ENCLOSURE THEOREMS FOR EIGENVALUES OF ELLIPTIC OPERATORS

BY
JOHN C. CLEMENTS ${ }^{1}$)

1. Introduction. Let L be the linear, elliptic, self-adjoint partial differential operator given by

$$
L u=-\sum_{i, j=1}^{n} D_{i}\left(a_{i j} D_{j} u\right)+b u, \quad a_{i j}=a_{j i},
$$

where D_{j} denotes partial differentiation with respect to $x_{j}, 1 \leq j \leq n, b$ is a positive, continuous real-valued function of $x=\left(x_{1}, \ldots, x_{n}\right)$ in n-dimensional Euclidean space E^{n}, the $a_{i j}$ are real-valued functions possessing uniformly continuous first partial derivatives in E^{n} and the matrix $\left\{a_{i j}\right\}$ is everywhere positive definite. A solution u of $L u=0$ is assumed to be of class C^{1}.

Our purpose is to establish variational formulae for the eigenvalues and eigenfunctions of L for two specific perturbations. These are: the perturbation of E^{n} to an n-disk D_{a} of radius a, considered in $\S 2$; and the perturbation of the upper half-space H^{n} of E^{n} to the upper half of D_{a}, S_{a}, discussed in $\S 3$. The boundary condition adjoined on the bounding surface of D_{a} and S_{a} is

$$
\begin{equation*}
B v=0 \tag{1-1}
\end{equation*}
$$

where B is the linear boundary operator defined by

$$
B v=\sigma_{1} \sum_{i, j=1}^{n} a_{i j} D_{j} v \cos \left(\nu, x_{j}\right)+\sigma_{2} v
$$

and ν denotes the outer normal to the bounding surface. It is assumed that the functions σ_{1} and σ_{2} are defined on the bounding surface, are piecewise continuous and non-negative, and that the sum $\sigma_{1}+\sigma_{2}$ has a positive lower bound.

Let H_{1}, H_{2}, H_{a} and H_{s} denote the Hilbert spaces which are Lebesgue spaces with respective inner products

$$
\begin{array}{ll}
(u, v)_{1}=\int_{E^{n}} u(x) \overline{v(x)} d x, & (u, v)_{2}=\int_{H^{n}} u(x) \overline{v(x)} d x, \\
(u, v)_{a}=\int_{D_{a}} u(x) \overline{v(x)} d x, \quad \text { and } \quad(u, v)_{s}=\int_{S_{a}} u(x) \overline{v(x)} d x,
\end{array}
$$

and respective norms $\|u\|_{1},\|u\|_{2},\|u\|_{a}$ and $\|u\|_{s}$. For x in $E^{n},|x|$ denotes the usual Euclidean norm. The eigenvalue problem for L on E^{n},

$$
\begin{equation*}
L u=\lambda u, \quad u \in H_{1}, \tag{1-2}
\end{equation*}
$$

Received by the editors May 25, 1969.
${ }^{(1)}$ This paper represents part of the author's thesis prepared at the University of B.C. under the direction of C. A. Swanson.
will be called the basic problem in $\S 2$. Similarly, the eigenvalue problem for L on H^{n}

$$
\begin{align*}
& L u=\eta u, \quad u \in H_{2}, \\
& B u=0 \text { on the }(n-1) \text { hyperplane } P=\left\{x \mid x \in E^{n}, x_{n}=0\right\}, \tag{1-3}
\end{align*}
$$

will be called the basic problem in $\S 3$. The corresponding perturbed eigenvalue problems will be defined in $\S \S 2$ and 3.
In general it is not true that the eigenvalues of the perturbed problems tend to limits as $a \rightarrow \infty$, even when the spectrum of the basic problem is entirely discrete (see [4] p. 20). The only assumption required in order to obtain the enclosure theorems and representational formulae is that there exists at least one eigenvalue of the basic problem whose corresponding eigenfunctions satisfy some limit property. For example, Theorem I in $\S 2$ shows that if the eigenfunctions corresponding to the basic eigenvalue λ of multiplicity m satisfy condition (2-2), then at least m eigenvalues of the perturbed problem (2-1) converge to λ as the radius a of the n-disk tends to infinity.

The principal difficulty in these estimation problems is in establishing a reasonable condition on the basic eigenfunctions so that the norm of the function $f=R_{a} u-\alpha u$, constructed in Lemma 1, becomes small for large a. For example, in $\S 2$ this condition is characterized in terms of the " L-measure" (2-3) which is independent of the basic eigenfunctions. The method employed for the treatment of these problems is an extension of that used by C. A. Swanson [4] for the special case $\sigma_{1}=0$ and the results established here properly contain those in [4].
2. The perturbation of E^{n} to an n-disk. The perturbed eigenvalue problem is

$$
\begin{equation*}
L v=\mu v \text { in } D_{a}=\{x| | x \mid<a, a>0\}, \quad v \in \mathscr{D}_{a} \tag{2-1}
\end{equation*}
$$

where the perturbed domain \mathscr{D}_{a} is defined to be the set of all complex-valued functions v such that:
(i) v is twice continuously differentiable on D_{a};
(ii) v and $D_{j} v, j=1, \ldots, n$, are continuous at those points of $\partial D_{a}=\{x| | x \mid=a\}$ at which σ_{1} and σ_{2} are continuous and v satisfies (1-1) on ∂D_{a}.

The only assumption to be made here is that there exists at least one eigenvalue λ of the basic problem (1-2) whose corresponding eigenfunctions u satisfy

$$
\begin{equation*}
\left\{\max _{\partial D_{a}}|B u|\right\}\|g\|_{a} /\|u\|_{a}=o(1) \quad \text { as } a \rightarrow \infty \tag{2-2}
\end{equation*}
$$

where g is the " L-measure"

$$
\begin{align*}
& L g=0 \text { in } D_{a} \\
& B g=1 \text { on } \partial D_{a} . \tag{2-3}
\end{align*}
$$

It is known [2,3] that for (2-1) there exists a denumerable sequence of eigenvalues $\mu_{i}, 0<\mu_{1} \leq \mu_{2} \leq \cdots$, and a complete orthonormal sequence of eigenfunc-
tions $\left\{v_{i}\right\}$, such that for some Robin function $R_{a}(x, y)$ (Green's function of the third kind)

$$
v_{i}(y)=\mu_{i} R_{a} v_{i}(y)=\mu_{i} \int_{D_{a}} R_{a}(x, y) v_{i}(x) d x
$$

and any basic eigenfunction u satisfies $L R_{a} u=u$ in $D_{a} . R_{a}$ is constructed in the usual way as the sum of a fixed fundamental solution and the solution of a particular Robin problem. The following notation will be used:

$$
\begin{aligned}
\psi_{a}(u) & =\left\{\max _{\partial D_{a}}|B u|\right\}\|g\|_{a} /\|u\|_{a} \quad(u \neq 0) \\
\psi_{a} & =\sup _{u \in \Lambda_{\lambda}} \psi_{a}(u) \\
\rho_{a} & =\lambda \psi_{a} /\left(1-\psi_{a}\right)
\end{aligned}
$$

where Λ_{λ} is the eigenspace associated with the basic eigenvalue λ of (1-2). Since every $u \in \Lambda_{\lambda}$ has the representation $u=\sum_{k=1}^{m} \alpha_{i} u_{i}$ in terms of an orthonormal basis $\left\{u_{i}\right\}$, where the basic eigenvalue λ is of multiplicity m,

$$
\psi_{a}(u) \leq m \max _{1 \leq i \leq m} \psi_{a}\left(u_{i}\right)
$$

and it follows from condition (2-2) that $\psi_{a}=o(1)$ and $\rho_{a}=o(1)$ as $a \rightarrow \infty$.
Lemma 1. For $\alpha=1 / \lambda$

$$
\begin{equation*}
\left\|R_{a} u-\alpha u\right\|_{a} \leq \alpha \psi_{a}\|u\|_{a} \text { for every } u \in \Lambda_{\lambda} . \tag{2-4}
\end{equation*}
$$

Proof. The eigenvalues of (1-2) are positive. In fact, if $\lambda \leq 0$ for some λ, the maximum principle ([1] p. 326) implies that the eigenfunction u corresponding to λ approaches its maximum as $|x| \rightarrow \infty$. This contradicts $u \in L^{2}\left(E^{n}\right)$ and $u \neq 0$. Let $\alpha=1 / \lambda$ and $f=R_{a} u-\alpha u$. Then for every $u \in \Lambda_{\lambda}, f$ is a solution of

$$
\begin{aligned}
& L f=0 \text { in } D_{a}, \\
& B f=-\alpha B u \text { on } \partial D_{a},
\end{aligned}
$$

and

$$
f(y)=-\alpha \int_{\partial D_{a}} R_{a}(x, y) B u d S_{x} \quad \text { for every } y \in D_{a} .
$$

Then

$$
|f(y)| \leq \alpha\left\{\max _{\partial D_{a}}|B u|\right\} \int_{\partial D_{a}} R_{a}(x, y) d S_{x}=\alpha\left\{\max _{\partial D_{a}}|B u|\right\} g(y)
$$

for every $y \in D_{a}$, where g is the solution of (2-3). Hence

$$
\|f\|_{a}=\left\|R_{a} u-\alpha u\right\|_{a} \leq \alpha\left\{\max _{\partial D_{a}}|B u|\right\}\left(\|g\|_{a} /\|u\|_{a}\right)\|u\|_{a}
$$

for every $u \in \Lambda_{\lambda}$, and this proves the lemma.

Theorem 1. Let λ be an m-fold degenerate eigenvalue of (1-2) whose corresponding eigenfunctions satisfy (2-2). Then there exists a positive number a_{0} such that at least m perturbed eigenvalues $\mu_{i}(a)$ of (2-1) are enclosed in the interval $\left[\lambda, \lambda+\rho_{a}\right]$ whenever $a \geq a_{0}$ and converge to λ as $a \rightarrow \infty$.

Proof. Since $\rho_{a}=o(1)$ as $a \rightarrow \infty$, there exists an a_{0} such that $\rho_{a}<1$ for every $a \geq a_{0}$. Let $F_{a \epsilon}$ be the subspace of H_{a} generated by all the eigenfunctions of R_{a} whose eigenvalues $\beta_{i}=1 / \mu_{i}$ lie in the interval $|\beta-\alpha|<\epsilon$. Let $\mathrm{P}(\epsilon)$ be the projection of H_{a} onto $F_{a \epsilon}$. Then $\|u-P(\epsilon) u\|_{a} \leq \epsilon^{-1}\left\|R_{a} u-\alpha u\right\|_{a}$ for every $u \in \Lambda_{\lambda}$ by ([5] p. 33), since the integral operator R_{a} is a self-adjoint linear transformation on H_{a}. By Lemma 1,

$$
\|u-P(\epsilon) u\|_{a} \leq \alpha \psi_{a} \epsilon^{-1}\|u\|_{a}
$$

for every $u \in \Lambda_{\lambda}$. Thus, by ([5] p. 35), there are at least m eigenvalues β_{i} contained in the interval $\left|\beta_{i}-\alpha\right| \leq \alpha \psi_{a}, i=1,2, \ldots$, or, more precisely, the interval $\left|\mu_{i}-\lambda\right|$ $\leq \mu_{i} \psi_{a}$. Since $D_{a} \subset E^{n}$, it follows by the minimax principle for eigenvalues [1] that $\mu_{i} \geq \lambda$ for every i. Hence, $\lambda \leq \mu_{i} \leq \lambda+\mu_{i} \psi_{a}$, or

$$
\lambda \leq \mu_{i} \leq \lambda /\left(1-\psi_{a}\right)=\lambda+\rho_{a}, \quad a \geq a_{0}
$$

for every $i=1,2, \ldots$, and the thorem is proved.
The following result is a simple consequence of Theorem 1 and the minimax principle for eigenvalues.

Theorem 2. Let λ be as in Theorem 1. If there exists a basic eigenvalue exceeding λ, then there is a positive number $a_{1} \geq a_{0}$ such that exactly m perturbed eigenvalues μ_{i} are enclosed in the interval $\left[\lambda, \lambda+\rho_{a}\right]$ whenever $a \geq a_{1}$.

Let

$$
k_{a}(x)=\left(\int_{D_{a}}|x-y|^{2 p} R_{a}^{2}(x, y) d y\right)^{1 / 2}
$$

where $p=p(n)$ is a positive number with $p(2)=0, p(3)=0$ and $0<n-2 p<4$. In order to establish uniform estimates for the perturbed eigenfunctions, it is assumed that

$$
\psi_{a}^{q} k_{a}(x)=o(1) \quad \text { as } a \rightarrow \infty \quad(q=(n-2 p) / n)
$$

uniformly for all $x \in D_{a}$.
Theorem 3. Let u_{i} be the orthonormal eigenfunctions corresponding to the m-fold degenerate eigenvalue λ of Theorem 2, and v_{i} those corresponding to the m perturbed eigenvalues $\mu_{i}, i=1, \ldots, m$. Then

$$
v_{i}(x)=u_{i}(x)-f_{i}(x)+0\left(\psi_{a}^{q}\right) k_{a}(x), \quad i=1, \ldots, m, \quad x \in D_{a}, \quad a \geq a_{1},
$$

where f_{i} is the solution of $L f_{i}=0$ in $D_{a}, B f_{i}=B u_{i}$ on ∂D_{a}.
Proof. Let $\epsilon=\alpha-\alpha^{\prime}$ in (2-4) where $\alpha=1 / \lambda$ and $\alpha^{\prime}=1 / \lambda^{\prime}$. It follows from Theorem 2 that $\alpha \psi_{a}<\epsilon$ for $a \geq a_{1}$. Then $F_{a \epsilon}$ is m-dimensional by Theorem 2 , and $\| u$ $P(\epsilon) u\left\|_{a}<\right\| u \|_{a}$ implies that $u=0$ if $P(\epsilon) u=0, u \in \Lambda_{\lambda}$. Therefore, m uniquely deter-
mined linearly independent eigenfunctions z_{i} corresponding to α are mapped by $P(\epsilon)$ into the orthonormal functions v_{i}. By (2-4), $\left\|z_{i}-v_{i}\right\|_{a}=0\left(\psi_{a}\right)$. Let $\left\{u_{i}\right\}$ be the orthonormal sequence constructed by the Schmidt process as linear combinations of the z_{i}. Then $\left\|u_{i}-z_{i}\right\|_{a}=0\left(\psi_{a}\right)$ and

$$
\begin{equation*}
\left\|u_{i}-v_{i}\right\|_{a}=0\left(\psi_{a}\right), \quad i=1, \ldots, m . \tag{2-5}
\end{equation*}
$$

Let u be an element of $\left\{u_{i}\right\}$ and v the corresponding element in $\left\{v_{i}\right\}$. Then by Theorem 2 and (2-5)

$$
\|\mu v-\lambda u\|_{a} \leq \mu\|v-u\|_{a}+(\mu-\lambda)\|u\|_{a}=0\left(\psi_{a}\right) .
$$

Let

$$
w_{a}(x)=\left(\left\{\int_{D_{a}-d_{0}}+\int_{d_{b}}\right\}\left(|x-y|^{-2 p}|\mu v(y)-\lambda u(y)|^{2}\right) d y\right)^{1 / 2},
$$

where d_{δ} is the n-disk with centre x and radius δ. If we choose $\delta=\psi_{a}^{2 / n}$ we obtain the uniform estimate $w_{a}(x)=0\left(\psi_{a}^{q}\right)$, where $0<q=(n-2 p) / n<4 / n$. It is asserted that $\lambda R_{a} u(x)$ gives a uniform estimate for $v(x)$, since

$$
\begin{equation*}
\left|v(x)-\lambda R_{a} u(x)\right|=\left|R_{a}(\mu v(x)-\lambda u(x))\right| \leq k_{a}(x) w_{a}(x)=0\left(\psi_{a}^{q}\right) k_{a}(x) . \tag{2-6}
\end{equation*}
$$

The function

$$
\begin{equation*}
\xi(x)=\lambda R_{a} u(x)-u(x)+f(x) \tag{2-7}
\end{equation*}
$$

is the solution of $L \xi=0$ in $D_{a}, B \xi=0$ on ∂D_{a}. By ([3] p. 97), L is positive definite on \mathscr{D}_{a}. Hence $\xi \equiv 0$ in D_{a} and the theorem follows from (2-6) and (2-7).

Let u and v be as in Theorem 3. By assumption there exists $c_{2}>0$ such that $\sigma_{1}+\sigma_{2}>c_{2}$. Let ω_{1} be the set of points of ∂D_{a} on which $\sigma_{1}>c_{2} / 2$ and ω_{2} the set on which $\sigma_{2}>c_{2} / 2$. Then $\partial D_{a}=\omega_{1} \cup \omega_{2}$ and we can write Green's symmetric identity in the form

$$
\begin{align*}
& (L u, v)_{a}-(u, L v)_{a} \\
& =\int_{D_{a}-\omega_{1}}\left(1 / \sigma_{2}\right) \sum_{i, j=1}^{n} a_{i j} D_{j} \bar{v} \cos \left(\nu, x_{i}\right) B u d S-\int_{\omega_{1}}\left(\bar{v} / \sigma_{1}\right) B u d S=\{u v\}_{a} . \tag{2-8}
\end{align*}
$$

Since u and v are as in Theorem 3, $\{u v\}_{a}=(\lambda-\mu)(u, v)_{a}$ and from (2-5) |(u,v) ${ }_{a}$ $-(v, v)_{a} \mid=0\left(\psi_{a}\right)$. Hence

$$
\begin{equation*}
\lambda-\mu=\{u v\}_{a}\left(1+0\left(\psi_{a}\right)\right) . \tag{2-9}
\end{equation*}
$$

Let f be the solution of $L f=0$ in $D_{a}, B f=B u$ on ∂D_{a}. Application of (2-8) to $L f=0, L v=\mu v$ and $L u=\lambda u$ gives

$$
\begin{equation*}
-\mu(f, v)_{a}=\{f v\}_{a}=\{u v\}_{a} \tag{2-10}
\end{equation*}
$$

and

$$
\begin{equation*}
-\lambda(f, u)_{a}=\{f u\}_{a} \tag{2-11}
\end{equation*}
$$

By (2-9) and (2-10) and the fact that $\mu=\lambda+0\left(\psi_{a}\right)$,

$$
\lambda-\mu=\lambda(f, v)_{a}\left(1+0\left(\psi_{a}\right)\right)
$$

Finally, application of Theorem 3 and (2-11) gives the following asymptotic formulae for the perturbed eigenvalues

$$
\lambda-\mu=\left(\{f u\}_{a}+\lambda(f, f)_{a}\right)\left(1+0\left(\psi_{a}\right)\right)+0\left(\psi_{a}^{a}\right)\left(f, k_{a}\right)_{a} .
$$

An Example. Let L be given in E^{2} by

$$
L u=-\Delta_{2} u+\left(x_{1}^{2}+x_{2}^{2}+2\right) u,
$$

where $\Delta_{2} \equiv D_{1}^{2}+D_{2}^{2}$, and let $\sigma_{1}=\sigma_{2}=1$ in (1-1).
L is an operator of the Schrödinger type with potential function $V=\left(x_{1}^{2}+x_{2}^{2}+2\right)$. By the method of separation of variables we obtain the orthonormal eigenfunfunctions

$$
u_{n, m}=\left(n!m!2^{n+m}\right)^{-1 / 2} H_{n}\left(x_{1}\right) H_{m}\left(x_{2}\right) \exp \left(-\left(x_{1}+x_{2}\right) / 2\right)
$$

corresponding to the eigenvalues $\lambda=2(n+m)+4,(n, m=0,1, \ldots)$, where $H_{n}\left(x_{1}\right)$ denotes the Hermite polynomial of degree n in x_{1}. After a routine transformation to polar coordinates (r, θ) and separation of variables we obtain

$$
g=(a+1)^{-1} \exp \left(\left(r^{2}-a^{2}\right) / 2\right)
$$

for g in (2-3) and it follows easily that (2-2) is satisfied for every $u_{n, m}$.
3. The perturbation of H^{n} to S_{a}. Let H^{n} be the upper half-space of E^{n}, $H^{n}=\left\{x \mid x \in E^{n}, x_{n}>0\right\} . S_{a}=\left\{x \mid x \in D_{a} \cap H^{n}\right\}$ and the boundary of $\partial S_{a}, S_{a}$, can be expressed as the union of two disjoint sets A_{a} and C_{a}, where $A_{a}=\left\{x \mid x \in E^{n}\right.$, $\left.x_{n}=0,|x| \leq a\right\}$ and $C_{a}=\left\{x \mid x\right.$ on $\left.\partial D_{a} \cap H^{n}\right\}$. It may be noted that it is not necessary to restrict the domains to half-spaces and half-disks. It can easily be verified that the results indicated in this section would also apply to any solid n-cone J^{n} in E^{n} perturbed to the solid spherical cone $J_{a}^{n}=J^{n} \cap D_{a}$.

The perturbed eigenvalue problem to be considered here is

$$
L w=\gamma w \text { in } S_{a}, \quad w \in \mathscr{D}_{s},
$$

and the perturbed domain \mathscr{D}_{s} is defined as \mathscr{D}_{a} with v replaced by w and D_{a} by S_{a}. For $n>1$ in this domain perturbation it is not possible to characterize the condition on the basic eigenfunctions u in terms of the " L-measure" g. Therefore, it is assumed here that there exists at least one eigenvalue η of the basic problem (1-3) whose corresponding eigenfunctions satisfy

$$
\|h\|_{s}\|u\|_{s}=o(1) \quad \text { as } a \rightarrow \infty
$$

where h is the solution of

$$
\begin{aligned}
& L h=0 \text { in } S_{a}, \\
& B h=B u \text { on } C_{a}, \quad B h=0 \text { on } A_{a} .
\end{aligned}
$$

Then setting

$$
\begin{aligned}
\psi_{s}(u) & =\|h\|_{s} /\|u\|_{s} \quad(u \neq 0) \\
\psi_{s} & =\sup _{u \in \Lambda_{\eta}} \psi_{s}(u)
\end{aligned}
$$

and

$$
\rho_{s}=\eta \psi_{s} /\left(1-\psi_{s}\right)
$$

where $\Lambda \eta$ is the eigenspace associated with the basic eigenvalue η, theorems analogous to Theorems 1,2 and 3 of $\S 2$ can be obtained for this perturbation.

References

1. R. Courant, and D. Hilbert, Methods of Mathematical Physics, Vol. II, Interscience, New York, 1962.
2. G. F. D. Duff, Partial Differential Equations, Univ. of Toronto Press, 1956.
3. S. G. Mikhlin, The Problem of the Minimum of a Quadratic Functional, Holden-Day, San Francisco, 1965.
4. C. A. Swanson, Enclosure theorems for eigenvalues of elliptic operators, Proc. Am. Math. Soc. 17 (1966), 18-25.
5. ——, 'On spectral estimation', Bull. Am. Math. Soc. 68 (1962).

University of Washington, Seattle, Washington

