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BIPLANAR SURFACES OF ORDER THREE II

TIBOR BISZTRICZKY

A surface of order three F in the real projective three-space P? is met
by every line, not in F, in at most three points. F is biplanar if it contains
exactly one non-differentiable point v and the set of tangents of F at v
is the union of two distinct planes, say 71 and 7».

In (2], we examined the biplanar surfaces containing the line 7, M ..
In the present paper, we classify and describe the biplanar I with the
property that 71 N\ 7o M F = {ov}.

We denote the planes, lines and points of P? by the letters
a,B,...,L, M,...and p,q,... respectively. For a collection of flats
a, L, p,...,{a, L, p,...)denotes the flat of P? spanned by them. For a
set M in P3, (_#) denotes the flat of P? spanned by the points of #.

1. Surfaces of order three. In this section we formally define a
surface of order three, introduce some notation and list some required
results.

1.1 A surface of order three Fin P? is a compact and connected set such
that every intersection of /' with a plane is a curve of order <3 and there
is a plane section of order three not containing any lines of /.

1.2 Let I be a (plane) curve of order k, £ < 3 (see [1], 1.3). If & = 1,
then T is a (straight) line. If £ = 2, then I is an isolated point or a pair
of lines or the image S! of a differentiable parameter curve of order two.
If £ = 3, then T'is (i) the union of a line and a I’ of order two or (ii) the
image F,! of a differentiable parameter curve of order three plus possibly
an S! or an isolated point either disjoint from Fy!. We denote a T of order
three satisfying (ii) by F1.

1.3 Let /' be a surface of order three, p € F. Let « be a plane through
p. Then p is regular in Fla M F] if there is a line N in P?¥«] such that
p € N and |[N N F| = 3. Otherwise, p is trregular in Fla M\ F]. An F!
has at most one irregular point » and such a v is a cusp, double point or
isolated point ([1], 1.4).

A line T is a tangent of F at p if T is a tangent of some I' C F at p
({11, 1.5). Let 7(p) be the set of tangents of Fat p. Then p is differentiable
if p is regular (in F) and 7(p) is a plane w(p); otherwise, p is singular.
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We assume that every regular p is differentiable and = (p) depends
continuously on p.

We denote by I(p)[L(p, @)], the number of lines of Fla M F] passing
through p and by /(a) the number of lines of « M F. From 1.2, [(«) < 3.

Let p be regular and [(p) = 0. Then p is an isolated point, cusp or
double point of w(p) M F ([1], 2.3) and we call p elliptic, parabolic or
hyperbolic respectively. Let E, I and H denote the set of elliptic, parabolic
and hyperbolic points of F respectively.

Let v be irregular in F. If /' is non-ruled, that is,

[(F) = 1L CPILCF| <o,

then v € " C 7(v) if and only if either v € " C F or TN I = {v}.
Moreover, 7(v) is a plane or a union of two distinct planes or a cone of
order two with vertex v; cf. [5].

1.4 Let # be a closed, connected subset of an St or an Fy'. We call
F a subarc [subcurve] if the end points of # are distinct [equal].

Let p be regular. Let.# (p) be the set of all subarcs.# of order two
in # such that p € # ¢ n(p); { F 1, Fof C.F (p). Then F, and
F g are p-compatible if there is a 8 C P*\{p} and an open neighbourhood
U(p) of p in P3 such that U(p) N (F, U % ,) is contained in a closed
half-space of P* determined by 8 and = (p). Otherwise, % ; and .% , are
p-incompatible.

A pair of subarcs # and #' are compatible [tncompatible] if there
isa pcF N F such that | F, F'} C F (p) and F, F' are p-
compatible [p-incompatible].

We consider a subcurve of order two as an element of Z (p) if it
contains a subarc .# such that p € % F(p).

1.5 We describe a surface I by determining the existence and the
distribution of elliptic, parabolic and hyperbolic points in F. By way of
preparation, we list the following results.

1. If p is regular in /7 and isolated in a« M F, then p € £ and a = 7 (p)
(1], 2.3.7).

2. Let p be regular, Z(p) = 0. Then p € H if and only if there exist
incompatible # and %’ in % (p) with p € (int ) N (int F') (1],
2.5.7).

3. Let pylan] be a sequence of points [planes] converging to plal;
pr € ay for each \.

(@) If @ M Fis not of order two or & M F does not contain an isolated
point, then lim (ax N F) = a M F ([1], 2.4.3).

(b) If py is a cusp [isolated point] of ay M F for each X\, then I(p) = 0
implies that p is a cusp [cusp or isolated point] and o N F = LU S!
implies that L M S = {p} ([1] 2.4.6 and 2.4.9).
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4. Let ¥ M F be of order two. Then y M F consists of a pair of line
L # L' and either L' C n(L) (L’ C w(p) for each regular p € L) or
L C (L") ((1], 2.2.3).

5. Let G be an open region in F such that ap N\ G = 0 for some ay,
bd (F\G) = bd (G), (bd (G)) is a plane and each r € G is regular. Then
GNE # @ ([3],3.7).

6. Let F be non-ruled, /(F) > 0. Then H # 0, E is open and [ =
{p € HN E|L(p) = 0 and p is regular} is nowhere dense in 7 ([3], 3.8
and 3.9).

2. Biplanar surfaces.

2.0 Let F be a surface of order three. A point v € F is a binode if v is
irregular in F and 7(v) is the union of two distinct planes. F is biplanar
if F is non-ruled and contains a binode v as its only irregular point.

Henceforth, Fis biplanar with the binode v, 7(v) is the union of distinct
planes 7y and 75, No =71\ 7reand Ny F = {9}. Asv € T"C r(v) if
and only if either v € T"C F or TN F = {9}, No  F implies that
[(v) = (v, 1) + [(v, 72). Since each 7, contains at least one point of F
distinct from v, we obtain that 2 < /(v) < 6.

2.1 LEMMA. Let v € B8 such that 3 (M 7515 a line Ny, 1 = 1, 2.

1. If No = Ny = N, then v is the cusp of 8 M F.

2. If Ny # Ny # Nyand [(B) = 0, then v is the double point of 8 M F.

3. If N;C Fand Ny M F = {v}, then 8\ F consists of N; and an S*
such that |[IN; N\ SY = 2 andv € N; N S {7, kY = {1, 2}.

4. If Ny \U Ny C F, then B\ F consists of three non-concurrent lines.

Proof. This is immediate since v is irregular in 8 M Fand v € L ¢/
71 \J 72 implies that |[L M F| = 2.

2.2 LEMMA. I(r;) = 1 or 3 for i = 1, 2.

Proof. Since I(r;) > 0, thereisaline M; C 7, F throughv;7=1, 2.

Suppose that 71N F = M, \J M,", M, M, = {v}. Then either
M, C o(M,y") or My C = (M) by 1.5.4.

Since My ¢/ 71, 2.1.4 implies that

<¢M1, 1M2> NF = 11[1 V) 4’1{2 V) L12 and
<4M1/, M2> f\ F = 11{11 U 4’1[2 U ngl, say,
Where v e L12 U ngl. Then ﬂ/[g C 71'(1&[1 m L]Q) f\ 7I‘(l1’[1’ ﬂ L]Q’) ylelds

that M,  =(My') and My  =(M,), a contradiction.
The preceding argument is symmetric in 7, and 7.
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2.3 THEOREM. Let F be biplanar with the binode v, 71 M\ 72 M F = {v}
=2, (2)

Then F is one of the following types: (1) [(F) = 3 and [(v) 2,
I(F) =T7and [(v) = 4 and (3) I(F) = 15 and l(v) = 6.

Proof. By 2.2, [(v) is 2, 4 or 6. Now apply 2.1.4.

We note that 2.3 and [2], 2.3 provide a classification of biplanar sur-
faces. In particular, a biplanar F* with the binode » is identified by the
ordered pair (I(F), [(v)) equal to (1.1), (2,1), (2,2), (3,2), (3,3),
(4,3), (6,4), (7,4), (10, 3) or (15, 6).

2.4 Before examining the surfaces listed in 2.3, we introduce the
following definitions and notations.

a) Letov € 3,1(8) = 0. By 2.1, v is a cusp or a double point of 3 M F.
In either case, there is a unique inflection point pg € /M F.
If vis a cusp of 8 M F, then

BN F=F UZF'
where # N F' = {v, pg} and { F, F'} C F (ps).
If v is a double point of 8 M F, then
6mﬁ‘:gufluy2

where ffﬂ (971Uc972) = {7}}, Lglm 5;2 = {7},{)5}, {f}, yg} C
F (pg) and £ is the loop (the subcurve of order two) of 8 M I. We note
that 8 /M 7, and 8 /M 75 are the tangents of 8/ /7 at ». We will always
assume that lim (@, 7) = 8N r;as7 # v tends to v in.% ;; 1 # 1, 2.

b) Let p, ¢, r and s be four mutually distinct collinear points. We say
that p, g separates r, s if no segment of (p, ¢) bounded by p and ¢ contains
both » and s. Otherwise, p, q does not separate r, s.

In an obvious manner, we extend the preceding definition to coplanar
lines.

c) Let L C Fandr ¢ F\L such that (L,r) M F consists of L and an
St. We denote this S' by S'(L, ).

d) Let # be a subarc or a subcurve, either of order two; o = (% ).
We define

e(F) = |p € a\F|p lies on a tangent of F# at r for some r € F |
and 1(F) = a\{e(F) U F}.

We note thata = 1(F ) U F U e(F ) and F = S!implies that i(S?)
is the open disk of (S') bounded by S™.

Let # be asubarc of order two, r € int(# ). Then the tangent
T of # at r supports % at r and T C e(F) U {r}. Let r € N C o,
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N 5 T.Then N cuts % atrand NN i(F) # @ = NN e(F). Thus
re (NN (F)) N (NN e(F)).

2.5 THEOREM. Letr be regular such that l(r) = Qand { F, F'} C F (r)
with

r € (intF )N (intF)andr ¢ e(F) N e(F').

Then r 1s hyperbolic.
Proof. Let T11"] be the tangent of # [.%# '] at r. Since
rde(F)Nel(F,

2.4 (d) yields that (ZF )M (F') is a line N distinct from 7" and 7”.
Hence (T, N) = (F), (T",N) = ("), T # 17, «w(r) = (I, T7), N cuts
both % and %’ atr and

re (NN el(FH))N (NN el(F)).
Then
rde(F)XNe(F')=NNelF)Ne(F)

and the preceding imply that N M e(F ) and N N e(F ') are one-sided
neighbourhoods of 7 in N. Thus there is an open neighbourhood U(7) of
r in P3? such that

Ur)yNe(F) =0 = Ul)N\e(F')

and
U@y Ne(F)Ne(F') = 0.

Then e(F )N e(F') CN and N Z «(r) imply that for any 8 C
P\{r}, Ur)y N\ (NN e(F)) and Ur) N\ (NN e(F")) are not con-
tained in the same half-space of P? bounded by 8 and #(r). This is pos-
sible only if U(r) N % and U(r) N %’ are also not contained in the

same half-space of P? bounded by 8 and «(r). Thus » € H by 1.4 and
1.5.2.

COROLLARY. If the line {F )M\ (F') is not the tangent of ¥ or F'
atr,thenr ¢ e(F )N e(F') if and only if r ¢ i(F) N i(F').
3. I with three lines.

3.0 Let F be biplanar with the binode v, [(F) = [(v) + 1 = 3. Let
M ; denote the line of F throughvinr; ¢ = 1,2. By 2.1.4, (M, M) N F
contains a line L such thatv ¢ L. Let L M M, be the point m,.

Letr € F,I(r) = 0. By 2.1, v is the cusp of (N,, ) M F and

<Mi,7>m F = MIUSI(M“ 7’)
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where
v € My S (M, r)and |M; NS (M, r)| = 2.
We note that S (M, 7) € F (r) and if M, N SY(M,,7) = {0, ps}, then
m(ps) = (M r);i = 1,2
If L Z x(r), then (L,r) \ F = L\J S'(L,7) and S*(L, r) € F(r).

3.1 Let £, and &, be the closed half-spaces of P?* determined by 7,
and 7o. Put {4,7} = {1,2} and let 8 C £, L(8) = 0. Then N, C 8 and
visthecuspof BN F = F,U F,.

Let By be a sequence of planes tending to 8 such that v € 8\ # 8 and
1(B\) = 0 for each \. Then v is the double point of

B)\mF=g)\Uf1’)\Uy2‘)\

(Z\, being the loop of gy M F) by 2.1.2. Since lim 8, = 8, 1.5.3 implies
that

lim(ngﬁ'me“) =g‘-1Ue972.

We note that (for each \) %, and Z#,,\U %, are not contained
in the same &, or &, and lim.%, is a curve of order <2. Then %, \U
FoCPyand (F,U F,) NP, = {v} imply that

FiaU F o\ CPrand ¥\ C P,
for @\ sufhciently close to 8. Thus
im(F 12U F,)) = F,U Frandlim Yy = {o}.
Finally, » ¢ L implies that ¥, M L = @ and therefore
(A\hH) N (MU M, UL) =9
for %\ sufficiently close to v.

3.2 For 7 = 1,2, let #,; and £, be the open quarter-spaces of &
determined by (M, Ms). Put Fy = N\ F, k = 1,2. Then

FuU F12U F21U ]*‘22 = {7’ e Fll(?’) = 0}
and
F= F11UF12UF21UF22UM1UM2UL.

From 3.1, there is a sequence of loops-¥, in each F;; \J F;;, \U {v} such
that lim.%, = {v}. It is easy to check that there is such a sequence of
loops in each Fy; \J {v}. Then the continuity of the plane sections of F
through v yields that (for each 7, £ = 1, 2) there exists a sequence 3, such
that v is the double point of
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B.,f\F= g.,mg‘-lﬂ\_/f“,
BN Fy =L \{v} and lim 8, = (M, M,).

Since lim (%, U F1,U F,,) = My\U M;U L and lim.Z, is a
curve of order <2, we readily obtain that lim.%, is a triangle in M, \U
My \J L with vertices m;, ms and v. Thus F; is a bounded triangular
region with

bd(Fu) C M1\J Ma\J L ik =1,2.

3.3 THEOREM. E M Fy, is @ non-empty proper subset of Fu with v in
its boundary; 1, k = 1, 2.

Proof. From 3.2, there is a sequence of loops ., C Fy \J {v} con-
verging tov. Since Fy; is a bounded region with bd (F ) C M, \J M. \J L,
we obtain that (for each y) ¢, is the boundary of an open region
Fu(¥,) C Fi such that

lim CI(F(Z,)) = {v}
as.?, tends to v. Clearly, Fy(.%,) satisfies 1.5.5 for each vy and thus
EN Fu(¥,) # 0 and
v € m
Let r € Fy. Then
My, r)y N F = M,\JSY(My,r)
where
My SY My, r) = {v,p},p #vand w(p) = (My, 7).
We note that p # m,; and thus
LNSY(My,r) = 0.
Then r € Fy implies that
pEMN Fy.
Since |M; N SY(M,, r)| = 2, 1.5.3 yields that p ¢ E and F; € E.

3.4 We have shown that Fis the union of the regions Fy, each of which
contains elliptic, parabolic and hyperbolic points. We still need to deter-
mine the ‘‘positions’” of the F; to obtain a representation of F; cf.
Figure 1.

Let r € ;M F such that I(r) = 0 and (L,7) N\ F = L\J S'(L, r),
1€ {1,2}. Then (L,r) N7, F = {m;} implies that

{my, ma} C e(ST(L, 7)) and S(L, r) C int(%;).
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FiGure 1

Let.%” be the space of all planes of P? through L and put
Fi=lacLlaNF=LUS and S'C P,},i=1,2.

If o; € bd(¥;), then clearly a; = (M;, Ms) or a; N\ F = L or oa; N
F = L\J {ry} where r; is some point in & ;M F with I(r;) = 0. Thus
a €. %1 NS, implies that

a = (M, My)oraM I = L.

Since #* = ¥ \(M, M) is connected and .¥* N.¥, and ¥* N7,
are non-empty and closed in.%*, we obtain that

F*NL NGy # 0 or \(F1\UF) = 0.

In either case, there is an ay € .% such that ey M\ F = L.
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Let £ and 2’ be the closed half-spaces of P? determined by (M, M)
and a and let v be the cusp of BN F = F, U ¥, C P, 1 € {1,2}.
Then %, U %, meets both Fy; and Fy. Since 8 M\ (My, Ms) supports
BN Fatv,#,\J . % ,is contained in either 2 or ', say £. Asl(r) = 0
forr» € F; \U Fyp, this implies that

Fan CPuN Zand Fin C PN 2.
Since each F'; is connected, we obtain that
FaD Fo= (P, NL)U {v},
v, mq, ma) C Fiye M For, C M \J M,
and
Fia O Fro O Foy M Fog = (o, my, mo} 4,k = 1, 2.

We determine completely the positions of the F if the following
result ([4], p. 10) about algebraic biplanar surfaces is valid for F: “‘A
plane turning about its edge (Ny) cuts the surface in a curve with a cusp
which changes direction to the opposite one whenever the turning plane
has passed through one of the two real nodal planes (r;).”

Since 8N F C P ;M Z, the quote is true if there is a 8 such that v
is the cusp of N\ FF and g/ N\ FC ;N\ 2 (4,7} = {1,2}. Since
I(r) = 0 implies that v is the cusp of (N, ) M F, it is sufficient to prove
that

int(Z; N\ 2')Y N\ I 0.

Asin 3.1let 8y tend to 8, v the double pointof gy N F = Z\\U F 1, U
F o) foreach \. Then #, U.%, C %, implies that

LN CPyand LN (MU MU L) = (o}

for By sufficiently close to 8. Clearly, #,\U %, C £ implies that
F 12U F ., is also contained in 2 for By sufficiently close to 8. Then

vE PN D v = NN (F AU Fs))
and the preceding imply that.¥", C £’ for.%, sufficiently close to v. Thus
int(Z; N 2') = 0.
We observe that the surface in P? (suitably coordinatized) defined by
x0® + xo(x1? + x02) + 212013 = 0
satisfies 3.0 with

Mi=xo=x,=0 Ma=xy=%x,=0and L =x)=12x3 =0.
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3.5 THEOREM. Let F be a biplanar surface satisfying 3.0. Then
F = Fu V) F12 ) ]"21 U ]*‘22 ) ]l[l V) ]L[Q U L
where Fyu 1s an open region described in 3.2 and 3.4 with v € £ M Fy,
1, k=1,2.
4. F with seven lines.

4.0 Let F be biplanar with the binode v, [(F) = l(v) + 3 = 7. Let M,
(i € Ny ={1,2,3,4}) denote the lines of I through v such that

N F=M\JM\J Mzand 7o\ F = M,.
Then (M,, M;) M F contains a line L; with o ¢ L, j ¢ A3 = {1, 2, 3}.
Clearly Ly, Ly and Lj are mutually disjoint.
Letr € F,1(r) = 0. Then v is the cusp of (Ny, 7) M F and
(MyryMWF = M;\JS'"(M,,r) where
v € M;NSYM,7)and | M, NS (M, 1) =2,1¢ N,
Clearly, 7 is not an isolated point of (L, ) M Fand thus
(Lyyry NF = L;\JS'(L;,r);j€ N,
We note that
SY(M 1), SUL;, 1) C F ().

For j € N3, let m,[l,] be the point of intersection of L; and M4 M ].
Finally, we assume that M, M; separate Ny, Mo.

4.1 Let 2, and Z3[ 2, and £,] be the closed half-spaces of P* deter-
mined by 7, and 7o [{M,, M) and (M, M;)]. We assume that Ny C 2,
thus

A[2UL2UT2C 002%

Finally, let 24, and Z; be the closed quarter-spaces of £, determined by
ro with (M4, M) C 2o, b = 1, 3. Then

P3=QQU Q()
=2,U 2y U Ly
—_—9@2\-)(c@1mgm)u(ﬁzmo@m)u(fylmgm)
U (PN Los).
Let Fo = Z2oMN Fand Fy = int(ZP, N\ ZLy) N\ F, i€ {1,2} and k €

{1, 3}. We observe that all the lines of F are contained in Fy and

Fu\J Fis\J FoauU Fyy = {r € QOmFU(") = 0}.
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42Leta C Do, a # mand (o) = 1, k € {1, 3}. By 2.1, there is an
r € Fsuch that
aMNF=MNS(Myr)and Ms N\ S (M4, 7r) = {v,q,},v # q,.
Thus
a = w(q,), g, & {my, mq, ma}, S{( My, ) NP, # B and
Fo #0,1=1,2.
Since I(r’) = 0 for v’ € S (M4, r)\ M4, we obtain that
S My r) = (Fu N SY My 1)) \J o, ¢;} I (Fop N SY My, 7).

Thus qr E Flkf-\ F_2k.
Ifa = (S* (M, 7)) tends to (M4, M;)in Ly, then lim (M, \J SY(M,, 7))
= M,\J M;\J L; and lim S* (M4, r), a curve of order two, imply that

lim SY (M4, r) = M, \J Ly,

lim (Fy N SY M, 7)) C M \J (PN Ly)
and

limgqg, = my, 2 =1, 2.

If a = (S (M, r)) tends to 7o, then v € lim S (M4, r) C M, If
g # v in lim S'(M4, r), then it is easy to check that 7w (gq) = 7, and thus
q € {my, ms, ms}. This implies that M,/ F; is the closed segment
(of M,) bounded by v and m; such that

{mo,mi} N\ (My\ Fy) = 0; {k, 1} =1{1,3} and 7 € {1, 2}.

Therefore m;, m; separates v, ms.

By a similar consideration of (M, 7) M F for r € F,, we obtain that
M, M Fy is a closed segment bounded by v and /.. Thus bd(F;) is a
triangle in M4\J M, \J L, with vertices v, m; and [, 7 € {1,2} and
ke {1,3}.

4.3 THEOREM. EN Fy # Qwithv € EN Fy,1=1,2and k = 1, 3.

Proof. Let v be the cusp of 8N F = % ;U %, and let ) converge
to 8 such that v is the double point of 8y N F = £\ \U F 1, U F,, for
each \. From 2.1, we may assume that 8§ C £, {4,j} = {1, 2}. Then
(cf. 3.1)

Im(F 1\ U F,)) = F,U F,y lim Ly = (v}
and for @\ sufficiently close to 8,
FINIVF o C P, HCPylr)=0
for r € £ \{v} and thus.¥, is contained in either £, or L.
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Let By be arbitrarily close to 8. As 8N (r; U 13) = Ny C &, this
implies that 8y M (r1 U r5) C &, and hence ¥\ C Z ;N Z,. Clearly,
#\ is contained in ;N Dy or ;N Dy and there exist By such that
&\ converges to v in Fyu \U {v}.

We may apply 3.3.

4.4 From 4.2, My M\ Fiy, = M, M\ Fsy is the segment bounded by v
and m; not containing m. or m,; moreover, w(q) C 2y for each ¢ €
My Fuy, (R, 1} = {1, 3}. Thus M, M F,is the segment of M4, bounded
by m, and m;, containing m..

Letr € F,I(r) = 0. Then

Loy vy M F = Ly \J SY(Ly, 7),
(Lo, 7Y M 12 M F = {my} and
[(Loyry Y71 M F| = 3.

Hence
(s, (La, 7) M No) C e(S'(La, 7)) (cf. 2.4),
Iy € 2(S'(Ls, 7)) and
Ly M St(Ly, 7] = 2.

4.5 LEMMA. Let v € Fy, [(r) = 0. Then |(ms, ) M F| = 3.

Proof. Since L, L, and L; are mutually disjoint, S'(L., 7) meets
Li[L;] at a point [;*[l5*] say. Since 1o € Mo M 1(SY (Lo, 7)), S (Le, 7)

meets M,[M;] at m,*[m;*] say. Clearly, m., m;* and [,;* are collinear,
k=13

Let 2, and ¢, be the closed half-planes of (S'(L., 7)) determined
by {ms, m:*) and {(my, ms*), Ly C 5. Then

z%)o = Qom <SI(L2, 7’>, %72 = ng <SI<L2, }’)>

and r € 5. Thus (ms, (Lo, 7) M No) C oM e(S'(Ly, 7)) implies that
|L M F| = 3 for any L C 5| Hy, and in particular, |{(m., 7Y N F| = 3.

4.6 THEOREM. Every r € I's such that [(r) = 0 1s hyperbolic.
Proof. Letr € Fy, I(r) = 0. Then

(My,r) C Loy (My, 7Y\ Fy = M,\J SY(My, 7)and (') =0

for v’ € SY(M4, r)\M 4. From 4.5, |{m2, ') M F| = 3 for each such " and
this implies that m, € 1(SY(My4, 7)). Hence

‘Sl(M/;, 7) f\ Sl (Lz, 7’>| = 2
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This and ms € e(S*(Ly, 7)) imply
e(S1(La, 7)) M e(SY (M4, 7)) = 0.
Since {S'(Ly, 1), S1(M4, v)} C F (), r € H by 2.5.

4.7 We observe that the shape of the surface (Figure 2) is simple about
M, and complex near 7. The latter reflects the degeneration of the
curves BN F = F,\U %, with v is a cusp into M, \J M, \J M; as 8
tends to 7.

FI1GURE 2

We also note that 8 N\ F C %, U %, through v changes ‘‘direction”
as B8 passes through 7; and 75. (Consider £, as a plane; that is, identify
M, and M3, and argue as in 3.4.)

Finally, the surface in P? defined by

0% + %0x%1% — XoX2? + x1xoxs = 0
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satisfies 4.0 with

Allsxl=xo—}—x-g:O,A[gEx1=x0:0,41135x1=x0—x2:(),

;7‘{4 OCQ=xO=O,LlEXQ+3C2:xl—‘.’)h”—‘o,LzEDCo:x;;:O

I

and
Li=xy— xy=x; + x3 = 0.
4.8 THEOREM. Let I be a biplanar surface satisfying 4.0. Then
F=F\JF;\UF3;\UFy,\U Fy
where 1) every v € [y such that [(r) = 0 is hyperbolic and 2) Iy is an open
region described in 4.1 to4.3;1 = 1,2 and k = 1, 3.
5. I’ with fifteen lines.

5.0 Let F be biplanar with the binode v, [(F) = 15 and /(v) = 6. Let
My, Mo, My My, Ms, M) denote the lines of F through v in 7i|72]. We
assume that M, M; separates Ny, M. and My, M separates No, M;. Let

N =11,2,3} = 4,7, k} and A* = {4, 5,6} = |\, u, v}.
For (i, \) € N X A* (M, M\) N F contains a line L withv ¢ L.
Letr € F,I(r) = 0. For t € N U N*,
(M, YN F = M,AJS(M, r)
where
M, NS M, r) =1{v,q%,v #q' mlg") = (M, r)and
SUM, 1) € F(r).
For (i, \) € N X N*
(Lowr) O F = La\US' (Lo, r) with S'(La, ) € F(r).
5.1 Let (4, \) € A X A*. Since L meets M ; and M), we obtain that
Lo (M;\U M, \J M,\U M,) = .

It is now immediate that L, meets each of L, L;,, L, and L;, and none
of Ly, Ly, Lj and L. Thus each of the following flats is a plane:
(L14, Los, Lse), (L1s, Log, L3s), (L1s, Las, Lss),
(L5, Loas, Lyy), (Lys, Los, L3s), (L1s, Los, Lsa).
Let Ly C « such that I[(a) = 1, that is, « is distinct from (M ;, My),

(Ljuy Liy) and (L;,, Ly,). Then a meets M;, My, M,, M,, L, L, L and
L outside of L. Thus

a7y N Fl =laN7a N F

= 3,
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and
aMNF=LyJS Ly, r)forsomer € F,I(r) =0.

Let &, and £ ,* be the closed half-spaces of P3 determined by
(Ljuy L) and (L;,, Ly,). We assume that (M, My) C %, and thus
v ¢ P y* Finally, let 2, and & "’ be the closed quarter-spaces of 2,
determined by (M, My).

52 LEMMA. Let a = (Lp,r) C P, 1(r) = 0 and (i, \) € N X N*,
Then

1) a M Ny € e(SY (L, 7))
and
2) My LalMy M\ Lal € e(SY(La, 7)) of and only if 1 = 2[N = 5].

Proof. 1) Since I(r) =0, a« C P, say. Suppose that a M N, €
1(S'(La, 7)). Then the continuity of the plane sections of F through L
implies that

o’ M Ny € 1(SY(La, 7))
for each o’ = (SY (L, 7)) C P a.
Letoa’ = (SY(La, ")) tend to (M, My). Then
lim a/ m ]" = J[i U A[)\ U Li)\ and
lim S1(La, 7') = M,\J M.
As M; M Ly # My Ly, this implies that |L M SY(La, 7')| = 2fora’
sufficiently close to (M ;, My).
Let p € L \(M,\J M,). Since lima’ = (M,, M), we obtain that
o' M (Ny, p) = (&' M Ny, p) tends to (v, p).
By 2.1, v is the cusp of (N, p) M F and this implies that
le’ M (Ny, p) M F| = k where k is either 1 or 3

for each o’ sufficiently close to (M ;, My).

If &=1, then & N (No, p) N F = {p} and p € e(S'(La,7")). If
k=3, then o N (No, p) N F = {p,r1, 72} (say) where {ri, 7} C
SY(La, ") and 74, 7o separates o’ (M Ny, p. Thus @’ M Ny € (S (La, 7))
implies that p € e(S'(La, 7')).

Since p is any point of L\ (M;\J M,), it is immediate that

Li)\ m Sl (Li)\, 7'/) = ﬂ

for (S{(La, ")) sufficiently close to (M, My)); a contradiction by the
preceding. Thus a M Ny € e¢(SY (L, 7)).

2) This is immediate since o M Ny € e(S'(La, 7)), @M\ 7; N\ F| =3
and M, M;[ M., M) separates No, Mo[No, M;];7 = 1, 2.
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Frsure 3

We now determine the configuration (cf. Figure 3) of the lines of /7, or
more precisely, the configuration of the lines of /* not containing v. Since
L intersects My, My, L., L, Ly, and L, (cf. 5.1), it is sufficient to
determine the distribution of these points of intersection in L,
(1, \) € N X N*

53 Let o = (S'(La, 7)) be a sequence of planes tending to «;
He) = 3and [La N S (La, r")| = 2for o sufficiently close to a. Put

M) = LN\ SU Ly, "),
Then lim M, (r") is the set consisting of the point(s) of intersection of
L with the other lines of & M F.
Let # and £, be the closed half-spaces of P? determined by 7, and 7.
i) Let (S'(Lys, 7)) C Pss. From 5.2,
Loy N (M2 \J Ms) C i(S"(Las, 7))
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and therefore, |M2;(r)| = 2 and either
%25(7’) C =@1 or %25(7’) C 0/22

We assume that (Liy, Lss) C Pas’, (L, Las) C Pay’ and Mas(") C
P, for some (S'(Lys, 7)) C Pas’. Then clearly AMo5(r) C Z, and
Mas(r) N\ Py = @ for each (S'(Las, 7)) C Pas’. As Py is bounded by
(My, Ms) and (Lis, Lss), this implies that

Los M (L1s\J L) C P.

The continuity of the plane sections of %y; M F through L,; and the
preceding imply that M(r) C PPy and Mo;(r) N\ P, = B for each
<Sl (L25, 7’)> C @25”. ThUS <L](»;, L34> C ,@25” yields that

Los M (L1g M Lgy) C P,

Hence Ms M Ly, M5 (M Lqs separates Lyy (N Loz, Lig (M Lys but neither
Lys M Loy, Lag (M Loz nor Lyg M Los, L3y (M Los.
ii) Let (S'(Lax, 7)) C P, N € A*\{5]. From 5.2,
ﬂ{«z f\ Lz)\ E ’L(Sl (Lg)\, 7)) and
11[)\ M St (L2)\, 7’) € C(SI(LQAy 7))
Thus | # o\ (r)| = 2 and
|»%2)\(7) ﬂ@lf = ‘%2)\(7’) f\?)"zj = 1

As (S*(Lyy, r)) varies between (L, L3,) and (Li,, Ls,) in Py, we obtain
that
My M Loy, My M La, separates both Ly, M Loy, Ly, M Loy, and
L1y M Loy, L3, M Loy,
By a similar argument, we obtain that
MM\ Ly, Ms M Ly separates both Ly M Ly, Lye M Ly and
LisM Ly, Lis M Ly
for ¢« € A\{2}.
iii) Let (S'(La, 7)) C Pa, i € HM\I2}) and X € . A4*\{5}. Then
LM (M;\J M) Ce(SY(La,7))
by 5.2. By arguing as in the preceding cases, we obtain that
MM La, Mx M\ Ly does not separate L, \J Ly, Ly, M Ly or
Ly M Ly, Ly M L.

iv) We note that it must still be determined whether M; N Ly,
My M Ly separates L, M Ly, Lj M Ly for (i, \) € A X A/*\{(2, 5)}.
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Consider vy = (Lis, Log, L3s). Let vy M M|y M La] be the point
pllal,t € /U AN*and (1, \) € & X A*\[(1,4),(2,6), (3,5)}. Then

{p1, Pa, las, Ise) C Laa, (P2, Doy lisy Isa} C Las, 1 P35, Psy lis, L2} C Liss

and y N\ P and y N &P, are the closed half-planes of v determined by
<P1» Pﬁv p3> and <P4r p-')r P6> FinaHYv Y M NO = (pl, P‘2> M <p4’ P.)> and
b1, pslps, ps) separates vy (M Ny, poly M No, pal.

Since p, ps does not separate Log (N Liy, Lys (M Lys from iii), we assume
that Lis M (Lag\J Lgs) C P, say. From ii), ps, ps separates Ly (M Lg;,
L25 M L35 and therefore Lge M L35 € L@m Since {12,} = <p2, p5> M L“
and {lss) = (ps, ps) M Ly, we obtain (cf. Figure 4) that {ls5, l36} C 2,
and thus p;, ps does not separate los, Log (N Lis or 36, Lgs (M Ly

1411

Ly;
YN\,
129
/
7/
/
4’—/" -
a— ’/
/

F1GURE 4
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Similarly, ps, ps does not separate 15, L14 (" Lo or l34, L35 (M Ly and
ps, ps does not separate log, L1y (M L3s or lig, Los (M Lys. Then ii) yields
that (pe, ps separates lis, Lss /M Log and l34, L1s M Logand) ps, ps separates
llﬁy L14 ('\ L35 and 124, Lzs ﬂ Lg:,.

By arguing as in the preceding for suitable7and A, we obtain that for
(G, \) € & X A2, 5)},

MM L, My M L, separates [does not separate] L;, M L,
L;, MLy
if A = 5[\ # 5]

5.4 LEMMA. Letr € F,1(r) = 0. Then (S*(Las, 7)) MN.Ny € e(S'(Lys, 7))
if and only if r € Pos.

Proof. We recall that & »s* is the closed half-space of P3 bounded by
(L14, L3s) and (Lis, L3s) and not containing (M, M;). Hence we can
choose (S*(Lys, 7)) C Pos* to vary continuously between (Ly4, L3s) and
(Lys, L3s). Then A s;(r) varies between Los M (L4 \J Ly) C £, and
L25ﬂ (L16UL34) C Qafnz from 5.3 (1) As %25(7’) N (MQU A{5) = ﬂ.
this implies that there is an a* = (S'(Ly;, 7*)) C Py5* such that

Mos(r*) = Loz M SY(Lys, r*) = 0.

Hence Loz M (M2 \J M;5) C e(S'(Les, 7*)) and o* M Ny € 2(S*(Los, 7*)).
It is now immediate that (S'(Las, 7)) M\ Ny € 2(S'(Lss, 7)) for each
(Sl (L257 7’)> C (@25*.

The converse follows from 5.2.
5.5 From 5.3(i) and (iii), we obtain that
{L1s M Los, Lys M Lys, LM Lys} C P,
and
{L16 M Los, Lyg M Loz, Lig M Ly} C P

By an argument similar to the one in 5.3(iv) with vy = (L4, Los, L3s), we
obtain that either Li4, Ls; and Lss are concurrent or they determine a
triangle A; in (L, L3s) M &4 such that

a) AN (M, \ULyp) = 0fort € &/\UJ N*and
(G, N) € N X AN\, 4), (2,5), (3,6)].

Similarly, either Lig, Los and L3y are concurrent or they determine a
triangle A, in (Lis, L3s) M &P, such that

b) Aa N (MU Lyp) = Bfort € N\J AN*and
(i, 2) € A X AL, 6), (2,5), 3, 4)}.

Let % ; denote the interior of the cone with vertex v and base A;,
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i =1, 2. It is immediate that no line of F meets % ;and M, N A; = 0
for t € N \J N* implies that (r, U 72) N %, = {v}. Let L, be a line
through v in %', such that L; N\ A, = @. Then L; Z 7, \U 7, implies
(cf. 1.3) that L, N\ IF = {v, r;} wherer; #vand7r, € G/ = €, N F. It
follows that G/ is an open region such that A; C bd(G/) C A, U {v}
and [(r) = Oforeachr € G/, 71 =1, 2.

Let 7\ be a sequence of points in G," \U G,’ converging to v. Let 7" be a
line of accumulation of (v, 7). Clearly T C 7, \J 75. But ny € G,/ \J G
C %1\J %, implies that (v, ry) C €1\J € and hence ' C €, \J ¥ .
Since (71 \J 72) N (€1 \J €,) = {v}, this is a contradiction.

Thus bd(G/) = A;and G/ satisfies the hypotheses of 1.5.5, 1 = 1, 2.

It is easy to check that a), b) and the continuity of the plane sections
of F through L yield that G, \U Gy C ZPys*. Finally, this and 5.4
readily imply that (L4, Lss) (M Ny and Ay[(Lis, L3s) M Nypand A, are
contained in the same closed half-plane of (Li4, L3s)[{L1s, L31)] deter-
mined by Ly, and Lsg [Lis and Lyy].

If Lis, Los and Lig[L1s, Los and Ljs] are concurrent, let G1[G2] denote
their point of intersection. Otherwise, let G; = G/[G, = G.). We sum-
marize our results.

5.6 THEOREM. If G 1s not « point, then G 1s a closed triangular region
in Pas* such that 1(r) = 0 for eachr € int(Gy) and G, E # 0,1 = 1, 2.

5.7 Put {4,j} = {1,2} and let 8 C &, [(8) = 0. Then v is the cusp of
BN F = %,\UZ, by 2.1. Let 8, tend to 8 such that v is the doublc
point of B, N F=%,U %,,U%,, for each y. Then (cf. 3.1)
Fi, U Fy,tends to F,U Foin P, L, tends to v in & and &, N
Ly = 9 for %, sufficiently close to v and (k, \) € A X N*,

Let £, and Z* be the open half-spaces of P? determined by (M, M,
and (M;, Ms). We assume that Ny C Qp and Mo \J M; C Qo*. It is
immediate that lim 8, = 3 implies that

By (11U ry) C Zyand £, C 2,

for 8, sufficiently close to B.

We observe that Z, M Z is the union of two disjoint connected sets.
Clearly, there is a sequence of loops.%’, converging to v not only in £, M
2, but also in the closure (in P3) of each component of £, N\ &£ ,.

From 5.5, Lis M Lys € %, and thus one component of Z,M P, is
bounded by 7y, 7o and (M, M) and the other by 71, 72 and (M3, Me). We
denote these components by 2, and Z;; respectively.

Let Fry = 2, \J F; (k,n) = (1,4), (3, 6). It is clear that

Fou N (11U 10) C M \J M,
and hence

bd (F.) C My \J M, \J Ly,
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Thus a line of F passing through some point of Fy, is M}, M, or Ly,. Since
Foo C 2y and 2, N (M \J M, \J L;,) = @ by definition, we obtain
that I(r) = O for » € Fy,.

As there is a sequence of loops in F;, \J {v} converging to v, this implies
that bd (Fy) is a triangle, determined by M;, M, and L,,, and F;, con-
tains a sequence of elliptic points converging to v (cf. 3.2 and 3.3),
(b, u) = (1,4), (3,6).

We wish to determine a region similar to Fy4 and Fj6 in each of the
components of 2, M Z;. We know that there is a suitable sequence of
loops in the closure of each component converging to v but Lys M Ljy ¢
2, implies that

(Lo P1) N\ (Lys\J Lss) # 0.

It is easy to check that one component of Z, M £ meets Lis and the
other meets Lji. Hence, we consider the subsets of £, M £, bounded by
71, 72 and either (M, M¢) or (M, M,).

Let £,, be the maximal open connected subset of £, M £, bounded
by 71, 7o and (M, M.,); (L,») = (1,6), (3,4). Let F,, = Z2,N F. By
arguing as in the preceding, we obtain that bd(F,,) is a triangle deter-
mined by M, M, and L, I(r) = 0 for » € F,, and F,, contains a se-
quence of elliptic points converging to v.

Finally, we note that Fy4, Fis, F3a and Fje are the regions Fyy, Fr2, Fa,
and Fy» in 3.5 when we identify My, My, M5 in 7, and My, Ms, Mg in 7,.
Thus the curves 8 N\ F = % ;U %, with the cusp v change ““direction”
as @3 passes through 7, and 7.

5.8 THEOREM. T'here exist four open triangular regions F i in F such that

1) I(r) = 0 forr € Fy,
Q) EN Fop # B withv € ENMN Fyy

and
3) bd(Fa) C M, \J M\ Ly, (4,0 € {1,3} X 14, 6}.

5.9 Let Zyand 2,*[Z; and Z;*] be the closed half-spaces of P3 deter-
mined by (M., M) and (M., Me)[{(Ms, My) and (M;, M;)]. We assume
that r, C Qz and 7o C QZ, Then N, C 9022 N Q:,, M;\J Loy C QQ*
and ﬂr[g U L25 C Q)*

Let M, C a, l{a;) = 1;t = 2,5. Then

aMNF=M\JS(M,r,)
for some 7, € F and
M NSY (M, 1) = {v, p.
wherev # p,and n(p,) = a, = (SY (M, 7).
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5.10 LEMMA. M, M\ Ly € i1(SY(M,, 7)) if and only if (SY(M, 1)) C
D, t=205.

Proof. Let « = (SY(M,, r)) converge to ; in Z,. Then
lima M 72, = Noand lim SY (M., r) = M, \J M,.
Since o M 712 is a tangent of S1(My, 7), a M 72 C m}) and thus
No C lim e(S' (M3, 7).
As lim SY(M,, r) = M, \J M;, this implies that limm) and

lim 7(S(Ms, 7)) are the closed half-planes of 7, determined by M, and
M. Since M., M separates Vo, M3, we obtain that

My C lim 1(SY (Mo, 7)).

Hence My M (Las\J L 25\J I 25) C 2(S*(M,, 7)) for SY(M,, r) sufficiently
close to 71. The “if’’ condition now follows from the continuity of the
plane sections of &, M F through M.,.

We note that (M., M;) is the common boundary of two quarter-spaces
of 2,*. If there is in each quarter-space a point r such that My M I 45 €
e(S'(M,, 1)), then the “‘only if"’ condition follows as in the preceding.

From the proof of 5.4, there are planes y such that y U F = [,;\U S!
and L, M St = @. Clearly, there is a ¥ such that

7f\F=L25US‘,L25f\Sl=ﬂ

and 7 does not contain the points My M Loy and Mg M Los.
Since Lss M S' = 0, M2 M Lo € e(S') and there are points 7; % 7»
in ST such that

My M Loy € 7(71) M 7 (72).
As { My Loy, Mo M Log} M 4 = @, this implies that
I O (M, M) N F| = |50 (Mo, Me) N\ F| = 3
and
TN (Los\J Log\J M, \J M,) C S.

Then My M Los € w(71) M 7 (72) umplies that the lines ¥ M (M, M3),
7 M (M,, Mg) do not separate Loz, (Mo M\ Los, 71) and (Ma M Los, 72).
Thus (M, Ms, Lss) C £,* yields that {7y, 72} C Zo*. It is clear that 7,
and 7, are not contained in the same quarter-space of Z,* determined by
<M2, M5> and M, N L25 € e(Sl(A{g, 771-), 1 = 1, 2.

By a similar argument, we prove the result for t = 5.

5.11 Let F* = F\(GI U Gz U ["14 ) F](»; U ]“34 U F:;s) We claim that
7 is hyperbolic for » € F* [(r) = 0. By the symmetry between &, and
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2,, it is sufficient to prove the claim for » € £, M F*. From 5.5 and 5.7,
PN (Gy\J Fi4\J F3) = 0 and
PINF =G \J Fig\J Fyy U (PN F*).
Let7 € &, M F* [(7) = 0. Then v is the cusp of
BOF =% 1\UJF, 8= (Ny7).
Since Ny is the tangent of both % | and %, at v, we obtain that
i) No\{v} Ce(F 1)U e(F,).

Let 8 M Ly be the point Iy, (i, \) € A X A™*. Then G, C &, implies
that I, l25 and /34 are mutually distinct; cf. 5.5. Since

v 6 bd(F]e) ﬂ bd(F34) and Fw f\ F34 = 0,

it is clear that 8 M Fis and 8 M Fy, are connected one-sided neighbour-
hoods of v in 8 M F bounded by v and /6 and /34 respectively. As I(r) = 0
fOI‘ r e Flﬁ U F34, this 1mplles that li)\ € ﬁ M (F16 U F34) and lls, 134
separates los, (I15, l34) M No.

Since % ; and %, are subarcs of order two and (lys, lss, [54) is a line, we
assume that

ll) llG E int(ﬁ‘i), 134 6 lnt(y2) and lg5 E fQ.
We put
iii) U(w) = M (FIG U Fu).

Then U(v) is a closed neighbourhood of v in 8 M F bounded by ;5 and /3,
such that /() = 0 for r € U(@)\{lis, l34, v}.

We note that with the possible exception that some or all of /;4, /35 and
25 may be coincident, all the other /;’s are mutually distinct. Since
BN M, = {v} for t € /U N* and M,, Ms[M,, M) separates M,,
No[M;, Nol, it is easy to check that a subarc of Z# ;\U %, bounded by

iv) ;4 and /; contains either v or I35, ¢ € A,
and
v) I and I3 contains either v or I, N € A*.

We recall that G, is either a triangular region bounded by L4, L2s and
L3s or the point [* = [;y = ly; = l36; moreover, G; C Pa* and A,
(cf. 5.5) and (Lis, L3s) M\ Ny are contained in the same half-plane
bounded by L4 and L.

Since B8 M Py5* is the half-plane bounded by

(lis, lasy 134y and B M (Lys, Los, L) witho ¢ 8 M P os*,

https://doi.org/10.4153/CJM-1980-064-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-064-1

S62 TIBOR BISZTRICZKY

ii1) implies that
vi) U) ST 8N Py M Fand 8N Pos* M F S BN (F*U Gy).

We claim that either {ly;, [y} or {lay, Ly} is contained in g M Po5*.
Clearly, I* = [,y = lygor iy = Iy # Lo (los & w(l1y) = w(l36)) imply that

BN = U)\J BN Po* N\ F).

Hence, we may assume that 1y, # ly. Then ly; € %, implies [y, ¢ F
and ly © Faorly o Faand Iy © Fyoor ) CF oI Ly € F
and [y, © 7, thenii)and v ¢ 2% imply that Zo* N F [P o* N F )
is the subarc of # ;U Fy bounded by (1, and [4[{3, and [35] not containing
v. Hence (1, 1550 C ZPos* by iv). By similar arguments, we prove the
claim in the other two cases.

From 5.9, Z* M (F U7 )2Z2N (F U .F,)] is the subarc
bhounded by /. and lu6]ly5 and [y;] not meeting NV, and, hence, not con-
taining ¢. Thus

Vo, Lol or 111, Las) contained in 8 M 22 55* and

BN, NN = Ulw)\J (BN Aoy M)
imply that

Vit) BN Aoy N % C 22U D *

Finally, we observe that 8/M G determines the distribution of the
Ia's in g\ [ Since Ay and (L, Lys) M Ny are contained in the same
half-plane bounded by Ly, and Ly, it is casy to check the following:

a) H MGy = 0, then [y, Ly, Ll = 3, 8N Pay N F* is the subarc
of #1\U . #,, bounded by [, and /4, containing l; but not v, and /4, [4
separates lus, {1y, l36) (M Ny,

b) If 3M Gy is a point, then 8/M Gy = {lus) and ly; = ¥ or [y =
/11 = [:;e, or /g; = [1‘}6 #Z /11. “ !»_»,, = /*, tllCll ﬁf\ F* C 925*. If ]25 # ]*,
then 8 M %y, M [* is the subarce of %, \U % ,, bounded by /55 and the
14 or I35 distinct from /.5, not containing .

c) If 3M Gy is neither empty nor a point, then /o5 & /14, 36} and
B M Gy is the subare of .# U #, bounded by [y; and [,4 or I3 and not
containing v. If I, = lg, then 8N [* C Py*. 1f [y # I3, then 8N
Pos N I* is the subare of .%# ;U %, bounded by [, and /3 and not
containing v and /4, /35 does not separate lyv;, ({11, l36) M No.

From a), b) and ¢}, we readily obtain that
viil) the inflection point of 3\ Fis contained in %95 \J G,
and

ix) 7, oy, v) M F | separates [os, {23, r) (M Ny for
4 E int(@%*) ﬁ ﬁ-g.
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5.12 THEOREM. Every r € F* such that I(r) = 0 is hyperbolic.
Proof. As in 5.11, let 7 ¢ Py MN.%* with I(7) =0 and 8 = (N, 7).
Then v is the cusp of
BOF =%,U%F,
= BNPy NE)YU (BN Poy* N )
= U@)\J BNG)Y BNPay N\ TF*)U (BN Pos* N F*).
If7 € BN Py M F* then 7 € Py M Zy*, say, from 5.11 vii). Hence
Mo\ Loy € ©(SY(Las, 7)) M e(ST(Ms, 7))
by 5.2 and 5.10 respectively. Clearly,
[(Mo O\ Loz, 7) N\ F| = 3, [SY(Las, 7) N ST (M, 7)| = 2 and
e(S" (Lo, 7)) M e(SY (Mo, 7)) = 0.
Thus 7 € H by 5.0 and 2.5.
If7 € BN Py* M\ F* then
{no} = (S'(Las, 7)) M No = (a5, 7) M No C i(S'(Los, 7))
by 5.4. We note that
no € e(F 1) U e(F,)
from 5.11 1) and
7 € int(F 1) U int(F,)

from 5.11 viii).
Let ¢ € {1,2}. If 7 € int(:%# ;) and e(F ) N e(S'(Ly, 7)) = 9, then
7 € H by 2.5 and the theorem is proved. Suppose that

FCint(F ) and e(F 1) N e(S (L, 7)) 7 0.
Since 8 # (S'(Lys, 7)), this implies that

1(F ) M i(SY(Las, 7)) # 0.
Then no € e(F ;) M i(S*(Las, 7)) yields that

F MV i(SH(Las, 7)) # 0.
Since

F i MNVi(S (Las, 7)) C BN (S (Las, 7)) M F = Iy;

U (BN ST (Las, 7)),
we obtain that

fim ’L.(Sl(sz,, 77)) = {123}
Thus 8 M SY(Les, 7) = {7, 7'} where 7 # ¢ and 7, 7" does not separate
Las, .
We note that ly; € % 5\ ;implies that7 = 2and 7 € int(Py*) N F,
and Iy € F 2N F implies that either 7 or 7’ is contained in int(%a;*)
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N Z,. In either case, the preceding is a contradiction by 5.11 ix). Thus
e(F )N (St (Lys, 7)) = 0
and 7 € H.
5.13 THEOREM. Let I be a biplanar surface satisfying 5.0. Then
F=G\UGy\J Fi,\U Fig\J F33 U Fy6 U F*
where 1) G, is a point or a bounded triangular region with I(r) = 0 for
re Giand ENG, # 0,7 = 1,2,
2YEN Fp # 0 withov € EN Fyand I(r) = 0 for v € Fy, (1, \) €
{1, 3} X {4, 6}, and
3) every v € F* such that [(r) = 0 1s hyperbolic.

We refer to Figure 5 for a representation of F with all fifteen lines
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FIGURE 6

depicted. In order to indicate all lines, the collinearities in 5.1 were not
accurately represented. In Figure 6, we have a truer representation of /
but the line Lo; is not depicted. We note that for simplicity, the lines of
F are labelled by their subscripts.

The surface in P2 defined by x¢* — xo(x:® + x22) + x1x0x3 = 0 satisfies
5.0 with

It

Mi=xo=x0+x1=0,Mo=x2=%x0=0, Mz = xo
M4 x1=xo+x2=O,M5Ex1=x0=O,MﬁEx1=xo—x2=0,
L14 x0+x1+x2=2x0+x3=0,L155x0+x1=x2+x;;=0,

Lis=%0+ %1 — %2 = %3 — 2260 = 0,

xo—x1=0,

i

i

Los=xo+ % =21+ %3 =0, Los = x9 =23 =0,
Log=x0— %2 = %3 —x1 =0,

Lyy=xo—x1+ % =2%—x3=0,Lis=x0+x; =%+ 2x35=0,
2x0 + x5 = 0.

It

L3GExO—xl—'x2
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