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Abstract. Let �c(x) be the number of the integers n � x such that [nc ] is prime.
We shall prove that

�c�x� � x

log x

for 1<c<45/38. This improves the former range 1<c<13/11.

1. Introduction. The problem of representing of primes by irreducible poly-
nomials is one of the most important problems of multiplicative number theory.
However, while this problem is completely solved for linear polynomials, it is not
known if there exists any polynomial of degree n�2 that takes in®nitely many prime
values. There is therefore some interest in studying if there exists any ``polynomial of
degree 1<c<2'' with this property. In 1953 I. I. Piatetski-Shapiro [16] showed that
this is true if c is not much greater than 1. Let �c(x) be the number of the integers
n � x for which [nc] is prime (here [�] is the integral part of �). Piatetski-Shapiro's
result states that

�c�x� � x

c log x
; x!1 �1:1�

if
1 < c < 12=11 � 1:0909::: :

Afterwards, using the fact that the upper bound for c is closely connected
with the estimate of an exponential sum over primes, a number of authors improved
this result obtaining longer ranges for c. The ®rst were G. A. Kolesnik [10] and D.
Leitmann [12] who proved that (1.1) holds for any ®xed real c in the ranges

1 < c < 10=9 � 1:1111::: and 1 < c < 69=62 � 1:1129:::

correspondingly. In 1983 D. R. Heath-Brown [6] made two important innovations
which let him obtain the range

1 < c < 755=662 � 1:1404 . . .

which G. A. Kolesnik [11] improved again to
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1 < c < 39=34 � 1:1470::: :

Then, in 1990, H.-Q. Liu and J. Rivat [15] used the method of E. Fouvry and H.
Iwaniec [2] for the estimation of exponential sums and proved that (1.1) holds for

1 < c < 15=13 � 1:1538:::;

and in his doctorial thesis J. Rivat [17] succeeded to obtain the slightly better result

1 < c < 6121=5302 � 1:1544::: :

We also mention that D. Leitmann and D. Wolke [13] proved that (1.1) holds for
almost all real c 2 (1, 2) (in the sense of Lebesgue measure).

J. Rivat [17] was also the ®rst who considered the problem for obtaining a lower
bound for �c�x�. Using a sieve method he proved that there exists an absolute con-
stant �0>0 such that

�c�x� � �0 x

c log x
�1:2�

for each ®xed c in the range

1 < c < 7=6 � 1:1666::: :

After that R. C. Baker, G. Harman and J. Rivat [1] and C.-H. Jia [7], using the sieve
method from [4] and the exponential sum estimates of E. Fouvry and H. Iwaniec
from [2], independently proved (1.2) for

1 < c < 20=17 � 1:1764:::;

and C.-H. Jia [8] improved this to

1 < c < 13=11 � 1:1818::: :

In this paper we obtain a further improvement. We prove the following

Theorem. Let c be a ®xed real number in the range

1 < c < 45=38 � 1:1842:::: �1:3�

Then (1.2) holds with �0=1/20.

Remark. The main point in the proof is to replace the original Fouvry±Iwaniec
estimate with its re®ned version due to H.-Q. Liu [14]. The constant 45/38 may be
improved somewhat but the numerical work showed that one cannot make a serious
progress without new exponential sum estimates (even the value 1.185 would require
more complicated decomposition in Section 5 in order to obtain a positive lower
bound).

Throughout the paper, we suppose that 13/11�c<45/38, and denote  � 1=c;
">0 is a su�ciently small ®xed number depending at most on c; � � "2;X > X0�"�.
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The letters p, q, r, s always denote prime numbers. The notations m �M and A � B
mean that M < m � 2M and A� B� A. We write L � logX; e�x� � exp�2�ix�;
N�n� ��ÿn � ÿ �ÿ�n� 1� �;  �t�� tÿ �t� ÿ 1=2; r�t� �  �ÿ�t� 1��ÿ �ÿt�:

The constants implied by � and O(.) notation depend at most on c and ".

2. Outline of the method. We write

P�z� �
Y
p<z

p

and for any sequence of integers E
Ed � fn 2 E : d j ng; S�E; z� � jfn 2 E : �n;P�z�� � 1gj:

Let us de®ne

A � fn : n � X; n � �mc �g; B � fn : n � Xg:
We have

X
X<p�2X

N�p� � S�A; �2X�12� � O�1�:

Thus to prove the Theorem it is su�cient to show that

S�A; �2X�12� � 0:051
�X

log X
; �2:1�

where � � Xÿ1�2 ÿ 1�.
In order to prove (2.1) we use the Buchstab identity

S�E; z1� � S�E; z2� ÿ
X

z2�p<z1
S�Ep; p� �2:2�

together with asymptotic formulae of the form

X
d�D

a�d�S�Ad; z�d�� � �
X
d�D

a�d�S�Bd; z�d�� � error terms; �2:3�

where a�m� � 0 and D; z�d� are suitably chosen. Applying (2.2) several times we
decompose S�A; �2X�12� into sums of the form appearing in the left-hand side of (2.3).
For some of them we obtain asymptotic formulae of the above type and the rest may
be discarded.

The most troublesome error terms arising in the proof of the asymptotic for-
mulae of the form (2.3) are sums of the typeX

m�M

X
n�N

a�m�b�n�r�mn�:
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Using the Fourier expansion of the function  (.) we reduce their estimation to the
estimation of exponential sums of the formX

h�H

X
m�M

X
n�N

c�h�a�m�b�n�e�h�mn��: �2:4�

The estimates for these sums used before are good enough if the sizes of H, M, N
satisfy some conditions (see Section 3 for details) and 11/13<<1. It was the last
condition that set the limit of the method in [8]. We can replace it with the less
restrictive 16/19<<1, which allows us to obtain the better result.

3. Exponential sums. In this section we prove the exponential sum estimates
which we need. Lemma 1 is proved by D. R. Heath-Brown [6, Lemma 4]. Lemma 2
is Theorem 3 of H.-Q. Liu [14]; it contains an improved version of Theorem 3 of [2]
and Lemma 1 of [1]. Lemmas 3 and 4 are re®ned versions of Lemmas 4 and 5 of [1]
and Lemmas 1 and 2 of [8].

Lemma 1. Let 5/6+��<1, MN�X, H�X1ÿ+4�. Assume further that a(m),
b(n), c(h) are complex numbers of modulus �1, and N satis®es one of the conditions

X1ÿ�" < N < X 5ÿ4ÿ" �3:1�

or

X 5ÿ5�" < N < X ÿ" �3:2�

Then X
h�H

X
m�M

X
n�N

c�h�a�m�b�n�e�h�mn�� � X 1ÿ5�:

Lemma 2. Let H�1, X�1, Y�1; let �, � and  be real numbers such that
�(�ÿ1)(ÿ1) 6�0, and A>C(�,�,)>0, f(h,x,y)=Ah�x�y. De®ne

S�H;X;Y� �
X
h�H

X
x�X

X
y�Y

a�h; x�b�y�e�f�h; x; y��:

Also suppose that ja,(h, x)j�1, jb(y)j�1, F=AH�X�Y�Y. Then

Lÿ3S�H;X;Y� � �HX�19=22Y13=22F3=22 �HXY5=8�1� Y7Fÿ4�1=16�
�HX�29=32Y7=8Fÿ1=16M5=32 � �HX�3=4YM1=4

where L=log(AHXY+2), M=max (1, FYÿ2).

Lemma 3. Let 16/19+"�<1, MN�X, H�X1ÿ+4�. Assume further that a(m),
b(n), c(h) are complex numbers of modulus �1, and N satis®es the condition

X 3ÿ3�" < N < X 3ÿ2ÿ": �3:3�
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Then X
h�H

X
m�M

X
n�N

c�h�a�m�b�n�e�h�mn�� � X1ÿ5�:

Proof. Let us suppose ®rst that N � X1=2. Then we apply Lemma 2 with
�h; x; y� � �h; n;m� and using the assumptions of the lemma obtain

Xÿ�
X
h�H

X
m�M

X
n�N

c�h�a�m�b�n�e�h�mn�� � X 1ÿ"=4:

For N � X1=2 we interchange the roles of m and n.

Lemma 4. Let 16/19+"�<1, MN�X, H�X1ÿ+4�. Assume further that a(m),
c(h) are complex numbers of modulus �1, and N satis®es the condition

N > X 3ÿ3�": �3:4�

Then X
h�H

X
m�M

X
n�N

c�h�a�m�e�h�mn�� � X1ÿ5�:

Proof. If N satis®es the condition (3.3), Lemma 4 is a consequence of Lemma 3.
Let us suppose now that N � X3ÿ2ÿ". We ®rst apply Poisson summation formula
(Lemma 6 of D. R. Heath-Brown [6]) and obtainX

h�H

X
m�M

X
n�N

c�h�a�m�e�h�mn��

�NFÿ1=2
X
h�H

X
m�M

X
k

c�h�a�m�b�k�e�f�h;m; k�� � O�HM�NFÿ1=2 � L��;

where F � HX; f�h;m; k� � B � �hmkÿ�1=�1ÿ� � F; a�m�; b�k�; c�h� are of modulus
� 1�a�m�; c�h� possibly not the same), and k runs through an interval [K1, K2] for
which Ki � K � FNÿ1. Now we use a variant of the Perron formula (Lemma 6 of E.
Fouvry and H. Iwaniec [2] or formula (4.4) below) to remove the dependence
between the summation variables. We getX

h�H

X
m�M

X
n�N

c�h�a�m�e�h�mn��

�LNFÿ1=2
���X
h�H

X
m�M

X
k�K

c�h�a�m�b�k�e�f�h;m; k��
����HM�NFÿ1=2 � L�:

We estimate the last sum via Lemma 2 with (h; x; y)=(h;m; k) and the required
estimate follows immediately.

4. Asymptotic formulae. We begin this section with two lemmas concerning the
so called Buchstab's function w�u� which is de®ned to be the continuous solution of
the di�erential-di�erence equation
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w�u� � 1=u; for 1 < u < 2;
�uw�u��0 � w�uÿ 1�; for u > 2:

�

Lemma 5 follows easily from Lemma 2 of J. B. Friedlander [3], and Lemma 6 fol-
lows from Lemma 5 by partial summation.

Lemma 5. Let ">0 be ®xed, x�x0("), x"�z�x. Then for any u 2 (x, 2x] we haveX
x<n�u
�n;P�z���1

1 � w
log x

log z

� �
� uÿ x

log z
�O x

log2 x

� �
:

Lemma 6. Under the assumption of Lemma 5 we haveX
n�x

�n;P�z���1

nÿ1 � �
X
n�x

�n;P�z���1

1 � 1�O 1

log x

� �� �
:

with �=(2ÿ1)xÿ1.
Lemmas 7 through 10 provide us with the asymptotic formulae of the form (2.3)

which we need in the next section.

Lemma 7. Let 16/19+"�<1, MN�X, and a(m), b(n) are complex numbers of
modulus �X�/3. Assume further that N satis®es one of the conditions (3.1)±(3.3).
Then X

m�M

X
n�N

mn2A

a�m�b�n� �
X
m�M

X
n�N

mn2B

a�m�b�n��mn�ÿ1 �O�X ÿ3��: �4:1�

Moreover, if N satis®es (3.4) thenX
m�M

X
n�N

mn2A

a�m� �
X
m�M

X
n�N

mn2B

a�m��mn�ÿ1 �O�X ÿ3��: �4:2�

Proof. Let us consider (4.1). We have

X
m�M

X
n�N

mn2A

a�m�b�n� �
X
m�M

X
n�N

mn2B

a�m�b�n�N �mn�

and therefore

X
m�M

X
n�N

mn2A

a�m�b�n� � �1 ��2

where
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P
1
�
X
m�M

X
n�N

mn2B

a�m�b�n���mn� 1� ÿ �mn��:

P
2
�
X
m�M

X
n�N

mn2B

a�m�b�n�r�mn�:

It is easy to see that P
1
�
X
m�M

X
n�N

mn2B

a�m�b�n��mn�ÿ1 �O�X ��:

Thus the proof of (4.1) will be completed if we show thatP
2
� X ÿ3�:

Applying a well-known reduction argument using the Fourier expansion of the
function  �t� (see [6, pp. 245±247]) we ®nd that the last inequality follows from the
estimate X

h�H

X
m�M

X
n�N

c�h�a�m�b�n�e�h�mn�� � X 1ÿ5�

where H � X1ÿ�4� and the coe�cients a�m�; b�n�; c�h� are complex numbers of
modulus �1. This estimate is provided by Lemma 1 if N satis®es (3.1) or (3.2), and
by Lemma 3 if N satis®es (3.3).

One can prove (4.2) similarly using Lemma 4 instead of Lemmas 1 and 3.

Lemma 8. Let 16/19+"�<1, MN�X and N satis®es one of the conditions
(3.1)±(3.3). Let I, J are integers and I i, J j are intervals for 1�i�I, 1�j�J. Write

a�m; n� �
X

kp1���pI�n
p1<p2<���<pI

pi2I i

c�n�
X

lq1���qJ�m
q1<q2<���<qJ

qj2J j

d�m�

with jc(n)j, jd(m)j�1 and p1,. . .,pI and q1,. . .,qJ satisfying t joint conditions of the
form

pu � qv or qv � pu

or Y
u2U

pu
Y
v2V

qv � H or
Y
u2U

pu �
Y
v2V

qv

or similar (for given U�{1,. . .,I}, V�{1,. . .,J}, H�X). ThenX
m�M

X
n�N

mn2A

a�m; n� �
X
m�M

X
n�N

mn2B

a�m; n��mn�ÿ1 �O�Xÿ3�Lt�: �4:3�
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Proof. Each joint condition can be removed by the truncated Perron formula

1

�

�T
ÿT

eiy�
�sin y��

y
dy � 1�O�Tÿ1��ÿ j�j�ÿ1�; if j�j � �

O�Tÿ1�j�j ÿ ��ÿ1�; if j�j > �

�
�4:4�

at the cost of an additional L factor in the error term.
For example, in order to remove the condition pu � qv we apply (4.4) with

� � log pu; � � log�qv � 1
2� and T � X2. We ®nd

X
m�M

X
n�N

mn2A

a�m; n� � 1

�

�T
ÿT

X
m�M

X
n�N

mn2A

a1�m; n; y� dy
y
�O�1�

where

a1�m; n; y� � a1�m; n�piyu sin y log qv � 1

2

� �� �
and a1�m; n� is the same as a�m; n� but with the condition pu � qv removed. Applying
this procedure t times we obtain

X
m�M

X
n�N

mn2A

a�m; n� � 1

�t

�T
ÿT

. . .

�T
ÿT

X
m�M

X
n�N

mn2A

a��m; n; y�
y1 . . . yt

dy�O�1� �4:5�

where a��m; n; y� is de®ned similarly to a�m; n� but with all the joint conditions
removed, so that

a��m; n; y� � a�m; y�b�n; y�:

We can therefore apply (4.1) to the last sum. We get

1

�t

�T
ÿT
� � �

�T
ÿT

X
m�M

X
n�N

mn2A

a�m; y�b�n; y�
y1 � � � yt dy

� 1

�t

�T
ÿT
� � �

�T
ÿT

X
m�M

X
n�N

mn2B

a�m; y�b�n; y�
y1 � � � yt �mn�ÿ1dy�O�Xÿ3�Lt�

�4:6�

Applying (4.4) t more times we ®nally ®nd

1

�t

�T
ÿT
� � �

�T
ÿT

X
m�M

X
n�N

mn2B

a�m; y�b�n; y�
y1 � � � yt �mn�ÿ1dy

�
X
m�M

X
n�N

mn2B

a�m; n��mn�ÿ1 �O�1�:
�4:7�
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The lemma follows from (4.5)±(4.7).

Lemma 9. Let u�1 and for some N satisfying one of the conditions (3.1)±(3.3)
there exists D�{1,. . .,u} such that Y

k2D
pk � N:

Then X
p1;...;pu

S�Ap1 . . .pu ; p1� � �
X

p1;...;pu

S�Bp1 . . .pu ; p1��1�O�Lÿ1�� � O�Xÿ��: �4:8�

Here the summation is over prime numbers p1,. . .,pu�X1/15 satisfying pk>p1, together
with �1 further conditions of the type

pk � pl or Q �
Y
k2F

pk � R

(for some F�{1,. . .,u} and R�X).

Proof. The left-hand side of (4.8) equalsX
p1;...;pu

X
k:

p1...puk2A
�k;P�p1���1

1:

We can write this sum in the formX
m�M

X
n�N

mn2A

a�m; n�

where

n �
Y
j2D

pj; m �
X
j 62D

pj

 !
� k

and a�m; n� are of the form considered in Lemma 8. Since N satis®es one of the
conditions (3.1)±(3.3), we can use Lemma 8 for the last sum, so that we obtainX

p1;...;pu

S�Ap1 . . . ;pu ; p1�

�
X
m�M

X
n�N

mn2A

a�m; n��mn�ÿ1 �O�Xÿ3�La�

�
X

p1;...;pu

X
k:

p1...puk2B
�k;P�p1���1

�p1 � � � puk�ÿ1 �O�Xÿ��:
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Here a is the number of the joint conditions between the variables.
Applying Lemma 6 to the inner sum we complete the proof of the lemma.

Lemma 10. Suppose that �38/45+" and M�X8/15. Suppose further that a(m)
are real numbers, such that 0�a(m)�X� and a(m)=0 unless pjm)p�X1/15. Then we
have X

m�M
a�m�S�Am;X

1=15� � �
X
m�M

a�m�S�Bm;X1=15��1�O�Lÿ1�� � O�Xÿ��:

Proof. We follow the approach of G. Harman [5, Lemma 2]. We shall make use
of the Eratosthenes±Legendre sieve, which states thatX

n�N
�n;P�z���1

f �n� �
X
djP�z�
nd�N

��d�f�nd� �4:9�

where ��d� is the MoÈ bius function.
We take z � X 1=15 and applying (4.9) to S�Am; z� we ®ndX

m�M
a�m�S�Am; z� �

X
m�M

a�m�
X
djP�z�
mnd2A

��d�: �4:10�

Now we proceed to show that

X
m�M

a�m�
X
djP�z�
mnd2A

��d� �
X
m�M

a�m�
X
djP�z�
mnd2B

��d��mnd�ÿ1 �O�xÿ��: �4:11�

We ®rst consider the case M � X7=15. We produce a new variable k � dn and ®nd

X
m�M

a�m�
X
djP�z�
mnd2A

��d� �
X
m�M
mk2A

a�m�b�k�

with jb�k�j � ��k� (��k� denotes the number of the positive divisors of the integer k).
Splitting up the values of k into intervals of the form (K, 2K] we derive (4.11) from
(4.1) with �m; n� � �m; k�.

Now suppose that M � X7=15. We divide the sum in the left-hand side of (4.11)
into two parts P

1
�
X
m�M

a�m�
X
djP�z�
mnd2A

md�X8=15

��d�;

P
2
�
X
m�M

a�m�
X
djP�z�
mnd2A

md>X8=15

��d�:
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In
P

1 we produce a new variable k � md and getP
1
�

X
k�X8=15

kn2A

b�k�

where jb�k�j � k���k�. Therefore (4.2) with �m; n� � �k; n� impliesP
1
�
X
m�M

a�m�
X
djP�z�
mnd2B

md�X8=15

��d��mnd�ÿ1 �O�Xÿ2��:

Now we write
P

2 in the formP
2
� ÿ

X
m�M

a�m�
X
p<z

X
djP�p�

mnpd2A
mpd>X8=15

��d�

and divide the last sum into two parts

P
3
�
X
m�M

a�m�
X
p<z

X
djP�p�

mnpd2A
md�X8=15<mpd

��d�;

P
4
�
X
m�M

a�m�
X
p<z

X
djP�p�

mnpd2A
md>X8=15

��d�:

In
P

3 we produce two new variables k � md and l � np and we get (note that
p < z;mpd > X8=15 ) k > X7=15)

P
3
�

X
X7=15<k�X8=15

kl2A

b�k; l�

where jb�k; l�j � k���k���l� is of the form appearing in the left-hand side of (4.3) with
the only two joint conditions

p > q and pk > X8=15

(here q is the largest prime divisor of d). Therefore Lemma 8 with �m; n� � �k; l�
implies P

3
�
X
m�M

a�m�
X
p<z

X
djP�p�
mnpd2B

md�X8=15<mpd

��d��mnpd�ÿ1 �O�Xÿ2�L2�:

We treat
P

4 similarly to
P

2 and write it as the sum of two sums
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P
5
�
X
m�M

a�m�
X

p2<p1<z

X
djP�p2�

mnp1p2d2A
md�X8=15<mpd

��d�;

P
6
�
X
m�M

a�m�
X

p2<p1<z

X
djP�p2�

mnp1p2d2A
md>X8=15

��d�:

We deal with
P

5 as we did with
P

3 and obtain a similar asymptotic formula, and
we give further decomposition for

P
6. We can continue in this fashion obtaining

each time
P

2jÿ1 for which we can apply Lemma 8 and
P

2j for which we give further
decomposition. Since the integers in the interval (X, 2X] have <L prime divisors
after at most L such steps we will obtain an empty

P
2j and we will have given

asymptotic formulae for all the occurring sums. Clearly, combining the asymptotic
formulae for all

P
2jÿ1 we complete the proof of (4.11) for M < X7=15.

Applying (4.9) and Lemma 6 we ®ndX
m�M

a�m�
X
djP�z�
mnd2B

��d��mnd�ÿ1 �
X
m�M

a�m�S�Bm; z��1�O�Lÿ1��: �4:12�

The lemma follows from (4.10)±(4.12).

5. Proof of the Theorem. We apply twice (2.2) and get

S�A; �2X�1=2� � S�A;X7=45� ÿ
X

X7=45�p�X2=9

S�Ap; p�

ÿ
X

X7=15�p��2X�1=2
S�Ap; p�

ÿ
X

X2=9<p<X7=15

S�Ap;X
1=15�

�
X

X2=9<p<X7=15

X1=15�q<X7=45

S�Apq; q�

�
X

X2=9<p<X7=15

X7=45�q�X2=9

S�Apq; q�

�
X

X2=9<q<p<X7=15

pq2�2X

S�Apq; q�

� S1 ÿ S2 ÿ S3 ÿ S4 � S5 � S6 � S7; say:

�5:1�

For S1;S5 and S7 we give further decompositions. We apply to S1 the Buchstab
identity (2.2) four times and we get
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S1 � S�A;X1=15� ÿ
X

X1=15�p<X7=45

S�Ap;X
1=15�

�
X

X1=15�q<p<X7=45

S�Apq;X
1=15�

ÿ
X

X1=15�r<q<p<X7=45

S�Apqr;X
1=15�

�
X

X1=15�s<r<q<p<X7=45

S�Apqrs; s�

� S8 ÿ S9 � S10 ÿ S11 � S12; say:

�5:2�

Now we consider S5. We write (r1) for the conditions

X 2=9 < p < X 7=15; X 1=15 � q < X 7=45; pq2 � X 8=15;

and (r2) for the conditions

X 2=9 < p < X 7=15; X 1=15 � q < X 7=45; pq2 > X 8=15:

We apply (2.2) two more times to the part of S5 corresponding to the conditions (r1)
and get X

p;q:�r1�
S�Apq; q� �

X
p;q:�r1�

S�Apq;X
1=15�

ÿ
X

p;q:�r1�
X1=15�r<q

S�Apqr;X
1=15�

�
X

p;q:�r1�
X1=15�s<r<q

S�Apqrs; s�

� S13 ÿ S14 � S15; say:

�5:3�

For the part of S5 corresponding to the conditions (r2) we ®ndX
p;q:�r2�

S�Apq; q� �
X

p;q:�r2�

X
n:

pqn2A
�n;P�q���1

1 � S16 � S17 �5:4�

where

S16 �
X

p;q:�r2�

X
r:

pqr2A
r�q

1

S17 �
X

p;q;:�r2�
q�r�

����������
2X=pq
p

r�s��2X�=pqr

X
n:

pqrsn2A
�n;P�s���1

1:

For S7 we have
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S7 �
X

X2=9<q<p<X7=15

pq<X7=15

S�Apq; q�

�
X

X2=9<q<p<X7=15

X7=15�pq�X8=15

S�Apq; q�

�
X

X2=9<q<p<X7=15

X8=15<pq<pq2�2X

S�Apq; q�

� S18 � S19 � S20; say:

Using the de®nition of the sifting function we obtain

S18 �
X

X2=9<q<p<X7=15

pq<X7=15

X
n:

pqn2A
�n;P�q���1

1

� S21 � S22;

where S21 is the number of the integers of the form pqr 2 A for which

X2=9 < q < p < pq < X7=15 and r � q; �5:5�

and S22Ðthe number of the integers of the form pqrs 2 A for which

X2=9 < q < p < pq < X7=15 and q � r � s: �5:6�
Hence,

S7 � S19 � S20 � S21 � S22: �5:7�

Combining (5.1)±(5.4) and (5.7) we obtain

S�A; �2X�1=2� � ÿ S2 ÿ S3 ÿ S4 � S6 � S8 ÿ S9 � S10 ÿ S11 � S12 � S13

ÿ S14 � S15 � S16 � S17 � S19 � S20 � S21 � S22:
�5:8�

Lemma 9 provides asymptotic formulae for S2, S3, S6 and S19, and Lemma 10Ðfor
S4, S8±S11, S13 and S14. Using Lemmas 8 and 9 we can also ®nd asymptotic for-
mulae for those parts of S12, S15±S17, S21 and S22 where some subproduct of pqr or
pqrs lies in one of the intervals

�X7=45;X2=9�; �X7=15;X8=15�; �X7=9;X38=45�:

Since S20 and the remaining parts of these sums give positive contribution to the
right-hand side of (5.8), we may discard them obtaining a lower bound for
S�A; �2X�1=2�. Now using the corresponding decomposition for S�B; �2X�1=2� we
obtain that

S�A; �2X�1=2� � ��S�B; �2X�1=2� ÿ T12 ÿ T15 ÿ T16 ÿ T17 ÿ T20 ÿ T21 ÿ T22�: �5:9�
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Here T12; . . . ;T22 are almost the same as the discarded sums with the only di�erence
that A is replaced by B, for example,

T20 �
X

X2=9<q<p<X7=15

X8=15<pq<pq2�2X

S�Bpq; q�:

The Prime Number Theorem implies

S�B; �2X�1=2� � X

L
�1�O�Lÿ1��: �5:10�

In order to evaluate T12; . . .T22 we use Lemma 5 and the estimates for the
Buchstab function contained in the following lemma (cf. Lemma 8 of [9]).

Lemma 11. If w(x) is the Buchstab function, then we have

(a) w(u)�0.5644 for u�3;
(b) w(u)�0.5672 for u�2.

We consider ®rst T20. Applying Lemma 5 and the Prime Number Theorem we
obtain

T20 �
X

X2=9<q<p<X7=15

X8=15<pq<pq2�2X

X

pq log q
w

log �X=pq�
log q

� �
�1�O�Lÿ1��

� �I20 �O�Lÿ1��X
L

where

I20 �
� �
D20

1

xy2
w

1ÿ xÿ y

y

� �
dxdy

and D20 is the region de®ned by the conditions

2=9 < y < x < 7=15; x� y > 8=15; x� 2y < 1:

The computation of the last integral shows that

T20 � 0:41695
X

L
: �5:11�

Now we consider T21. We have
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T21 �
X

X2=9<q<p<X7=15

pq<X7=15

�
2X

pq

� �
ÿ � X

pq

� �� �

�
X

X2=9<q<p<X7=15

pq<X7=15

X

pq log �X=pq� �1�O�L
ÿ1��

� �I21 �O�Lÿ1��X
L

where

I21 �
� �
D21

dxdy

xy�1ÿ xÿ y�

and D21 is the region de®ned by the inequalities

2=9 < y < x < x� y < 7=15:

Hence

T21 � 0:004333
X

L
: �5:12�

Treating T16 and T22 similarly we get

T16 � 0:35301
X

L
and T22 � 0:000244

X

L
: �5:13�

The sums T12 and T15 may be estimated similarly to T20 via Lemma 5 and the Prime
Number Theorem. We ®nd

T12 � 0:006183
X

L
and T15 � 0:000386

X

L
: �5:14�

Finally we consider T17. We divide it into two parts: T23 where�������
2X

pqr

s
< s � 2X

pqr
;

and T24 where

s �
�������
2X

pqr

s
;

and we obtain

T17 � T23 � T24: �5:15�
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With T23 we proceed similarly to T21, and with T24Ðsimilarly to T20. We get

T23 � 0:115868
X

L
: �5:16�

and

T24 � 0:020259
X

L
: �5:17�

Finally from (5.9)±(5.17) we derive

S�A; �2X�1=2� � 0:08
�X

L
:

Acknowledgements. The author would like to express his gratitude to
Profs. D. I. Tolev and O. T. Trifonov for the regular attention to his work. He
would also like to thank the referee for his valuable comments. In particular, the
author followed his suggestions on the proof of Lemma 10 which allowed to shorten
considerably Section 4.

REFERENCES

1. R. C. Baker, G. Harman and J. Rivat, Primes of the form [nc], J. Number Theory 50
(1995), 261±277.

2. E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33
(1989), 311±333.

3. J. B. Friedlander, Integers free from large and small primes, Proc. London Math. Soc.
(3) 33 (1976), 565±576.

4. G. Harman, On the distribution of �p modulo one, J. London Math. Soc. (2) 27
(1983), 9±18.

5. G. Harman, On the distribution of �p modulo one II, Proc. London Math. Soc. (3)
72 (1996), 241±260.

6. D. R. Heath-Brown, The Piatetski-Shapiro prime number theorem, J. Number The-
ory 16 (1983), 242±266.

7. C.-H. Jia, On Piatetski-Shapiro prime number theorem, Chinese Ann. Math. 15B:1
(1994), 9±22.

8. C.-H. Jia, On Piatetski-Shapiro prime number theorem II, Science in China Ser. A 35
(1993), 913±922.

9. C.-H. Jia, On the Piatetski-Shapiro-Vinogradov theorem, Acta Arith. 73 (1995), 1±28.
10. G. A. Kolesnik, The distribution of primes in sequnces of the form [nc], Mat. Zametki

2 (1969), 117±128.
11. G. A. Kolesnik, Primes of the form [nc], Paci®c J. Math. 118 (1988), 81±92.
12. D. Leitmann, AbschaÈ tzung trigonometrischer summen, J. Reine Angew. Math. 317

(1980), 209±219.
13. D. Leitmann and D. Wolke, Primzahlen der gestalt [f(n)], Math. Z. 145 (1975),

81±92.
14. H.-Q. Liu, On the number of abelian groups of a given order (supplement), Acta

Arith. 64 (1993), 285±296.

DISTRIBUTION OF PRIME NUMBERS 101

https://doi.org/10.1017/S0017089599970477 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599970477


15. H.-Q. Liu and J. Rivat, On the Piatetski-Shapiro prime number theorem, Bull. Lon-
don Math. Soc. 24 (1992), 143±147.

16. I. I. Piatetski-Shapiro, On the distribution of prime numbers in sequences of the form
[f(n)], Mat. Sb. 33 (1953), 559±566.

17. J. Rivat, Autour d'un theorem de Piatetski-Shapiro, Thesis, UniversiteÂ de Paris Sud,
1992.

102 A. KUMCHEV

https://doi.org/10.1017/S0017089599970477 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599970477

