi + x2 = 2x0 + x3 = 0, L15 = Xo + Xi = x2 + x3 = 0, 

Lu = Xo + Xi — x2 = x3 — 2xo = 0, 

L24 = Xo + x2 = Xi + ^3 = 0, Z/25 = Xo = x3 = 0, 

L26 = Xo — x2 = x3 — Xi = 0, 

L34 = Xo — Xi + X2 = 2x0 — X3 = 0, L15 = Xo + Xi = X2 + X3 = 0, 

1,36 = Xo — Xi — X2 = 2X0 + X3 = 0. 
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