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On the Sum of Digits of Numerators of
Bernoulli Numbers
Attila Bérczes and Florian Luca

Abstract. Let b > 1 be an integer. We prove that for almost all n, the sum of the digits in base b of
the numerator of the Bernoulli number B2n exceeds c log n, where c := c(b) > 0 is some constant
depending on b.

1 Introduction

Let {Bn}n≥0 be the sequence of Bernoulli numbers given by B0 = 1 and

n−1∑
k=0

(
n

k

)
Bk = 0 for all n ≥ 2.

Then B1 = −1/2 and B2n+1 = 0 for all n ≥ 0. Furthermore, we have (−1)n+1B2n > 0.
Write B2n =: (−1)n+1Cn/Dn with coprime positive integers Cn and Dn. The denomi-
nator Dn is well understood by the von Staudt–Clausen theorem, which asserts that

Dn =
∏

p−1|2n

p.

Let b > 1 be an integer. For a positive integer m, put sb(m) for the sum of digits of m
in base b. In [2], it was shown that there exists a positive constant c0 depending on
b such that the inequality sb(n!) > c0 log n holds for all positive integers n. Here, we
prove that a similar inequality holds with n! replaced by Cn on a set of n of asymptotic
density 1.

Theorem 1.1 The inequality

sb(Cn) >
log n

6 log b

holds on a set of positive integers n of asymptotic density 1.
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Our main tools are the classical formula

(1.1) ζ(2n) = (−1)n+1B2n
(2π)2n

2(2n)!
=

Cn(2π)2n

Dn2(2n)!

valid for all n ≥ 1 and the following result, which is [1, Theorem 2].

Lemma 1.2 For every ε > 0, there is a T := T(ε) such that if x > T, then the number
of n < x that have a divisor p − 1 > T with p prime is less than εx.

In what follows, we use the Landau symbols O and o and the Vinogradov symbols
� and � with their usual meaning. We also use x0 for a large real number, not
necessarily the same from one occurrence to the next.

Proof Consider the following set of positive integers:

Mb(x) :=
{

n ∈ [x/2, x) : sb(Cn) <
log x

6 log b

}
.

We need to show that #Mb(x) = o(x) as x→∞, because after this the conclusion of
Theorem 1.1 will follow by replacing x by x/2, then by x/4, and so on, and summing
up the resulting estimates.

Put y := log x and consider the set

L(x) := {n ∈ [x/2, x) : p − 1 | 2n for some prime p ≥ y}.

It follows from Lemma 1.2 that

(1.2) #L(x) = o(x) as x→∞.

We now put Nb(x) := Mb(x)\L(x). In light of (1.2), it suffices to show that #Nb(x) =
o(x) as x→∞. Let

D(x) := {Dn : n ∈ Nb(x)}.

Since n 6∈ L(x), it follows that if p | Cn, then p < y. Thus,

(1.3) #D(x) ≤ 2π(y) = xo(1) as x→∞.

For n ∈ Nb(x), we write Cn = d1bn1 + d2bn2 + · · · + dsbns , where d1, . . . , ds ∈
{1, . . . , b− 1} and n1 > n2 > · · · > ns. We next put t := t(n) for the smallest index
i ∈ {1, 2, . . . , s− 1} such that bn1−ni+1 > n2 if it exists and set t := s otherwise. From
the definition of t(n), we see immediately that

(1.4) Cn =
(

d1bn1 + · · · + dt b
nt
)(

1 + O(n−2)
)

:= bmn En

(
1 + O(x−2)

)
,

where m = mn := nt and En := d1bn1−nt + d2bn2−nt + · · · + dt .
Let

Eb(x) = {En : n ∈ Nb(x)}.
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Let us find an upper bound for the cardinality of Eb(x). First observe that

(1.5) En < bn1−nt +1 ≤ b2(log x)/(log b)+1.

The positive integers E := En bounded by the right-hand side of inequality (1.5) have
at most K := b2(log x)/(log b) + 2c digits in base b. As n ∈ Nb(x), the number of
nonzero digits of En is bounded by S := b(log x)/(6 log b)c, so the number of possible
values for E is at most

S∑
i=0

(
K

i

)
(b− 1)i ≤ (S + 1)

(
K

S

)
(b− 1)S ≤ (S + 1)

( (b− 1)eK

S

) S

≤
( log x

6 log b
+ 1
)( (b− 1)e

3
+ o(1)

) (log x)/(6 log b)
= xδ+o(1)

as x→∞, where

δ :=
log((b− 1)e/3)

6 log b
<

1

6
.

Thus, we get that

(1.6) #Eb(x) = xδ+o(1) as x→∞.

We next use formula (1.1) as well as the aproximation

ζ(2n) = 1 +
1

22n
+

1

32n
+ · · · = 1 + O

( 1

22n

)
to get that

(1.7) Cn = Dn
2(2n)!

(2π)2n
ζ(2n) = Dn

2(2n)!

(2π)2n

(
1 + O

(
1

22n

))
.

We take logarithms in (1.7) to arrive at

(1.8) log(Cn/Dn)− log(2(2n)!) + 2n log(2π) = log
(

1 + O
( 1

22n

))
� 1

2x
.

Taking logarithms in (1.4) and comparing the result with (1.8), we get

(1.9) log(2(2n)!)− 2n log(2π) = log(En/Dn) + mn log b + O
( 1

x2

)
.

Now fix a pair of numbers (D, E) ∈ Db(x)× Eb(x) and look at the set

Nb,D,E(x) := {n ∈ Nb(x) : (Dn, En) = (D, E)}.

We let z := x1/5 and show that if x > x0, then every subinterval I of (x/2, x] of length
z contains at most two elements of Nb,D,E(x). Now, assume that this is not so and let
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n0 < n1 < n2 be all three in Nb,D,E(x), where n2 − n0 ≤ z. Write ni = n0 + ki for
i = 1, 2, with 0 < k1 < k2 ≤ z. We evaluate relation (1.9) in n0, n1, and n2 getting

(1.10) log(2(2ni)!) + 2ni log(2π) = log(E/D) + mni log b + O
( 1

x2

)
for i = 0, 1, 2. We let Λ := (λ0, λ1, λ2) = (k2 − k1,−k2, k1). Observe that

(1.11)

{
λ0 + λ1 + λ2 = 0,

n0λ0 + n1λ1 + n2λ2 = 0,

and max{|λi | : i = 0, 1, 2} ≤ z. Taking the linear combination of the three relations
(1.10) with the coefficients given by Λ and using the second equation (1.11), we get

(1.12)
2∑

i=0

λi log(2(2ni)!) = Γ log b + O
( z

x2

)
,

where Γ :=
∑2

i=0 λimni ∈ Z. Write

2(2ni)! = 2(2n0)!(2n0 + 1) · · · (2ni) =: 2(2n0)!Xi , (i = 0, 1, 2).

Hence,

2∑
i=0

λi log(2(2ni)! =

2∑
i=0

λi(log(2(2n0)!) + log Xi)

=

2∑
i=0

λi log(2(2n1)!) +
2∑

i=0

λi log Xi

=

2∑
i=0

λi log Xi = λ1 log X1 + λ2 log X2,

where in the above equalities we used the first equation of (1.11) as well as the fact
that X0 = 1. Writing

log Xi =

2ki∑
j=1

log(2n0 + j) = 2ki log(2n0) +
2ki∑
j=1

log
(

1 +
j

n0

)

= 2ki log(2n0) +
2ki∑
j=1

( j

n0
+ O
( j2

n2
0

))

= 2ki log(2n0) +
2ki∑
j=1

j

n0
+ O

( 2ki∑
j=0

j2

n2
0

)

= 2ki log(2n0) +
2ki(2ki + 1)

n0
+ O
( k3

i

x2

)
,
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for i = 1, 2, we get that

λ1 log X1 + λ2 log X2

= 2(λ1k1 + λ2k2) log(2n0) +
4λ1k2

1 + 4λ2k2
2

n0
+

2λ1k1 + 2λ2k2

n0
+ O
( k4

2

n2
0

)
= 4
( λ1k2

1 + λ2k2
2

n0

)
+ O
( z4

x2

)
.

Inserting the above estimate into the left-hand side of (1.12), we get

(1.13) 4
( λ1k2

1 + λ2k2
2

n0

)
= Γ log b + O

( z

x2
+

z4

x2

)
= Γ log b + O

( 1

x6/5

)
.

If Γ = 0, then (1.13) implies that

|λ1k2
1 + λ2k2

2| = O
( n0

x6/5

)
= O

( 1

x1/5

)
= o(1)

as x→∞, showing that λ1k2
1 + λ2k2

2 = 0 for x > x0. This last equation is equivalent
to k1k2(k1 − k2) = 0, which is impossible. Thus, Γ 6= 0, showing that the right-
hand side in estimate (1.13) is� 1, and since the left-hand side of estimate (1.13)
is O(k3

2/x), we get that k2 � x1/3. This is not possible for large x because k2 ≤ z.
We conclude that indeed for large x, I cannot contain three numbers from Nb,D,E(x).
This shows that

#Nb,D,E(x) ≤
[ x − x/2

z

]
+ 2� x4/5.

Hence, by estimates (1.3) and (1.6), we get that

Nb(x) =
∑

(D,E)∈Db(x)×Eb(x)

#Nb,D,E � x4/5 × #Db(x)× #Eb(x)

≤ x4/5+δ+o(1) < x29/30+o(1) = o(x)

as x→∞, which is what we wanted to prove.
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choacán, México
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