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Diets and dietary constituents that we consume have a considerable impact on disease risk.
Intriguingly these effects may be modulated to some extent by sex. Lack of female represen-
tation in nutritional studies as well as a lack of stratification by sex has and continues to limit
our understanding of these sex × diet interactions. Here we provide an overview of the cur-
rent and available literature describing how exposure to certain dietary patterns (Western-
style diet, Mediterranean diet, vegetarian/vegan, ketogenic diet) and dietary constituents
(dietary fibre, PUFA and plant bioactive) influences disease risk in a sex-specific manner.
Interestingly, these sex differences appear to be highly disease-specific. The identification
of such sex differences in response to diet stresses the importance of sex stratification in nutri-
tional research.

Sex difference: Cardiometabolic disease: Western diet: Mediterranean diet

A poor diet substantially increases the risk of developing
numerous chronic health conditions including CVD, can-
cer and diabetes. In 2019, dietary risks were responsible
for 7⋅94 million (6⋅47–9⋅76) deaths among adults glo-
bally(1). As such, diet remains a considerably important
factor in the mitigation of disease burden, particularly
metabolic diseases which are notoriously difficult to
treat. Females have been largely underrepresented in
scientific research to date. This is certainly true from a
nutritional research perspective, in which our current
understanding remains heavily male skewed. Despite this
there is reason to believe that food components and dietary
patterns modulate disease risk in a sex-specific manner(2,3).
Indeed, sexual dimorphism exists in many organs and
body systems, such as the heart, kidney, adipose tissue,
immune system and the central nervous system(4,5,6,7).
From a metabolic perspective it is increasingly apparent
that sex differences similarly exist(8,9). The reasons for
such differences have not been entirely elucidated;

however, sex hormones, X chromosome dosage and the
microbiome have been posited as contributing fac-
tors(10,11). Involvement of sex hormones (to some degree)
is highly probable and signifies a potential dynamic elem-
ent to these sex effects, evolving throughout the ageing
process (particularly for women across the menopause
transition). Such metabolic differences will have implica-
tions from a nutritional perspective and may in part
explain discrepancies in effectiveness of some nutritional
interventions to date. It is therefore important for nutri-
tional guidance to account for and adapt to these changes
in order to enhance implementation. Fortunately, nutri-
tional research is now being increasingly conducted across
both sexes (although with still significant work to do) with
various research councils and funding bodies making the
inclusion of both sexes a mandatory component of experi-
mental design. This will no doubt aid our understanding of
these complex interactions, enabling us to make more
informed decisions in relation to these issues.
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In the present review we explore how sex differences
modulate physiological responses to various dietary
patterns/constituents in the context of health, with a
particular emphasis on cardiometabolic diseases.
Comprehensively (but not exhaustively) reviewing the
current evidence we highlight gaps in knowledge and
comment on potential opportunities to further develop
this important area of research.

Sex differences in cardiometabolic disorders

Cardiometabolic diseases are a group of common but
often preventable conditions which span from obesity
and type 2 diabetes right through to CVD. Reviewed
extensively by Gerdts and Regitz-Zagrosek(12), cardiome-
tabolic disease appears to be modulated by sex with sex-
specific molecular mechanisms beginning to be uncov-
ered. Type 2 diabetes for instance is an interesting
example of this, with women exhibiting a stronger
obesity-related diabetes risk than men of whom have
greater susceptibility at a lower BMI(13). Interestingly,
such sex differences appear to differ from country to
country, with cultural, lifestyle and socioeconomic fac-
tors presumably responsible(13). Indeed, diet plays a
prominent role in the development of cardiometabolic
diseases. Given the emerging evidence implicating sex
as a modulator of metabolism, it is probable that physio-
logical responses to diet similarly differ across sex, per-
haps contributing in part to the sex differences in
cardiometabolic disorders.

Sex differences across dietary patterns

Western-style diet

Although not particularly well-defined, a Western-style
dietary pattern generally consists of high intake of
refined, energy-dense, nutrient-poor food sources(14).

Evaluation of Western-style diet across sex is relatively
extensive in preclinical models compared to other dietary
patterns/constituents (Table 1). Overall, this evidence
appears to suggest that young male rodents have more
negative changes in the body composition profile, as
well as a higher susceptibility to diet-induced obesity
when exposed to a high-fat diet (HFD)(15,16,17,18,19). It
must however be mentioned that some discrepancies
exist and may relate to species and/or diet differ-
ences(16,20). Young female mice appear to have a greater
ability to utilise fat in the diet as a source of fuel(17),
increase energy expenditure(16) and increase AQP7/
Aqp7 glycerol channel abundance (regulation influences
glycerol release by adipocytes and reduced function is
associated with obesity)(21). Additionally, a more favour-
able immune response is observed in young female
rodents exposed to an HFD(22,23).

Although a consensus appears to be emerging in
young animals, for aged animals the picture is less
clear. It appears that the protection from HFD observed
in young female mice diminishes with age, with females
having greater weight gain and impairment in glucose

tolerance compared to males(19,24). This may in part
relate to changes in sex hormones. Indeed, ovariectomy
of HFD-fed female mice enhanced adipose tissue inflam-
mation leading to moderate changes in metabolism.
However, gonadectomised HFD-fed males had
improved metabolic outcomes that were associated with
increased CD11c+ adipose tissue macrophages and
increased proinflammatory cytokines(25). It should be
noted that many diets utilised to model high-fat/
Western-style diets in rodents (as outlined earlier) are
refined (i.e. made from individual purified component
rather than whole food). As such they lack many compo-
nents of a complete control ‘chow’ diet. Indeed, dietary
fibre source (e.g. soluble v. insoluble) and even amount
are often overlooked in these studies, compromising the
validity of these experiments. Morrison et al. utilised a
refined diet with matched fibre source/content in their
experimentation of low-fat diet v. HFD across both
sexes, reporting that the lack of soluble fibre and not
fat content primarily drives gut microbiota alterations
previously associated with a refined HFD. In contrast
to the aforementioned results, they report that male
body weight increase is independent of dietary fat.
However, when the amount of dietary fibre is compar-
able in all dietary groups, aged females do still appear
to display increased weight gain in response to
HFD(26). This is in line with recent reports that the pre-
biotic effects of dietary fibres are sex-specific(27),
although the mechanisms responsible for such differences
remain to be elucidated.

Sex differences in response to other components of the
Western-style dietary pattern (e.g. high fructose, high
sugar, low fibre) have been less extensively covered,
and the results are generally mixed. Greater metabolic
abnormalities have been reported in female animals
receiving 10 % fructose supplementation(28). Similarly, a
sweet-fat diet (standard laboratory control diet supple-
mented with sweet cookies, sunflower seeds and lard)
resulted in more intense fat accumulation and weight
gain in females as a result of suppressed carbohydrate
and fat metabolism(29). Furthermore, female mice main-
tained on a cafeteria diet had more extensive liver stea-
tosis, higher non-alcoholic fatty liver disease scores and
elevated triglyceride (TAG) content compared to males,
with no difference in body weight gain or adiposity
index observed(30). High-sucrose consumption in mice
led to more extensive dysregulation of the oxylipin
profile (oxidation products of PUFA) in the brains of
female mice(31). The mechanistic basis for which remains
unclear. Intriguingly, others have reported the complete
opposite with males displaying greater weight gain, glu-
cose intolerance and hepatic inflammation on either
high-fat, high-sugar or high-fat, high-fructose diets in
agreement with the HFD studies outlined earlier(32,33).

Ethical consideration and lack of stratification by sex
mean that clinical evaluation of Western-style diets
across sex is scarce. However, in one such study con-
ducted in young healthy adults 7-d exposure to a high-
fat, high-energy diet did not result in any metabolic out-
comes in either males or females(34), indicating that
young healthy individuals can tolerate acute exposure
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to a Western-style diet. Consumption of a high-fructose
meal however led to increased postprandial hepatic de
novo lipogenesis in females only(35), suggesting that
women may be more responsive to higher levels of fruc-
tose in the diet. It should however be noted that the
opposite has also been reported(36) and in line with this,
Couchepin et al. observed that healthy young female
mice were more resistant to fructose overfeeding com-
pared to their male counterparts(37).

Observational studies evaluating sex differences are
similarly lacking and can be difficult to discern whether
differences relate to biological/metabolic effects or
merely food preference/portion size. Indeed, in a cross-
sectional multi-ethnic study of middle-aged individuals
(45–57 years) it was reported that women have a higher
diet quality (as assessed by the HEI-2010)(38). Diet qual-
ity reduced adiposity across both sexes but intriguingly
females displayed a stronger association than men(38).
In line with this, Ruiz-Canela et al. reported (in a study

population of 55–80-year-olds with CVD risk) that sign-
ificant differences in BMI relating to consumption of a
pro-inflammatory diet were restricted to females,
although other indices of general and abdominal obesity
were consistent across both sexes(39). Furthermore, in a
Japanese cohort, increased SFA intake was associated
with increased all-cause mortality in females only(40).
Similarly, UK Biobank analysis (of 40–69 years) sug-
gested that higher sugar, SFA and dietary fibre intake
may subtly modulate all-cause mortality and/or dementia
risk to a greater extent in females(41). In contrast to the
aforementioned studies, a cross-sectional study of a
Taiwanese population with dyslipidaemia described
that greater consumption of a Western-dietary pattern
(highest quartile) increased general obesity, central obes-
ity and high body fat regardless of sex(42).

It has been posited that these sex difference may relate
to changes in the microbiota. Indeed, in human subjects,
a Western-style diet (high-fat/low-fibre) reportedly leads

Table 1. Preclinical evidence for Western-style diet-related sex differences

Western-style diet type Species Outcome (sex difference) Reference

60% energy from fat for 56 d 3-month-old C57BL/6 mice Males: ↑body fat, ↓energy expenditure,
Females: ↓diet-induced weight gain

(15)

60% energy from fat for 10
weeks

Ten-week-old Sprague–
Dawley rats and C57BL/6N
mice

Males: ↑hyperphagia,
Females: ↑HFD preference, ↑energy expenditure,
Male rats: ↑brown adipose tissue thermogenesis,
Female rats: ↓diet-induced weight gain, ↓metabolic complications,
Female mice: ↑visceral fat

(16)

23% energy from fat for 5
weeks

13-week-old C57BL/6J mice Males: ↑fat mass,
Females: ↓diet-induced weight gain, ↑ability to use fat as fuel
source

(17)

60% energy from fat for 11
weeks

4–17-week-old C57BL/6J
mice

Males: ↑diet-induced weight gain, ↑glucose intolerance,
Females: ↑anti-inflammatory cytokine profile, ↓diet-induced
weight gain

(18)

62% kJ from fat for 8/11
weeks

6-week-old C57BL/6J mice Males: ↑glucose intolerance, ↑leptin,
Females: ↑delay in diet-induced weight gain, ↑IGF2

(19)

60% energy from fat for 4
months

3-months-old 3xTg-AD mice Females: ↑metabolic consequences, ↓spatial learning, glucose
intolerance (prediabetes) was correlated with increased
hippocampal microgliosis

(20)

50% energy from fat for 4
weeks

5-week-old Wistar rats Females: ↑production of cytokines (IL-2 and IL-6), ↑T-helper cells (23)

60% energy from fat for 12
weeks

5, 8 or 31-week-old C57BL/6J
mice

Juvenile males: ↑diet-induced weight gain, ↑glucose intolerance,
Young males: no difference,
Middle-aged females: ↑diet-induced weight gain, ↑glucose
intolerance

(24)

45% energy from fat for 4
weeks

Young (17 week) and aged (60
week) C57BL/6J mice

No HFD-related change to gut microbiota community,
Aged females: ↑diet-induced weight gain

(26)

Fructose-water solution at 10
% (w/v) for 11 months

Sprague–Dawley rats (age not
reported, 11 months+)

Females: ↑diet-induced weight gain, ↑adiposity, ↑hepatic TAG,
↑hyperglycaemia, ↑hyperuricaemia, ↑hyperleptinaemia,
↓INSULIN sensitivity

(28)

Sweet-fat diet for 10 weeks Ten-week-old C57BL mice Males: ↑lean mass gain, ↑insulin, ↑FGF21, ↑lipid and glucose
oxidation,

Females: ↑adiposity, ↓expression of lipogenesis and glucose
metabolism genes

(29)

Cafeteria diet for 14 weeks 21-d-old Swiss mice Females: ↑steatosis, ↑non-alcoholic fatty liver disease score (30)

High-fat, high-sugar diet for 14
weeks

8-week-old C57BL/6 Males: ↑diet-induced weight gain, ↑microgliosis (32)

Fructose-water solution at 15
or 30% (w/v) for 9 weeks

3-month-old Swiss mice Males: ↑glucose intolerance,
Females: ↑passive stress-coping behaviour

(33)

FGF21, fibroblast growth factor 21; HFD, high-fat diet; IGF2, insulin-like growth factor 2.P
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to an altered microbial profile across males and females,
with higher levels of Campylobacter, Blautia,
Flavonifractor and Erysipelatoclostridium in females(43).
However, a functional understanding of these changes
requires further elucidation. HFD feeding in rats induces
sex-related alterations in gut microbiome composition
and metabolome(43,44,45) which correlate to metabolic
measures such as insulin resistance(45). Kim et al. suggest
that the microbial impact may be mediated via the preg-
nane X receptor (a xenobiotic-sensing nuclear receptor)
which reportedly primes the gut microbiome towards
an obesity-prone microbial configuration in a sex
(male) specific manner(46) (Table 2).

Mediterranean diet

A Mediterranean diet (MedDiet) pattern appears to be
highly beneficial, with adherence associated with a reduc-
tion in all-cause mortality. The MedDiet consists of a pro-
portionally higher intake of unprocessed cereals, legumes,
olive oil, fruits, nuts and vegetables, along with moderate
consumption of fish, dairy and meat products(47).

In contrast to Western diet, preclinical studies investi-
gating MedDiet across sexes are limited. This predomin-
antly relates to the fact that preclinical studies tend to
focus on aspects/constituents of the MedDiet rather
than MedDiet in its entirety. Some of these constituents
such as dietary fibres, lipids (e.g. MUFA and PUFA)
and plant bioactives will be discussed in later sections.

Human evidence evaluating MedDiet across sexes is
surprisingly limited with many studies failing to provide
stratification of results/analysis by sex, despite inclusion
of both sexes in the experiment. This is quite a significant
issue, presumably relating to a lack of power that needs
to be resolved imminently. From the available evidence,
studies in younger (24–53 years, premenopausal) adults
suggest that the MedDiet confers more favourable
changes in glucose/insulin homoeostasis in men than in
women(48,49). In line with this, improvements in TAG
levels, HDL-cholesterol ratios and waist circumference
are more pronounced in men than in women(50).
Furthermore, MedDiet adherence leads to a significant
decrease in adiponectin concentration in men only(51),
as well as a more favourable redistribution of LDL sub-
classes from smaller to larger LDL(52). This appears to be
independent of circulating NEFA concentrations
(believed to be an important factor in insulin resistance).
Similar results were reported after 3-year MedDiet
adherence in older (∼66 years) overweight/obese indivi-
duals with metabolic syndrome, in which a reduction
in weight, waist circumference, fasting glucose, insulin
and TAG were more pronounced in men than in
women(53). This appears to be consistent with CVD, in
which an association between MedDiet adherence
appears to be stronger(54,55), although no difference has
also been reported(56). In contrast to this, 1-year
Mediterranean-like diet intervention in elderly healthy
subjects led to female-specific (but also country-specific)
reduction in epigenetic ageing score(57). Also, from a
neurological disease perspective, women appear to have
more favourable outcomes in response to MedDiet

adherence. Indeed, an inverse association between
MedDiet and dementia risk was established among
women, but not among men(58). Similarly, in a cross-
sectional analysis adherence to both MedDiet and
Mediterranean-dietary approaches to stop hypertension
intervention for neurodegenerative delay diet was signifi-
cantly associated with a higher age of Parkinson’s disease
onset(59), especially in women. However, for colorectal
cancer no disease-modifying effect was observed as a
result of MedDiet(60). This was also true for all cancer
risk, which despite displaying an inverse association in
females only, failed to reach significance after full adjust-
ment of confounding factors(60,61) (Table 3).

Vegetarian/vegan diets

Food constituents derived from animal sources are limited/
absent from vegetarian/vegan diets. Despite an abundance
of studies investigating such diets in the context of metab-
olism and disease, sub-analysis by sex is consistently miss-
ing. As such, the existence of any sex differences in
response to vegetarian diet is not entirely clear. Blood sam-
pling of healthy age-matched vegetarians and non-
vegetarians revealed a purportedly beneficial increase in
adiponectin levels in female vegetarians, which was not
present in males(63). However, no diet-dependent or sex-
dependent differences were found in insulin, Homeostatic
model assessment for insulin resistance index
(HOMA2-IRI), inflammatory and metabolic biomar-
kers(63). Reviewed extensively by Adams and Sabaté,
there is evidence to suggest that the cardio-protective
effects of a vegetarian diet may be sex-specific(64). The
available evidence suggests that a vegetarian dietary pat-
tern is associated with a reduction in CVD outcomes for
vegetarian men relative to omnivorous men, whilst for
women this association is less strong/non-existent(64). In
line with this a 4-year longitudinal study reported that
low intake of vegetables was significantly associated with
type 2 diabetes risk in men, but not in women. Although
this may relate to the lack of study power (fewer women
in the low-intake category), it could also relate to differ-
ences in vegetable preference(34). Conversely, Kim et al.
did not find any association between plant-based diet
and CVD, nor any apparent sex differences within a US
population(65). They did however report that those with a
high plant-based diet index (i.e. above median) had a 5%
lower risk in all-cause mortality in the overall study popu-
lation which was not influenced by sex(65). Together there is
some evidence to support vegetarian diet-related sex differ-
ences, particularly in the context of CVD however further
investigation is clearly warranted to gain a greater under-
standing metabolically and for other diseases.

Ketogenic diet

Ketogenic diets are low in carbohydrate content and high
in fat, shifting energy reliance from glucose to ketone bod-
ies. Twenty-five day ketogenic diet adherence in indivi-
duals with severe obesity resulted in significantly larger
excess body weight loss and a greater reduction in
γ-glutamyl transferase in males(66). This greater benefit
in males has been reported by others(67,68). Interestingly,
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this difference does not appear to be present when consid-
ering post-menopausal females(66), again emphasising the
importance of the menopause (and likely sex hormones)
in metabolism and response to diet. In rats maintained
on a high-fat, high-sugar-diet, the beneficial effects of
ketogenic diet intervention were largely similar across
both sexes although these benefits correlated significantly
with plasma β-hydroxybutyrate in females only(69). In
the context of pancreatic cancer, strict ketogenic diet in
combination with gemcitabine (chemotherapy medica-
tion) prolonged survival. Intrudingly, when stratified by
sex this result remained significant for males only(70).

Sex differences across other dietary constituents

Dietary fibre

Often overlooked as a key contributor in health and dis-
ease, dietary fibre is the undigestible part of the plant,

typically obtained from wholegrain cereals, fruits and
vegetables. European and US guidelines suggest an
intake of 30–35 g daily for men and 25–32 g daily for
women (discrepancy between males and females relates
to fact that many countries calculate recommendation
based upon for total energy intake) but actual dietary
fibre intake is significantly lower(71). In adolescents,
increasing dietary fibre to recommendation levels
decreased predicted fasting glucose, fasting
insulin, Homeostatic model assessment for insulin resist-
ance (HOMA-IR), Systolic blood pressure (Hg SBP),
and diastolic blood pressure (Hg DBP) regardless of
sex(72). In line with this a cross-sectional analysis found
that higher daily dietary fibre consumption was asso-
ciated with beneficial effects on cholesterol in both
males and females(73). Analysis of the European pro-
spective investigation into cancer and nutrition cohort
revealed that total dietary fibre was inversely associated
with colorectal cancer (Hazard Ratio per 10 g daily

Table 2. Human evidence for Western-style diet-related sex differences

Intervention/measure Population group N Study type Outcome (sex difference) Reference

7 d of a high-fat (65%
energy) high-energy
(+50% kJ) diet

Young healthy
(mean age: male 24,
female 25)

21 (11 male,
10 female)

Randomised-
controlled trial

No difference (34)

Acute fructose feeding Healthy adults
(mean age: male 42⋅8,
female 46⋅6)

16 (8 male,
8 female)

Randomised-cross-
over study

Females: ↑hepatic de novo
lipogenesis

(35)

Acute fructose feeding Healthy adults
(mean age: male 25⋅1,
female 23⋅8)

18 (9 male,
9 female)

Clinical study Males: ↑VLDL TAG, ↑hepatic de
novo lipogenesis, ↓lipid oxidation

(36)

Isoenergetic diet
supplemented with 3⋅5 g
fructose for 6 d

Healthy adults
(mean age: male 22⋅5,
female 22⋅9)

16 (8 male,
8 female)

Randomised-
controlled trial

Males: ↑TAG, ↑endogenous
glucose production, ↑alanine
aminotransferase, ↑fasting insulin
concentrations

(37)

Association of diet quality
with body fat distribution

Good general health
(60–72 years)

1861 Prospective cohort Females: ↑HEI-2010 score,
↑association between diet quality
and adiposity

(38)

Dietary inflammatory
index and
anthropometric
measures of obesity

No previous CVD but at
risk of CVD (men aged
55–80 years and
women aged 60–80
years)

7236 Cross-sectional
study

Females: ↑association between
dietary inflammatory index and
BMI

(38,39)

Association between fat
intake and mortality

Individuals without
cancer, stroke or CHD

12 953 men
and 15 403
women

Prospective cohort Males: ↓all-cause mortality with
higher PUFA, ↓all-cause mortality
with higher total fat,

Females: ↑all-cause mortality with
higher SFA

(40)

Association of energy and
macronutrient intake with
all-cause mortality, CVD
and dementia

(55⋅5 years for women
and 56⋅5 years for men)

120 963 Prospective cohort Males: ↑risk of death with increased
sugar intake, ↓CVD risk with both
moderate energy intake and
moderate/high protein intake,

Females: ↑risk of death with
increased carbohydrate intake,
↑risk of death with moderate total
fat intake, ↓dementia risk with
moderate sugar intake, ↓dementia
risk with highest fibre intake,
↑dementia risk with increased SFA

(41)

Association of dietary
patterns and metabolic
parameters

20−50 years with
dyslipidaemia

14 087 Cross-sectional
study

No difference in Western diet (42)
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increase in fibre 0⋅87, 95 % CI: 0⋅79, 0⋅96) which did not
differ by sex(74). Similarly, an inverse relationship
between dietary fibre and multiple sclerosis has been
reported in a case control study with the trends similar
across males and females(75). In the context of depres-
sion, dietary fibre may be more favourable in females
with an inverse association between depression and diet-
ary fibre consumption established in females only(76).
Discrepancies in the impact of dietary fibres across sex
may relate to changes in the gut microbiota, indeed oli-
gofructose supplementation in mice led to broad changes
in faecal community structure (increasing Bacteroidetes

at the expense of Lachnospiraceae) in females but not
males. How dietary fibre type (e.g. soluble or insoluble)
influences metabolism and health outcomes across sex
is yet to be explored and represents a major gap in our
current knowledge.

PUFA

As alluded to in the Western-diet section of this review,
lipid metabolism appears to be sexually dimorphic.
Indeed, vast differences in lipid species have been iden-
tified across sex, particularly when considering age × sex

Table 3. Human evidence for Mediterranean style diet-related sex differences

Intervention/measure Population group N Study type Outcome (sex difference) Reference

4-week MedDiet
adherence

Adult (24–53 years) with
slightly elevated LDL-C
concentrations (3⋅4–
4⋅9mmol/l) or total
cholesterol:HDL-C
ratio ≥5⋅0

70 (38 men and 32
women)

Clinical trial Males: ↑medium LDL,
↓sdLDL ↓sdLDL cholesterol
↓insulin sensitivity, ↓plasma
insulin, ↓adiponectin,
↓ApoA-2, ↓insulin
concentrations 2 h after the
oral glucose administration,

Females: ↓medium LDL,
↑sdLDL

(48,49,51,52)

12-week MedDiet
nutritional
programme

Adults (25–50 years) 123 (64 men and
59 women)

Clinical trial Males: ↓waist circumference,
↓total-cholesterol, ↓HDL-C
ratio, ↓TAG, ↓TAG to HDL-C
ratio

(50)

3-year MedDiet
intervention

Adult overweight or
obese and/or
metabolic syndrome
(65⋅6(SEM 4⋅6) years)

105 (54⋅3%
women)

Prospective cohort Males: ↓body weight,
↓glycaemic and
cardiovascular parameters,
sex differences in
endocannabinoids

(49,53)

Adherence to the
Mediterranean and
early vascular ageing

Adults without CVD (35–
75 years)

501 subjects 50%
female

Cross-sectional Males: ↓early vascular ageing
probability

(50,54)

MedDiet and CVD Jewish adults, aged 35+ 520 men and 639
women

Cross-sectional Males: ↓Myocardial
infarction, ↓coronary
bypass, ↓angioplasty, ↓CVD
for each Mediterranean diet
(MD) score increase

(55)

1-year
Mediterranean-like
diet

Adults aged 65–79
years free of major
overt chronic diseases

120 randomly
selected subjects
(60 from the
Italian cohort and
60 from the
Polish one)

Subset pilot analysis of
randomised-controlled
trial

Polish females: ↑epigenetic
rejuvenation

(57)

MedDiet and risk of
dementia and
Alzheimer’s disease

Adults (30–70 years) 25 015 Prospective cohort Females: ↓AD risk (58)

MIND and MedDiet
associated with later
onset of PD

Control and PD 225 participants
with PD (age of
onset within the
last 12 years) and
156 controls

Cross sectional Females: ↑age of onset
correlated most strongly
with MIND diet adherence

(59,62)

MedDiet and overall
cancer incidence

55–69 years 120 852 Prospective cohort No sex difference (61)

MedDiet and
colorectal cancer
incidence

55–69 years 120 852 Prospective cohort No sex Difference (60)

ApoA-2, apolipoprotein A2; HDL-C, HDL-cholesterol; LDL-C, LDL-cholesterol; MedDiet, Mediterranean diet; MIND, Mediterranean-dietary approaches to stop
hypertension intervention for neurodegenerative delay; PD, Parkinson’s disease; sdLDL, small-dense LDL.
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interaction, with the most prevalent of these differences
found across phosphatidylcholine, sphingomyelin and
TAG species(77). It is therefore not surprising that specific
dietary lipid types e.g. PUFA exert different effects across
the sexes. Females have significantly higher peripheral
DHA than males(78). In rats this higher DHA concentra-
tions is found in the liver, plasma, erythrocytes and
heart (53, 75, 36 and 25% higher, respectively, compared
with males) but not the brain(79). This may be linked to
higher Δ6-desaturase expression in females relative to
males, which appears to be limited to the liver(79).
Women show a greater increase in circulating EPA in
response to α-linolenic acid consumption(80). Similarly,
EPA and DHA supplementation increases plasma TAG
EPA to a greater extent in females(81). The source of
PUFA (e.g. krill oil v. fish oil) may also alter these sex dif-
ferences adding further complexity to the interaction(82).

Sex × diet interactions may influence brain PUFA con-
centrations(83). Higher n-3 PUFA concentrations appear
to benefit different cognitive domains in a sex-specific
manner(84). In mice receiving DHA supplementation, a
reduction in anxiety and depressive-like behaviours was
observed in male mice only and coincided with sex-
specific gut microbiota interactions in response to DHA
which correlated with behavioural finding(85). This in
contrasts with a report in human subjects which showed
n-3 fatty acid intake to be negatively associated with
depressive symptoms in only women(86). From a diabetes
perspective n-3 PUFA status was inversely associated
with diabetes in overweight/obese females but not in
males(87). This is supported by a systematic review and
meta-analysis of randomised controlled trials which
found that n-3 PUFA intervention improved insulin
resistance in women but not in men(88). Furthermore,
PUFA appear to be more protective against hypertrigly-
ceridaemia in females, compared to males(89).
Interestingly, the ability of n-3 PUFA to reduce platelet
aggregation (a factor in CVD) is sex-specific. In men,
only EPA treatment reduces aggregation, whilst in
women, only DHA treatment reduced platelet aggrega-
tion(90). Both increased n-3 and n-6 PUFA intake were
found to be inversely associated with non-alcoholic
fatty liver disease risk, irrespective of sex(91). There is
growing evidence suggesting that oxylipin (bioactive oxi-
dation products of PUFA) production and profile is dif-
ferentially altered across sexes in response to the intake of
various n-3 and n-6 PUFA(92,93,94,95), although this seems
to be less extensive in the brain(96). As mediators of
PUFA, such differences in the oxylipin profile may pro-
vide in part some explanation for the varying disease-
modifying influences observed across sexes.

Plant bioactives

Sex has been suggested to modulate both the metabol-
ism(97) and physiological effects of plant bioactives such
as (poly)phenols(98). HPLC-MS/MS analysis of acute
doses of grape seed (poly)phenols established clear sex dif-
ferences in the metabolism and distribution of flavanols
throughout the bodies of rats, with quantitative differences

found in the plasma and brain(99). In line with this supple-
mentation with an oral formulation of resveratrol,
JOTROL™ in 3xTg-AD mice resulted in Alzheimers dis-
ease (AD)-related gene expression changes (Adam10,
Bace1, Bdnf, Psen1) some of which were brain region-
dependent and sex-specific(100). Analysis of the Primary
prevention of cardiovascular disease with a mediterranean
diet (PREDIMED) study revealed that catechins,
proanthocyanidins, hydroxybenzoic acids and lignans
were inversely associated with type 2 diabetes, with
women displaying stronger inverse associations.
Additionally, a cross-sectional analysis of a Korean popu-
lation reported an inverse association between flavonoid
intake and obesity in women, whilst for men a positive
association was determined for some subclasses (namely,
flavonols, flavanones and anthocyanidins)(101). In a rando-
mised double-blind parallel trial, a combination of 548mg
daily of polyphenols and 2 g daily of L-citrulline reduced
ambulatory systolic blood pressure in women, but not in
men(102). Furthermore, a systematic review and
meta-analysis described an inverse association between
(poly)phenol consumption and gastric cancer.
Interestingly, the risk reduction was greater for females,
which the authors suggest may be partly explained by
the fact that (poly)phenols can regulate female hormones
which play a protective role against cancer(103). These dif-
ferences may relate to impact on the gut microbiota which
may be modulated in a sex-specific manner, indeed micro-
bial changes associated with 7,8-dihydroxyflavone pre-
dicted body weight changes in females but not in
males(104). In contrast to the female-specific improvements
outlined earlier, the Reasons for geographic and racial dif-
ferences in stroke (REGARDS) prospective cohort study
reported that the inverse association between flavanone
intake and ischaemic stroke risk did not differ by
sex(105). Additionally, in mouse models of CVD both
blackberry and gallic acid supplementation reduced ath-
erosclerosis in males only(106). Consistent with this, nettle
extract altered lipid metabolism differently across sexes,
with the activation of transcription factors that control
lipid metabolism, and subsequent increase in
HDL-cholesterol, specific to male mice(107).

Conclusions

Despite considerable underreporting, it is apparent from
emerging literature that sex differences exist in response
to various dietary patterns and components. These differ-
ences are not trivial as they likely contribute to sexual
dimorphism that similarly exists in the patterns of health
and disease. Such discrepancies (and heterogeneity
between males and females) may even explain why some
promising nutritional interventions fail to show benefits
at more advanced stages of experimentation. These inter-
actions are complex and display both disease and region
specificity. As such, future nutritional studies should aim
to consistently provide comparison across both sexes,
either in initial experiment set up or via extended subgroup
analysis. This could potentially improve the effectiveness
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of dietary advice and treatments enabling us to adapt to
specific needs of both men and women as we strive towards
a more personal/precise nutritional approach.
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