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SOME SMOOTHNESS PROPERTIES OF MEASURES 
ON TOPOLOGICAL SPACES 

BY 

SHANKAR HEGDE 

ABSTRACT. V. S. Varadarajan has classified the bounded linear 
functional on the algebra C(X) of bounded continuous functions on 
a topological space X, according to the properties of their smooth
ness and related this classification to the corresponding natural 
classification of finitely additive regular measures on the zero sets of 
X. In this paper, some of these results are extended to the linear 
functionals on an arbitrary uniformly closed algebra A of bounded 
functions on a set X. 

0. Introduction. Starting from the classical theorem of F. Riesz (1909) there 
have been a number of attempts to give integral representations of bounded 
linear functionals on the space C(X) of bounded continuous functions on a 
topological space X under different restrictions on X. Among them are the 
results of Banach, Kakutani, Alexandroff, Varadarajan, Kirk, Kirk and Cren
shaw, and others. These representations have been used to classify the 
bounded linear functionals in terms of the representing measures. This paper 
attempts to generalize some of the results of Varadarajan in this direction. 

1. Representation theorems. Let m be a finitely additive bounded real 
valued set function on a field S of subsets of a set X. For a subfamily <o of 2 , m 
is said to be co- regular if for every A in 2 and for every positive s, there exists 
W in co such that W<^A and \m(B)\<e, for all B in 2 with B contained in 
A — W. A family a) of subsets of a set X is called a full paving in X if co 
contains <f>, X and is closed under finite union and finite intersection. For a full 
paving a) in X, we denote by &{<*)) the field of subsets of X generated by <o, 
and by M(co) the space of all finitely additive, bounded, real valued, co-regular 
set functions defined on ^(co). The space M(o)) is a Banach lattice under the 
usual pointwise operations and total variation norm. Let A be a uniformly 
closed algebra of bounded real valued functions on X which contains the 
constants and separates the points of X, and A* be its Banach space dual. A* 
is a Banach lattice with the usual definition of non-negative linear functionals. 
We say that M(<o) represents A* if there exists a Banach lattice isomorphism I 
of A* onto M(o>) such that for every non-negative bounded linear functional $ 
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on A, we have 

/^r(W) = i n f { ^ ( / ) | / G A , ^ w < / } 

for all W in a). Here xw denotes the characteristic function on W. Obviously 
this condition on J makes such an isomorphism unique. 

We state two representation theorems. Let X be a topological space. Let 
C(X) denote the algebra of all bounded real valued continous functions on X 
with supremum norm, and C(X)* be its Banach space dual. For an / in C(X), 
the kernel of / in X is called a zero set in X. The full paving of all zero sets in X 
is denoted by 2£(X). The following theorem is proved by Alexandroff [1]. Also 
see Varadarajan [5]. 

THEOREM 1.1. There exists a Banach lattice isomorphism T of C(X)* onto 
M(%(X)) and the corresponding elements A G C ( X ) * and m = T(A) of M(2£(X)) 
satisfy the identities, 

Mf) =\fdm for every / e C(X) 

and 

m(Z) = inf{A(g):*z<g} for every ZeZ(X). 

In other words M(£(X)) represents C(X)*. Here the integration of f with 
respect to m is taken in the sense of Dunford and Schwartz [2]. 

There have been attempts to generalize the AlexandrofFs theorem to a wider 
class of functions. Among them are the works of Kirk [3], Kirk and Crenshaw 
[4]. Given a set X and a uniformly closed algebra A of bounded real valued 
functions on X which contains the constants and separates the points of X, 
there exists, as a consequence of Stone-Weierstrass theorem, a compact 
Hausdorff space XA such that X can be embedded into XA as a dense subspace 
of XA and A is isomorphic as a Banach lattice to C(XA) [2, p. 276]. The 
topology on X inherited by the topology of XA is denoted by rA. For an / in A, 
let / denote the unique continuous extension of / to XA. For a subset S of X, 
we denote the closure of S in XA by S. The algebra A is said to separate a full 
paving w in X if whenever Wl9 W2 are disjoint sets in <o, there exists / in A 
with / = 0 on Wt and / = 1 on W2. It is obvious that A separates œ if and only 
if Wx and W2 are disjoint whenever Wx and W2 in œ are disjoint. However for 
arbitrary Wl9 W2 in o>, WlHW2 may fail to be equal to WlCYW2. If 
Wx H W2 = Wx n W2 whenever W1, W2 are in o>, we say that A strongly 
separates o). A strongly separates w implies that A separates co. A set Z c X is 
called a A-zero set if there exists feA such that Z = Z(f) = {xeX\f(x) = 0}. 
We denote the family of A-zero sets by 3t(A). 2£{A) is a full paving in X 
constituting a base for rA-closed sets in X In this case, A separates 3£(A) if 
and only if A strongly separates 3£(A). Furthermore if co is any full paving of 
TA-closed sets constituting a base for rA-closed sets and contains 2£(A), then 
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also A separates <D if and only if A strongly separates co. Kirk [3] has proved 
that A separates 3f(A) if and only if M(2£(A)) represents A*. Kirk has also 
given a class of algebras which do not separate 2E(A). 

A more general case is considered by Kirk and Crenshaw. The following 
theorem is proved in [4]. 

THEOREM 1.2. Let A be a uniformly closed algebra of bounded real valued 
functions on X which contains the constants and separates the points of X and let 
(o be a full paving of rA-closed subsets of X. Then M(<o) represents A* if and 
only if 

1. A strongly separates co. 
2. For any 0 < i ^ e A * and Ze2t{A), 

sup inf{i/r(/) | Xw ^ f\ = sup{i/r(g) | g € A, g < Xx-z) 
We<u(Z) 

where a)(Z) = {We<o \ there exists feA with /(Z) = 0 and f(W) = 1}. Further
more if M((o) represents A* and m e M(o>), then each fe A is m-integrable with 
r1m{f) = lfdm. 

Varadarajan [5] has classified the bounded linear functional on C(X) in 
accordance with their properties of smoothness and applied Alexandroff's 
theorem to relate this classification of functional to the corresponding natural 
classification of elements of M(3f(X)). In this paper we apply the theorem of 
Kirk and Crenshaw to relate the classification of bounded linear functional on 
A to the corresponding classification of elements of M(<o) where M(œ) 
represents A* and thus generalize some results of Varadarajan. 

2. Classification of functional and measures. Throughout this section X is 
an arbitrary set, co is a full paving in X and A is a uniformly closed algebra of 
bounded real valued functions on X containing the constants and separating 
the points of X The symbols ^(co), M(co), Xt, 2E(X), 2£(A) all have the 
same meanings as defined in §1. 

For a net {fa} in A we say {fa} decreases to 0 and write fa [ 0 if for each 
x e X, 0 < fa(x) < fp(x) whenever a > (Z and lima fa (x) = 0. The symbol fn I 0 is 
analogously defined for a sequence {/n} in A. 

DEFINITIONS 2.1. Let t^eA*. Then $ is said to be 
(i) T-smooth if lima *M/«) = 0 whenever {fa} is a net in A with fa | 0. 

(ii) a-smooth if limn iM/n)= 0 whenever {/n} is a sequence in A with /n | 0. 
The space of all r-smooth and cr-smooth functional in A* are denoted by Af 
and A* respectively. Clearly 

A * e A*c: A*. 
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Following the theorems 7 and 8 of part I in [5] we can prove 

PROPOSITION 2.2. if/ e A* is r-smooth (a-smooth) if and only if its positive and 
negative variations $+ and if/~ are r-smooth (a-smooth). Consequently i(/ is 
r-smooth (a-smooth) if and only if its total variation |i^| is r-smooth (a-
smooth). 

DEFINITIONS 2.3. For a net {Aa} of subsets of X we say that Aa decreases to <f> 
and we write Aa I <£ if Aa <=• A p whenever a > ]8 and f l a A a = 4>. We similarly 
define the symbol An I <j> for a sequence {An} of subsets of X. 

Let meM(o)) and let \m\ be the total variation of m. Then m is said to be 

(i) r-smooth if \m\ (Wa)—> 0 for every net {Wa} in <o with Wa [ c/>. 
(ii) a-smooth if \m\ (Wn)—>0 for every sequence {Wn} in co with Wn 1 c/>. 

The space of all T-smooth and a -smooth elements in M(co) are denoted by 
MT(o)) and M^o)) respectively. Clearly MT(co)c: M^co)^ M(co). 

It is immediate from the definition that m is T-smooth (cr-smooth) if and 
only if its positive and negative variation m+ and m~ are T-smooth (cr-smooth). 
Hence m is T-smooth (cr-smooth) if and only if \m\ is so. 

The next result proves that a cr-smooth m e M(w) is cr-additive. 

PROPOSITION 2.4. An m e M(œ) is a-smooth if and only if for every sequence 
{An} in 9?{(x)) with An j <t>, we have ra(An)—> 0. 

Proof. Without loss of generality we assume that m is non-negative so that 
\m\ = m. Suppose m is cr-smooth. Suppose m(An)-> 8>0 for some sequence 
{An} in 3F(a)) with An I <f>. By co-regularity of m, we can choose Wneo), 
Wn^An such that m(An)<m(Wn) + 8/4n. Let Wn = W1 H W2f» • • • n Wn. 
Then {W^jczco with Wn | c/>. However 

m(Wn) = m ( A n - ( A n - W n ) ) 

>m(An)-X m^-V^) 
i = l 

*m(A.)-Î27 
i = l 4 

->|8>0. 

This contradicts the fact that m is cr-smooth and proves that we must have 
m ( A n ) ^ 0 . 

The converse is obvious. 
As an immediate consequence we have 

COROLLARY 2.5. An meM((o) is a-smooth if and only if for every disjoint 
sequence {An} in 2F(<o) for which\J„=1 AnG^(co), we have m({J„=1An) = 
l : = 1 m(An). 
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We give below two examples one of which is not cr-smooth whereas the 
other is cr-smooth but not r-smooth. 

EXAMPLE 2.6. Let X = U. Let co ={(-«>, a] | a G R } U { X , </>}. Then co is a full 
paving in X. Define m on ^(co) by 

Î
1 if either W = X or (-oo, a ] c W for some a G R 

0 otherwise. 

Then m GM(O>). However m is not cr-smooth. Indeed let An = (—n—1, —n] for 
n = l , 2 , . . . . Then {An} is a disjoint sequence in £F(co) with ( J~ = 1 A n = 
(-oo, - l ] e y ( 4 Hence m ( U " = i A J = l whereas Z n = i ^ ( ^ n ) = = 0 since 
m(An) = 0 for each rc. 

EXAMPLE 2.7. Let X = ft where ft is the first uncountable ordinal. For each 
aeil let Wa ={A e X | a < A < f t } . Let o> ={Wa | a eft}U{X, <£}. Then co is a 
full paving in X Define m on ^F(co) by 

( 1 i f W a c W for some a G ft or W= X 

0 otherwise. 

Then meM((o). Let {Wn} be any sequence in co with Wn | <̂ . We can assume 
that Wn9^X for any n. Suppose Wn9^ </> for all n. Let Wn = Wan where an eft. 
Since the set of positive integers is countable and ft is the first uncountable 
ordinal there exists a G ft such that an < a for all n. Then Wa c Wn for each n 
contradicting the fact that Wn 1 <f>. Hence Wn = <f> for all n>n0 for some n0 so 
that m(W n ) -^0 . Thus m is cr-smooth. However m is not T-smooth since 
{Wa | a G ft} is a net in a> with Wa 4 c6 but m( W J = 1 for each a G ft. 

Now suppose co is a full paving of subsets of X such that M(co) represents 
A*. Then (i) Does M^M necessarily correspond to A*? (ii) Does MT((o) 
necessarily correspond to A*? With X a topological space, co = 2t(X) and 
A = C(X) both questions (i) and (ii) have been answered affirmatively by 
Varadarajan [5]. However the Example 2.8 below shows that this is not true in 
general. We prove in Theorem 2.10 that if <o=3£(A) is the full paving of 
A-zero sets and A is such that M(2£(A)) represents A* then M^co) necessarily 
corresponds to A*. As is already pointed out, M(3£(A)) represents A* iff A 
separates 2f(A). Furthermore if M(2£(A)) represents A*, in general A need 
not be equal to C(X); A = C(X) if and only if 2(A) = 2(X). (See Example 3.5 
and Theorem 3.12 of [3]). Also if M{2E{A)) represents A* then S (A) is a 
normal base in X and XA is the Wallman compactification of X relative to the 
normal base 2£(A). Finally in Theorem 2.11 we prove that if co is a base of 
TA-closed sets, then MT((o) necessarily corresponds to AT. 

The following example is due to Kirk and Crenshaw [4]. 
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EXAMPLE 2.8. Topologize the closed unit disk S in the plane as follows: For 
a non-zero z 0 e S and s > 0 , let N(z0, e) denote the set of all z e S which lie on 
the radius of the disk through z0 and satisfy \z0\ - e < \z\ < \z0\ + e. The family of 
sets N(z0, e), 0 < e < | z o | forms a base for the neighbourhood system at z0. A 
basic neighbourhood N(0; z l9 z 2 , . . . , zn) of Oe S is the whole disk deleting a 
finite number of closed segments of the radii from zk to the boundary of S for 
k = 1, 2 , . . . , n. Since every basic open cover of S contains a neighbourhood of 
0 which itself covers S except a finite number of compact line segments, S, with 
this topology, is compact Hausdorff. We take X= S-{0}. 

Let A be the algebra of all restrictions / to X of the elements / of C(S). 
Then XA = S and rA is the relative topology on X induced by the topology of 
S. Let (o be the full paving on X generated by the A-zero sets together with 
the closed sets of the form Be ={zeX\ | z | < e } , 0 < e < l . For an feA, if 
/(0) ?* 0, then there is a neighbourhood of 0 in S in which / does not vanish. So 
the zero set of / is compact in X. If /(0) = 0, then for every positive integer n, 
there is a neighbourhood of 0 in which | / (x) |< l /n , so that / vanishes in the 
intersection of these neighbourhoods. Thus, in this case the zero set of / is the 
whole disk except possibly a countable number of radius-segments deleted. 
Then a routine verification shows that A separates <o. Also œ =>3E(A) forms a 
base for closed sets of X. Hence M(co) represents A* (Theorem 5.11 of [3]). 

Now define J ^ G A * by </>(/) = /(0) for every fe A. If {/n} is a sequence in A 
with /n | 0 pointwise on X, then /n(0) | 0. For otherwise, by continuity of fn 

there is an xeX such that, / n ( x ) > a > 0 for infinitely many n which is not 
possible. Thus \p is a-smooth. If meM(o)) is the representing measure of I/J, 
then m(Be) = inf{il/(f)\xB^f}=l for all e > 0 . Thus B1/n | <f> in <o whereas 
m(£i/n)"7^0- Hence m is not cr-smooth. 

PROPOSITION 2.9. Let M(<o) represent A* and let m e M((o). If m is a-smooth 
then the corresponding linear functional if/eA* is a-smooth. 

Proof. We may assume m > 0 . Then m is a countably additive measure. The 
result follows from an application of Lebesgue monotone convergence 
theorem. 

THEOREM 2.10. Let Af(3T(A)) represent A* and mzM{2£{A)). Then m is 
a-smooth if and only if the corresponding bounded linear functional ij/eA* is 
a-smooth. 

Proof. If m is or-smooth then ijj is (7-smooth by Proposition 2.9. Con
versely suppose ijj is cr-smooth. Let {Zn} be a sequence in 2?(A) with Zn | </>. 
For each k choose fteA with 0 < / £ < l and Zk=Z(ft) = ft~1(0). For n = 
1,2, , let fn = max{/f , . . . , / * } . Then {/n} is an increasing sequence in A. 
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Furthermore since Z„ I <j> we have Z„ = fn
 1(0) for each n. Let 

C/„ = {x€XA|/n(x)<^] 

n + l j 

and 

where fa is the unique continuous extension of fa to XA. Clearly V n c [ / n c 
Vn_! for each n. We claim that Vn j $. Let x e l Since Zn i $, there is some 
n0 such that x$Zn for all n>rc0 . Therefore fn(x)>0 for all n>rc0 . In 
particular fno(x)>0. Choose nx>n0 such that fno(x)n1>l. Then /„1(x)>l/n1 

and hence x$Vni. This proves that Vn I </>. 
Since Vn and XA - Un are disjoint closed sets in the compact Hausdorfï 

space XA, there exists by Urysohn's lemma, gneC(XA) such that gn(Vn) = l 
and gniX^ -Un) = 0 for each n. Let hn = m i n ^ , g 2 , . . . , gn). Then hn e C(XA) 
with hn(Vn) = 1 and ftn(XA - Un) = 0. Let hn be the restriction of hn to X. Then 
{/in} is a decreasing sequence in A with ^in(Vn) = l and h n ( X - Vn_1) = 0. 
Furthermore hn i 0. In fact, if JCGX, since Vn j <£, there exists rc0 such that 
x <£ Vn for all n > n0. Then 

hn (x) = 0 for all rc >: n0. 

Now since M(3£(A)) represents A*, each hn is m-integrable and 

<Kfc*)= I Kdm 

= hndm+ hndm+ hndm 
J vn Jvn_i-vn Jx-vn_! 

>m(V n )>m(Z n ) . 

Then m(Zn)<i/r(ftn)-> 0. 
This proves that m is o--smooth and completes the proof of the theorem. 

THEOREM 2.11. Let o> be a full paving of rA-closed sets forming a base for 
rA-closed sets in X. Let M(<o) represent A*. Then m e M(<o) is r-smooth if and 
only if the corresponding ij/e A* is r-smooth. 

Proof. Without loss of generality we may assume that m and \p are non-
negative. Suppose \\f is T-smooth. Let {Wa}^(o with Wa\,4>. Let D = 
{ / < E A | 0 < / < 1 / = 1 on some Wa} = {fa\ XeA}. where A is so chosen that 
A < JH if and only if fk > fa. Since Wa | & it is not hard to check that {fK | A e A} 
is a decreasing net. Furthermore fa I 0. Let xeX. There exists a for which 
x$Wa. Since Wa is TA-closed, Jt£W«. Then by Urysohn's lemma we can 
choose / e C ( X A ) such that 0 < / < l , /(x) = 0 and / = 1 on Wa. If / is the 
restriction of / to X then f(x) = 0 and feD. Let / = /Ao. Then for any A>A0, 

https://doi.org/10.4153/CMB-1978-028-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1978-028-6


172 S. HEGDE 

/X(JC):</AO(JC) = 0 . Thus /À I 0. Given e > 0 choose \xeA and a0 such that 
«M/Al) < e and /Al = 1 on Wao. Then for all a > a0 m(Wa) ^ (m(Wj < iK/Al) < e. 
This proves that lim m(Wa) = 0 so that m is r-smooth. 

Conversely suppose m is T-smooth. Without loss of generality we assume 
m(X)= 1. Let {£}<= A with fa | 0. Assume | | / J |<1 for each a. Let e > 0 be 
arbitrary. For each a let Zoc={xeX\fa(x)>e/2}. Then Z a is TA-closed with 
Z a 1 <£. Since to is a base for TA-closed sets for each Z a there is some Weay 
with Za^W.Let D0 = {Weco\ there is some Za with Z a c W} = {WA | A € A0} 
where A0 is so chosen that A < n if and only if W^ c WA. Since Za[ <f> it 
follows that {WA} is a decreasing net with Wk i $. Hence m( WK) -» 0. Choose 
A0 such that m(WA)<e/2 for all A > A0. Choose Zao such that Z^a WAo. Then 
for all a > ce0 

*(/«)= Jx/« dm 

/«dm fadm + 
x~za 

<^+m(ZJ 

za 

+ m(WAo)<£. 

Therefore il/(fa)—>0. This completes the proof. 
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