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When a viscous liquid bridge between two parallel substrates is stretched by accelerating
one substrate, its interface on the plates recedes in the radial direction. In some cases
the interface becomes unstable. Such instability leads to the emergence of a network
of fingers. In this study, the mechanisms of such fingering are studied experimentally
and analysed theoretically. The experimental set-up allows a constant acceleration of a
movable substrate at up to 180 m s−2. The phenomena are observed using two high-speed
video systems. The number of fingers is measured for different liquid viscosities, liquid
bridge sizes and wetting conditions. Linear stability analysis of the bridge interface takes
into account the inertial, viscous and capillary effects in the liquid flow. The theoretically
predicted maximum number of fingers, corresponding to an instability mode with the
maximum amplitude, and a threshold for the onset of finger formation are proposed.
Both models agree well with the experimental data up to the start of emerging cavitation
bubbles.
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1. Introduction

The phenomena of liquid bridge stretching were first studied by Plateau (1864), Stefan
(1875) and Rayleigh (1878) more than a hundred years ago. Since then, the dynamics
of liquid jets and bridges have been studied extensively. Several comprehensive reviews
of this field present state-of-the-art modelling approaches (Schulkes 1993; Yarin 1993;
Eggers 1997; Villermaux 2007; Eggers & Villermaux 2008).

Liquid jet or liquid bridge stretching is a phenomenon relevant to many practical
applications like rheological measurements, atomisation, crystallisation, car soiling,
oil recovery and typical industrial printing processes, such as gravure, flexography,
lithography and roll coating (Ambravaneswaran & Basaran 1999; Marmottant &
Villermaux 2004; Gordillo & Gekle 2010; Jarrahbashi et al. 2016; Gaylard, Kirwan &
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Lockerby 2017; Xu et al. 2017). The dynamics of liquid bridges also govern coalescence
processes of solid wetted particles (Crüger et al. 2016).

A broad class of models have been developed for relatively long jets. The long-wave
approach for a nearly cylindrical jet describes well, for example, the transverse instability
of a jet exposed to airflow, introduced by Entov & Yarin (1984). A slender jet model
was also used by Eggers & Dupont (1994) and Eggers (1993) to show that liquid bridge
pinching is universal but asymmetric in the pinching region for pinned liquid bridges.
Papageorgiou (1995) later introduced an alternative model with a symmetric geometry
solution in the pinching region. A more recent study of Qian & Breuer (2011) has shown
the effects of surface wettability and moving contact lines on liquid bridge break-up
behaviour for stretching speeds up to 600 μm s−1. Further studies use this long-wave
approach to show the importance of the pinching position for the break-up time (Yildirim
& Basaran 2001) or the behaviour of non-Newtonian liquids on bridge thinning and
break-up behaviour (Anna & McKinley 2000; McKinley 2005).

If the height of a liquid bridge (H0) is much smaller than its diameter (D0), the
dimensionless height is λ � 1 with λ = H0/D0, and therefore the modelling approach has
to be different from that of previous studies. For such cases, the surface of the liquid bridge
can become unstable because of the high interface retraction rates and small initial liquid
bridge heights. Due to the small initial heights and large initial diameter, the conditions
are similar to those in Hele-Shaw flow cells.

Frequently observed phenomena are finger patterns formed from growing instabilities
in fixed-height Hele-Shaw cells for transverse (Saffman & Taylor 1958) or radial
(McCloud & Maher 1995; Mora & Manna 2009) flows. The study by Maxworthy (1989)
compares modified wavenumber theories based on the fastest growing mode from Park,
Gorell & Homsy (1984) and Schwartz (1986) to experiments in radial flows. Paterson
(1981) derived a prediction for the number of fingers formed at a radially expanding
interface of the liquid spreading between two fixed substrates.

The problem is entirely different if the flow is caused by the motion of substrates and
the gap thickness changes in time. For example, the rate equation for the displacement of a
liquid bridge under a defined pulling force is investigated in the study by Ward (2011). The
measurements from Amar & Bonn (2005) were conducted at very low stretching speeds of
20–50 μm s−1, high viscosities of 30 Pa s and large initial heights. For a lifting Hele-Shaw
cell, Nase, Derks & Lindner (2011) developed a model for the interfacial stability of the
liquid bridge, leading to a prediction of the maximum number of fingers. Dias & Miranda
(2013a), Shelley, Tian & Wlodarski (1997), Sinha et al. (2003), Amar & Bonn (2005)
and Spiegelberg & McKinley (1996) studied liquid bridge stretching in lifted Hele-Shaw
set-ups. In most of these cases, the stretching speed is constant and is relatively small, such
that inertial effects are comparably small.

The analysis of fingering instability has been further generalised by Dias & Miranda
(2013a), where the influence of radial viscous stresses at the meniscus has been taken
into account. For identifying the most unstable mode, the maximum amplitude has to be
considered instead of the usual approach of selecting the fastest growing modes. This
approach accounts for the non-stationary effects in the flow, even if the substrate velocity
is constant. The amplitude growth due to the disturbances is not exponential since the
parameters of the problem, mainly the thickness of the gap, change in time. More recently,
Anjos, Dias & Miranda (2017) showed in an analytical and numerical study that inertia has
a significant impact on finger formation at higher velocities, especially on dendritic-like
structures on the fingertips.
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In this study, the flow in a thin liquid bridge between two substrates, generated by
an accelerating downward motion of the lower substrate, is studied experimentally and
modelled theoretically. This situation is a generic model for processes like gravure printing
or water splash due to a tyre rolling on a wet road. The novel feature of this study is that the
substrate can be moved with very high accelerations. In the conducted parameter studies,
accelerations up to 180 m s−2 are investigated. The stretching of the liquid bridge between
the two substrates is observed using a high-speed video system. In the experimental part,
finger formation of the fluid bridge is characterised, and the number of fingers is measured.

Linear stability analysis of the liquid bridge accounts for the inertial term, the viscous
stresses and capillary forces in the fluid flow, and allows the prediction of the maximum
number of fingers. This number is obtained using the mode exhibiting the highest
amplification rate to interface perturbations. The second criterion for the fingering
threshold is associated with the limiting value of the dimensionless wave amplitude. Both
requirements lead to the same scaling of the threshold parameter for fingering and agree
well with the experimental observations.

It should be noted that in this study the number of fingers is predicted as a function
of the substrate acceleration in a lifted Hele-Shaw cell, whereas most previous studies
were based on experiments in fixed or lifting Hele-Shaw cells with significantly lower
lifting velocities. Those predictions (e.g. Saffman & Taylor 1958; Park et al. 1984;
Schwartz 1986; Maxworthy 1989) deviate significantly from the present measurement
results due to physical differences among the experiments. In other words, since no
characteristic velocity exists (only acceleration a), the main dimensionless numbers, like
the capillary number Ca, are defined completely differently. It is important to note that the
physical mechanism of instability in all these problems is the same. The pressure gradient
causes instability in the liquid at the interface. This mechanism is thus analogous to the
Rayleigh–Taylor instability.

2. Experimental method

2.1. Experimental set-up and procedure
The experimental set-up for stretching a liquid bridge is shown schematically in
figure 1(a). The stretching system consists of two substrates orientated horizontally. The
lower substrate is mounted on a linear drive which allows accelerations from 10 to
180 m s−2. The positional accuracy of the linear drive is about 5 μm. The upper substrate
is fixed. Both substrates are transparent, fabricated from glass with a roughness of
Ra = 80 nm. The initial thickness of the gap in the experiments, H0, varies from 20 to
140 μm, as shown later in figure 5. The static contact angle between the Gly50/Gly80
liquid and the glass substrates is θ ≈ 40◦. The measurements for hydrophobic substrates
are performed on silanised glass wafers (Hartmann & Hardt 2019) with a static contact
angle between substrate and Gly50/Gly80 of θ ≈ 110◦.

A microlitre syringe is used as a fluid dispensing system. To investigate the effect of the
liquid properties, two water–glycerol mixtures with different viscosities are used: Gly50
with viscosity μ = 5.52 × 10−3 Pa s, surface tension σ = 67.3 × 10−3 N m−1 and density
ρ = 1129 kg m−3; and Gly80 whose properties are μ = 5.36 × 10−2 Pa s, σ = 65.5 ×
10−3 N m−1 and ρ = 1211 kg m−3. The possible variation of the liquid properties with
temperature is accounted for in the data analysis.

To investigate the influence of the geometry parameter on the bridge strain, the liquid
volumes of the bridge are varied in this study between 1 and 5 μl. This allows variation of
the initial height-to-diameter ratio, λ = H0/D0, in the range 0.003 < λ < 0.2.
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High-speed camera
system with 
coaxial illumination

Telecentric
lens system

Accelerated substrate

(a) (b)

FIGURE 1. Experimental method: (a) the set-up and (b) post-processing of images.

The observation system consists of two high-speed video systems. The side-view camera
is equipped with a telecentric lens. The camera on top uses a 12× zoom lens system. The
images are captured with a resolution of one megapixel at a frequency of 12.5 kfps.

The post-processing for the top view was performed using trainable weka
(Arganda-Carreras et al. 2017), a machine learning algorithm, assisting with the
segmentation of the images. Afterwards, the images were skeletonised and the number
of fingers was counted. An example of the segmentation and skeleton is shown in
figure 1(b) and later in figure 7 the number of fingers is plotted against R/R0.

2.2. Observations of bridge stretching
The experimental set-up allows shadowgraphy images of the contact area between
substrate and liquid to be captured during the stretching process. An example of a
side-view, high-speed visualisation of a stretching Gly80 bridge is shown in figure 2(a). In
this example, the substrate acceleration is 180 m s−2 and the initial height is 20 μm. The
initial liquid bridge height-to-diameter ratio is λ = 0.02. During the stretching process, the
diameter in the middle of the bridge, DM, reduces and a thin liquid film remains on both
substrates. The contact line remains pinned for all experiments performed, evident from
the top views in figure 3. After 12.6 ms the bridge pinches off. In figure 2(b) the evolution
of the scaled bridge diameter during stretching is shown as a function of the dimensionless
gap width. For the stage when H � DM, the evolution of the bridge diameter is universal
and it does not depend on the substrate acceleration or liquid properties.

Several typical top views of the liquid bridge through the transparent substrate are
shown in figure 3 at different instants for various experimental parameters. In some cases,
the onset of instability can be clearly seen, which leads to the appearance of a net of
fingers. The most stable case in figure 3(a) is obtained with a relatively wide gap and
low acceleration. The most unstable case, associated with the highest number of fingers,
corresponds to the highest accelerations and smaller initial gap widths, as shown in
the example in figure 3(b). In the example in figure 3(c), fingers can be observed even
with relatively small substrate acceleration, but only for small dimensionless heights λ.
Figure 3(d) shows how increased liquid viscosity leads to an evolved finger
pattern. Increasing the substrate acceleration or viscosity enhances the fingering
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FIGURE 2. Evolution of the diameter of a liquid bridge. (a) Side views of a Gly80 bridge
stretched with a constant acceleration of 180 m s−2. The initial gap is 20 μm and the
gap-to-diameter ratio is λ = 0.02. (b) The scaled bridge middle diameter DM/D0 as a function
of the dimensionless gap width H/H0 for various substrate accelerations. The curve corresponds
to the predictions based on (3.2).

instability, whereas, with an increasing dimensionless height λ, finger formation is
mitigated.

The main part of this study was conducted using glass substrates with a static contact
angle of θ ≈ 40◦, as shown in figure 3. As already mentioned, the outer contour of the
bridge remains almost stationary during finger formation. To investigate the effect of
wettability on the fingering instability, also measurements with different contact angles
were performed. The reference measurements were executed on hydrophobic silanised
glass substrates with static contact angles of θ ≈ 110◦, as shown in figure 4. Since a
higher contact angle results in a higher contact line speed (Hoffman 1975; Voinov 1976;
Dussan 1979; Tanner 1979), an effect on the fingering instability is more likely. In direct
comparison to figure 3, it is evident that the contact line movement starts earlier, and
therefore the contact line speed is higher. It is also observable from figure 4 that the contact
line also stays immobile during finger formation and starts to move after the fingers have
already begun to disintegrate, at times of around 9.04 ms. Therefore the dewetting does
not seem to affect the fingering instability due to their subsequent appearance.

3. Stability analysis of the bridge interface

In this study, a stability analysis is performed based on experimental measurements of
the flow in a thin gap between two substrates. The problem is linearised in the framework
of the long-wave approximation.

3.1. Basic flow
The flow field in a stretching liquid bridge can be subdivided into two main regions: the
meniscus region and the central, inner region, which is not influenced by the meniscus. The
solution for an axisymmetric creeping flow between two parallel substrates, one of which
moves, is well known (Landau & Lifshitz 1959). The axial and the radial components of
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0 ms 0 ms 0 ms 0 ms

0.8 ms 0.7 ms 2.7 ms 2 ms

2.2 ms 1.4 ms 5.4 ms 4.6 ms

3.5 ms 2.7 ms 8.2 ms 7 ms

4.9 ms 5.8 ms 10.1 ms 10.1 ms

6.6 ms 14.5 ms 13.6 ms 29 ms

5 mm

(a) (b) (c) (d )

FIGURE 3. Top view of the receding interface due to bridge stretching under various
experimental conditions: (a) liquid Gly50, substrate acceleration a = 180 m s−2, relative gap
width λ = 0.03; (b) Gly50, a = 180 m s−2, λ = 0.006; (c) Gly50, a = 10 m s−2, λ = 0.06;
(d) Gly80, a = 10 m s−2, λ = 0.03. Contact angles are θ ≈ 40◦ for Gly50 and Gly80 on the
glass substrate.

the velocity field are

u 0,r = −3Ḣrz
H2

(
1 − z

H

)
, u 0,z = 3Ḣz2

H2

(
1 − 2z

3H

)
. (3.1a,b)

This velocity field satisfies the equation of continuity, the momentum balance equation
and the kinematic conditions at both substrates. Unfortunately, this solution does not
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0 ms

11.06 ms 21.04 ms 457 ms

5 mm

0.2 ms 9.04 ms

FIGURE 4. Sequence of bottom views of the liquid bridge and the wetted spot at different
instants. The time associated with the fingering (approximately 10−1 ms) is one order
of magnitude smaller than the time at which the dewetting process becomes notable, at
approximately 20 ms. Contact angles for the hydrophobic substrates are θ ≈ 110◦ for Gly50 and
Gly80.

apply to the case when the effect of the substrate acceleration becomes significantly
high. Moreover, the expression for the velocity field between two substrates (3.1) is not
applicable at the interface of the meniscus. It does not satisfy the conditions for the
pressure at the interface, determined by the Young–Laplace equation, and it does not
satisfy the conditions of zero shear stress at this interface. Moreover, this velocity field
is not able to accurately predict the rate of change of the meniscus radius Ṙ. Assuming
the rate of change of the minimum meniscus radius at the middle plane as Ṙ = u 0,r

at z = H/2, and using (3.1), the solution of the equation for the meniscus propagation
becomes R = R0(H0/H)3/16. This solution does not agree with the experimental data for
the evolution of the meniscus radius. Therefore, the flow in the meniscus region has to be
treated differently.

An expression for the radius and the height can be derived from the overall mass balance,
where the initial thickness is H0, the initial radius is R0 and the lower substrate moves with
a constant acceleration a. The radius of the bridge meniscus, R(t), can be estimated as

R(t) = R0

[
H0

H(t)

]1/2

, H(t) = H0 + at2

2
, (3.2a,b)

which gives a valid estimate for the initial times, when R(t) � H(t), as demonstrated in
figure 2(b).

The flow in the meniscus region has to be treated separately. This flow has to satisfy
the boundary conditions at the curved meniscus interface and must also include the corner
flows (Moffatt 1964; Anderson & Davis 1993). The model of the meniscus flow is not
trivial and can lead to multiple solutions (Gaskell et al. 1995). However, an accurate
solution for the meniscus stability problem has to be based on the meniscus velocity field,
since the stresses in this region govern the meniscus instability.
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In this study, it is assumed that the main reason for the meniscus instability is the
appearance of a normal pressure gradient at the meniscus interface. This mechanism is
analogous to the Rayleigh–Taylor instability, where the pressure gradient is caused by
gravity or by the interface acceleration. This approximate solution is valid only for the
case of a very small relative gap thickness, λ � 1. Note also that the ratio of the axial and
radial components of the liquid velocity is comparable with λ. The stresses associated with
the axial flow are therefore much smaller than those associated with the radial velocity
component.

In the following, only the dominant terms of the pressure gradient at the interface are
considered. The pressure gradient includes the viscous stresses and the inertial terms
associated with the material acceleration of the meniscus R̈. The approximation is based on
the fact that the radial velocity in the liquid at the interface at the middle plane (z = H/2)
is equal to Ṙ. The value of the pressure gradient is then estimated from the Navier–Stokes
equations with the help of (3.2) in the form

p 0,r = −bμ
Ṙ

H(t)2
− ρR̈ = μatb

√
H0R0

2H7/2
+ ρa

√
H0R0

2H5/2
(H0 − at2), (3.3)

where b is a dimensionless constant. Its value b ≈ 12 can be roughly estimated
approximating the velocity profile by a parabola, as in the gap-averaged Darcy’s law (Bohr,
Brunak & Nørretranders 1994; Shelley et al. 1997; Amar & Bonn 2005; Dias & Miranda
2013b).

Approximation (3.3) is valid only for the cases of λ � 1 considered in this study.
Since the ratio of the axial to the radial velocity, which can be estimated from (3.2), is
comparable with λ, the effect of the axial velocity on the pressure gradient is negligibly
small.

3.2. Planar interface, long-wave approximation of small flow perturbations
Since the radius of the liquid bridge is much larger than the gap thickness, R � H, the flow
leading to small interface disturbances can be considered in a Cartesian coordinate system
{x, y}, where the x coordinate coincides with the radial direction normal to the meniscus,
defined as x = 0, and the y direction is tangential to the meniscus. The kinematic relation
(3.2) allows the evaluation of the necessary condition R � H, which is satisfied at times
t � √

2(R0 − H0)/a. In all our experiments this condition is satisfied.
The coordinate system {x, y} is fixed at the meniscus of the liquid bridge, such that

r = R(t) + x . (3.4)

The small flow perturbations, in the direction normal to the substrates, are
neglected. Liquid flow occupies the semi-infinite space x ∈ ] − ∞; 0]. Denote
{u′(x, y, t); v′(x, y, t)} as the velocity vector of the flow perturbations, averaged through
the gap width, and p′(x, y, t) is the pressure perturbation. The absolute velocity and the
pressure p in the gap can be expressed in the form

u = Ṙ(t) + u′(x, y, t), v = v′(x, y, t), p = p0(x, t) + p′(x, y, t). (3.5a–c)

Therefore, the time derivatives of the components of the velocity field can be written in
the form

u ,t = R̈ + u′
,t − Ṙu′

,x , v,t = v′
,t − Ṙv′

,x . (3.6a,b)

The gap thickness H is assumed to be the smallest length scale in the problem. In this
case, consideration of only the dominant terms in the Navier–Stokes equation, written in
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the accelerating coordinate system, yields

p,x = μ

(
−b

Ṙ + u′

H2
+ u′

,xx + u′
,yy

)
− ρR̈ − ρu′

,t, (3.7a)

p,y = μ

(
−b

v′

H2
+ v′

,xx + v′
,yy

)
− ρv′

,t. (3.7b)

The characteristic value of the leading viscous terms in the pressure gradient expressions
(3.7a) and (3.7b) is μbu′/H2

0 . The characteristic time of the problem is
√

H0/a. Therefore,
the inertial terms of the flow fluctuations are of order ρu′

,t ∼ ρu′√a/H0. The Reynolds
number, defined as the ratio of the inertial and viscous terms, is therefore

Re = a1/2H3/2
0 ρ

bμ
. (3.8)

In all experiments, the Reynolds number is of the order of 10−2. The inertial effects
associated with the flow fluctuations are therefore negligibly small. The governing
equation for the velocity perturbation can then be obtained from (3.7a) and (3.7b),
neglecting the terms ρu′

,t and ρv′
,t:

− b
u′

,y − v′
,x

H2
+ u′

,xxy + u′
,yyy − v′

,xxx − v′
,yyx = 0. (3.9)

The velocity field {u′, v′} has to satisfy (3.9) as well as the continuity equation and the
condition of the shear-free meniscus surface:

u′
,x + v′

,y = 0, (3.10a)

u′
,y + v′

,x = 0, at x = 0. (3.10b)

Consider the sinusoidal profile of the flow fluctuations along the y direction. This means
that both velocity components include the term exp(iky), where k is the wavenumber.
The corresponding velocity field for the velocity of the small flow disturbances satisfying
(3.9)–(3.10b) is

u′ =
(

exp(kx) − 2H2k2

b + 2H2k2
exp

[√
b + H2k2

H
x

])
exp(iky)T(t), (3.11a)

v′ = i

(
exp(kx) − 2Hk

√
b + H2k2

b + 2H2k2
exp

[√
b + H2k2

H
x

])
exp(iky)T(t), (3.11b)

where T(t) is a function of time.
The small perturbations of the meniscus shape, defined as x = δ(y, t), are determined

by the normal velocity component u at the meniscus x = 0. The boundary conditions for
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899 A1-10 S. Brulin, I. V. Roisman and C. Tropea

the meniscus perturbations, δ,t = u at x = 0, yield

δ = exp(iky)G(t), with T(t) = b + 2H2k2

b
Ġ(t). (3.12)

The pressure increment, associated with the flow perturbations at the interface, p′, is
determined by the capillary forces and viscous stress:

p′(x, t) = −σδ,yy − 2μu,x , at x = δ(y, t). (3.13)

The total pressure near the meniscus also depends on the curvature in the plane normal
to the substrate. In this study, the dependence of the shape of the meniscus in this plane
on δ(y, t) is neglected, since the capillary pressure associated with this curvature is
approximated by p ∼ σ/H. Thus, this pressure does not depend on the y coordinate and
does not contribute to flow stability.

The pressure p′ at position x = 0 can be approximated accounting for the smallness of
the shape deformation:

p′ = −σδ,yy − δp0,r − 2μu,x , at x = 0, (3.14)

where p0 is the pressure gradient at the meniscus of the basic flow, determined in (3.3). The
term δp0,r appears as a result of linearisation of the pressure terms in the neighbourhood
of the liquid bridge interface.

Substituting (3.14) in expression (3.7b) yields, with the help of (3.11a)–(3.12), the
following ordinary differential equation for the function G(t):

b(k3σ − kp0,r)H2G(t) + [
4H3k3(√H2k2 + b − Hk

)+ b2]μĠ(t) = 0. (3.15)

The solution of the ordinary differential equation (3.15) is

G(t) = δ0 exp

[
− b

μ

∫ t

0

H2
(
k3σ − kp0,r

)
4H3k3

(√
H2k2 + b − Hk

)+ b2
dt

]
, (3.16)

where δ0 is the initial meniscus perturbation.
The function G(t) in (3.16) can be derived using (3.2) and (3.3). It can be expressed in

dimensionless form as

G = δ0 exp

[√
b

2λ

∫ τ

0
Ω(ξ, τ) dτ

]
, (3.17)

Ω =
τξ(τ 2 + 1)−3/2 − ξ 3

Ca
(τ 2 + 1)2 + Re(1 − 2τ 2)ξ√

2
√

τ 2 + 1
1 − 4(τ 2 + 1)3ξ 3[ξ(τ 2 + 1) −

√
(τ 2 + 1)2ξ 2 + 1]

, (3.18)

where the dimensionless time τ , the dimensionless wavenumber ξ and the capillary
number Ca are defined as

τ = t
√

a
2H0

, ξ = kH0√
b

, Ca =
√

aμR0√
2H0σ

. (3.19a–c)

The Reynolds number is defined in (3.8) and the geometrical parameter is λ = H0/2R0, as
defined in § 2.
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FIGURE 5. A cylindrical frame of reference is used at the symmetry axis (r, z). The area of
interest for instability analysis is magnified, and a Cartesian frame of reference is used at the
interface {x, y}.
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τ  = 0.3
τ  = 0.5
τ  = 0.7
τ  = 1

FIGURE 6. Dimensionless amplitude of radius perturbations ln(G/δ0) as a function of the
dimensionless wavenumbers ξ for various time instants τ , computed by numerical integration
of (3.16): (a) Ca = 2.45, Re = 0.005, λ = 0.0059; (b) Ca = 0.704, Re = 0.0026, λ = 0.0099;
(c) Ca = 0.0663, Re = 0.0252, λ = 0.0109; and (d) Ca = 0.5109, Re = 0.034, λ = 0.0902.

Equations (3.17) and (3.18) allow computation of the evolution of the amplitude of waves
for a given wavelength and given parameters of liquid bridge stretching.

In figure 6 the dimensionless amplitude of the perturbations of the bridge radius
ln(G/δ0), computed using (3.17), is shown as a function of the dimensionless wavenumber
ξ for various times τ . In the cases shown in figure 6(a,b), corresponding to a large number
of fingers, the absolute amplitude of the perturbation G is two orders of magnitude higher
than the amplitude of the initial perturbations δ0. In the case of figure 6(c) close to the
fingering threshold, G/δ0 ∼ 101, while in the case shown in figure 6(d), in which no
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899 A1-12 S. Brulin, I. V. Roisman and C. Tropea

apparent fingering has been observed, the value of G/δ0 is of order unity. In each of the
cases shown in figure 6(a) the wavenumber corresponding to the maximum amplitude is
only slightly dependent on time, but is significantly influenced by the parameters of bridge
stretching.

3.3. Approximation for small capillary numbers
In the long-wave approximation, values of ξ are assumed to be small. This assumption can
again be examined after the solution for typical values of ξ has been obtained. In this study,
only the dominant terms are taken into account, while the terms of O(ξ 4) are neglected.
The corresponding approximate expression for

∫ τ

0 Ω dτ is derived in the form

∫ τ

0
Ω(ξ, τ) dτ = ξ − τ(3τ 4 + 10τ 2 + 15)ξ 3

15Ca
− ξ√

τ 2 + 1

− Reξ√
2

(
τ
√

τ 2 + 1 − 2 arcsinh τ
)+ O(ξ 4). (3.20)

The most unstable mode ξ∗ associated with the maximum positive value of the function∫ τ

0 Ω dτ is therefore

ξ∗ =
√

Ca

⎡
⎢⎢⎣

1 − 1√
τ 2 + 1

+ Re√
2
(τ

√
τ 2 + 1 − 2 arcsinh τ)

τ

(
3
5
τ 4 + 2τ 2 + 3

)
⎤
⎥⎥⎦

1/2

. (3.21)

The dimensionless time τ is of the order of unity. The value of the dimensionless
wavenumber also has to be small in the framework of the long-wave approximation used
in this study. Therefore, the solution (3.21) for the most unstable mode ξ∗ is valid only for
small capillary numbers.

The wavelength of the most unstable mode is 
∗ = 2π/k. The number of finger-like jets
is therefore

Nf = 2πR/
∗ =
√

b
2λ

ξ∗√
1 + τ 2

. (3.22)

The expression for the number of fingers is obtained using (3.21):

Nf =
√

bCa
2λ

⎡
⎢⎢⎣

1 − 1√
τ 2 + 1

+ Re√
2
(τ

√
τ 2 + 1 − 2 arcsinh τ)

τ (τ 2 + 1)

(
3
5
τ 4 + 2τ 2 + 3

)
⎤
⎥⎥⎦

1/2

. (3.23)

The predicted number of fingers depends on the dimensionless time τ . Such dependence
is confirmed by observations.
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20

40

0 0.2 0.4 0.6
R/R0
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0.8 1.0

Ca = 2.96
Ca = 0.42
Ca = 0.29

FIGURE 7. The number of fingers Nf as a function of the liquid bridge radius R observed in
three different experiments. The measurements were performed with λ ≈ 0.01 and Re ≈ 0.1.

4. Results and discussion

The maximum value of the function Nf (τ ) can be computed from (3.23). In the limit
Re = 0, the maximum,

Nmax ≈ 0.38
√

Ca/λ, Ca � 1, Re = 0, (4.1)

is reached at the instant τ� ≈ 0.49. The predicted bridge radius R corresponding to the
maximum number of jets is therefore R� = R0(1 + τ 2

� )−1/2 ≈ 0.9R0.
In figure 7 the experimentally measured number of fingers at various instants and

corresponding radii scaled by R0 are shown exemplarily for three different values of Ca,
but for nearly the same values of λ and Re. The number of fingers reaches the maximum
at the radii R�/R0 ≈ 0.8–0.9, as predicted by the theory.

For lower radii R � R�, corresponding to longer times τ , the flow in the gap is
significantly influenced by the nonlinear effects associated with the growth of fingers.
Such nonlinear analysis is out of the scope of this theoretical study. For smaller Ca, the
influence of the nonlinear effects becomes larger; for those cases, we have to limit the
analysis to a local maximum at R > R�.

The amplitude of the perturbations at the corresponding conditions, ξ = ξ�, τ = τ�, can
also be estimated for small capillary numbers:

G� ≈ δ0 exp(0.11Ca1/2λ−1), Ca � 1, Re = 0. (4.2)

Given the approximate estimation of the number of fingers (3.23), the dimensionless
parameter Nmaxλ/Ca1/2 is a function of the Reynolds number if the capillary number
is small. In figure 8 this dependency is compared with theoretical predictions based on
the numerical computation of the maximum value of the expression for Nf (3.23). The
theoretical predictions do not contradict the experiments, although the clear dependence
of the number of fingers on the value of the Reynolds number is not that apparent due
to the relatively large scatter of data. This scatter can be explained by the fact that in the
cases close to the fingering threshold, the amplitude of perturbations is relatively small at
the time instant corresponding to Nf = Nmax . Therefore, the fingers can only be recognised
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FIGURE 8. Scaled maximum number of observed fingers Nmaxλ/Ca1/2 as a function of the
Reynolds number.
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FIGURE 9. Computational results of Nmaxλ as a function of the capillary number Ca for various
Reynolds numbers Re. Comparison with theoretical predictions based on the approximate
solution.

by the optical system slightly later, when the amplitude magnification is significant. The
conditions near the fingering threshold (4.4) are discussed later in this section.

The approximate solution (3.21) for the most unstable mode, based on the assumption
of the smallness of ξ∗, does not apply to the cases when the capillary number is not very
small. In these cases, a complete numerical solution is required. In this solution the values
of ξ∗(τ ) for a specific capillary number Ca and Reynolds number are first computed as
a point corresponding to the maximum of

∫ τ

0 Ω dτ , where Ω(ξ, τ) is defined in (3.18).
Then, the maximum number of fingers is computed using (3.22) at the time interval
τ > 0. The theoretically predicted values of Nmaxλ are determined only by the capillary
number and by the Reynolds number. The theoretical predictions of Nmaxλ are shown in
figure 9. As expected, the influence of inertia becomes significant when both the capillary
and Reynolds numbers are relatively large.
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Re = 0
Re = 0.05
Re = 0.1
Re = 0.2

0.3
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p 0,

r/
Π
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0 0.2 0.4 0.6 0.8 1.0
τ

FIGURE 10. The values of the scaled pressure gradient at the meniscus interface p0,r/Π as a
function of dimensionless time τ for various values of the Reynolds number Re. The scale for
the pressure gradient, Π , is defined in (4.3).

The significance of the inertial effects in this problem is rather surprising, noting the
very small values of Reynolds numbers considered in this study. The main factor governing
the fingering process is the pressure gradient at the meniscus interface (3.3), obtained
from the base solution. The mechanism of instability caused by the positive normal
pressure gradient at the liquid interface is analogous to the Rayleigh–Taylor instability
(Chandrasekhar 2013), where this gradient is caused by gravity or interface acceleration.
In the presented case, this term can be written in dimensionless form using (3.8) and (3.18):

p0,r

Π
= τ

(τ 2 + 1)7/2
+ Re(1 − 2τ 2)√

2(τ 2 + 1)5/2
, Π =

√
abμ

2
√

2H3/2
0 λ

. (4.3)

Function p0,r(τ )/Π is shown in figure 10 for various values of the Reynolds number. The
inertial effects, associated with terms in (4.3), including the Reynolds number, are most
pronounced at the very initial stages of bridge stretching, when the substrate velocity (and
thus the viscous stresses) is small. This is why, in the case of the liquid bridge stretched
by an accelerating substrate, both viscous and inertial effects contribute to the meniscus
instability.

For the measurements performed on hydrophobic substrates, the number of fingers was
estimated correctly, showing that hydrophobicity does not have a significant effect on the
fingering instability (see figure 11). As shown in figure 4, the finger patterns start to emerge
before the dewetting begins. Following the estimation from Qian & Breuer (2011), the
time scale for the contact line speed is udewetting = √

σ/ρR, which is in our experiments of
the order of 10−2 m s−1. The finger formation time scale τ = √

2H0/a can be estimated
using equation (3.18), which yields τ ∼ 10−4 –10−3 s. Consequently, the dewetting length
for the relevant time scale is of the order of 10−6–10−5 m and therefore too small to
affect the fingering instability. The difference between the two time scales provides an
approximate validity range of the proposed fingering instability theory. Therefore, the
introduced prediction of the number of fingers is in good agreement with substrates of
different wetting conditions, as shown in figure 11, as long as the finger formation and
dewetting time scales are not of the same order.
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FIGURE 11. Comparison of the measured and theoretically predicted maximum number of
fingers Nmax . The experiments accompanied by cavitation are marked by circles. The static
contact angle of the measurements marked as diamonds, rectangles and circles is θstatic = 40◦,
while that of the measurements marked as triangles is θ ≈ 110◦. The straight dashed line
corresponds to perfect agreement between experiment and theory.

The experimental and theoretically predicted values for Nmax are compared in figure 11.
The agreement is rather good for most of the cases. In some instances, however, the number
of fingers is overestimated. In all these overestimated experiments, several voids in the
liquid bridge have been observed, formed due to cavitation. In some cases these voids
quickly expand, leading to the formation of structures resembling Voronoi tessellation, as
shown in the examples in figure 12. These cases are marked as liquid bridge stretching
with cavitation.

Several additional cases have also been observed, marked in figure 13 as transient
cavitation. In these cases, a small number of macroscopic voids emerge far from the
interface and then disappear after some time when the stresses are relaxed. It is most
probable that, in this transitional case, the flow in the stretched bridge is influenced locally,
also near the interface, by the nucleation of microbubbles. Even if the size of the bubbles
does not exceed the critical diameter of cavity formation, they can still influence the flow
near the moving meniscus.

In figure 14 the outcomes of liquid bridge stretching (stable receding of the meniscus
without fingering or the emergence of apparent fingering) are shown for various values of
λ and Ca. It is not always easy to determine the outcome at the limiting cases near the
threshold conditions. In this study, fingering is identified if more than five periods of the
interface waves can be clearly observed. The condition Nmax = 5 is used as a criterion for
the selection of the experiments leading to fingering. This criterion also allows theoretical
prediction of the threshold value λthreshold for given capillary and Reynolds numbers. As
shown in figure 8, the influence of the Reynolds number on the number of the fingers
is minor and, to a first approximation, the threshold value λthreshold is a function only of
Ca. For small capillary numbers, the threshold value of λ can be estimated using the
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0 ms

1 ms 1.5 ms 6.9 ms

5 mm

0.4 ms 0.9 ms

FIGURE 12. Example of void formation during liquid bridge stretching. The liquid is Gly80.
The other experimental parameters are a = 180 m s−2, H0 = 60 μm, λ = 0.006.

0 ms

3.6 ms 4.1 ms 4.6 ms

5 mm

2.4 ms 2.9 ms

FIGURE 13. Example of transient cavitation. Several voids are formed in the central part of the
liquid bridge and then disappear. The liquid is Gly80. The other experimental parameters are
a = 10 m s−2, H0 = 53 μm, λ = 0.006.

approximate solution (4.1):

λthreshold ≈ 0.076
√

Ca, Ca � 1, Re = 0. (4.4)

It is interesting to note that in the limit Re = 0, the same scaling as in (4.4), namely
λthreshold ∼ √

Ca, corresponds also to a certain amplitude Gthreshold ≈ 1.7δ0 of the shape
perturbations δ(y, t), where δ0 is the initial shape disturbance. This relation can be
obtained from (4.2). Since the initial disturbance δ is very small, the perturbations of
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0.3

0.2

0.1

0 0.5 1.0 1.5
Ca

2.0 2.5

Fingering
Stable
λthreshold, theory

λ

FIGURE 14. Nomogram for the outcomes of liquid bridge stretching for various values of λ and
capillary number Ca. The threshold for bridge fingering is obtained from the full computations
for Re = 0 of λthreshold, corresponding to the condition Nmax = 5. The approximate solution (4.4)
is also shown on the graph, but it is indistinguishable from the results of full computations for
Ca < 1.

the amplitude Gthreshold cannot be resolved with the optical system. Note, however, that
Gthreshold characterises the amplitude of the perturbations at the predicted time τ = τ�,
corresponding to the maximum number of fingers. This amplitude continues to grow
nearly exponentially in time. This is why in the cases close to the threshold, the fingers
can be recognised at times slightly larger than τ� and thus at radii close to R/R0 ≈ 0.8, as
shown, for example, for the case Ca = 0.29 in figure 7.

Therefore, both conditions, a certain number of fingers and a certain amplitude of the
disturbances, can be used as conditions for the observable generation of fingers.

5. Conclusion

In this study, the pattern formation in a liquid bridge stretched by an accelerating
substrate is investigated experimentally and modelled theoretically. The maximum number
of fingers is measured for a large range of liquid viscosities, gap widths and substrate
accelerations.

The process of finger formation is studied using linear stability analysis for small
perturbations of the liquid bridge shape. The theory accounts for the viscous stresses,
capillary forces and inertial effects. The model is developed for a single-sided accelerated
substrate. It allows calculations of the amplitude of a certain wavelength on the bridge
surface over time as long as λ � 1 and the two-dimensional approximation applies to
the flow field. Consequently, a prediction is derived for the number of fingers. The
agreement with observations is good, despite the fact that no adjustable parameters have
been introduced into the model. The prediction is, however, only applicable if no cavitation
occurs. For experimental cases where cavitation occurs, the theory overestimates the
number of fingers.
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A criterion λthreshold ≈ 0.076
√

Ca has been obtained for the onset of fingering instability.
The fingering assumed a certain number of observable fingers. For lower numbers
Nmax < 5, the instability is perceived as the loss of the asymmetric shape, but not as
fingering. For Nmax < 1 the flow should be stable.

An alternative condition for fingering, namely the threshold value for the amplitude of
perturbations, leads to the same scaling for the threshold conditions: λthreshold ∼ √

Ca.
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