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Influence of Reynolds number on the dynamics
of rigid, slender and non-axisymmetric fibres in
channel flow turbulence
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We investigate experimentally the dynamics of non-axisymmetric fibres in channel flow
turbulence, focusing specifically on the importance of the fibre size relative to the flow
scales. To this aim, we maintain the same physical size of the fibres and we increase
the shear Reynolds number. Experiments are performed in the TU Wien Turbulent Water
Channel for three values of shear Reynolds number, namely 180, 360 and 720. Fibres are
slender – length to diameter ratio of 120 – rigid, curved and neutrally buoyant particles
and their shape ranges from low curvature – almost straight fibres – to moderate curvature.
In all cases, fibre size remains small compared with the channel height (�1.5 %).
Three-dimensional and time-resolved recordings of the laser-illuminated measurement
region are obtained from four high-speed cameras and used to infer fibre dynamics. With
the aid of multiplicative algebraic reconstruction techniques, fibre position, orientation,
velocity and rotation rates are determined. Our measurements span over the half-channel
height, from wall to centre, and allow a complete characterisation of the fibre dynamics
in all regions of the flow. Specifically, we measure fibre preferential distribution and
orientation. We observe that the fibre dynamics is always influenced by their curvature.
Through a comparison between measurements of the near-wall dynamics of the fibres
and the near-wall dynamics of the flow, we identify a causal relationship between fibre
velocity and orientation, and the near-wall turbulence dynamics. Finally, we have been able
to provide original measurements of the tumbling rate of the fibres, for which we report
the influence of fibre curvature. We underline that our measurements confirm previous
findings obtained in numerical and experimental works.
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1. Introduction

The dynamics of anisotropic particles in turbulent flows is of crucial importance for a
number of industrial and environmental applications (Voth & Soldati 2017; Hu et al.
2021). These particles interact with turbulence in a complex fashion and predicting their
behaviour is a long-standing problem, which has been tackled both experimentally and
numerically. Numerical investigations have greatly helped to understand the effect of shape
on the dynamics, orientation and alignment of anisotropic particles in turbulence. Many
works have been focused on homogeneous and isotropic turbulence (HIT), but important
works also investigated the influence of non-homogeneity on the particles dynamics in
the presence of more complex flows, such as wall-bounded flows (Marchioli, Fantoni &
Soldati 2010; Zhao et al. 2015; Zhao & Andersson 2016; Cui et al. 2020). Experiments
have contributed to a detailed understanding of the dynamics of anisotropic particles,
with most of the works in the HIT configuration (Parsa et al. 2012; Parsa & Voth 2014;
Pujara et al. 2018) and only few in turbulent channel flow. In this configuration, recent
works by Capone, Miozzi & Romano (2017) and Shaik et al. (2020) provided velocity and
rotation rates of anisotropic particles. These investigations considered long and straight
rods, which represent only one of the possible shapes observed in practical applications,
where non-axisymmetric particles are frequent. In this work, we focus on a more general
class of shapes, represented by slender and non-axisymmetric fibres, i.e. curved fibres in
which the length is much larger than the diameter. This geometry has been numerically
investigated in the instance of rigid fibres in shear flow (Wang et al. 2018; Thorp & Lister
2019) and flexible fibres in turbulent channel flow (Dotto & Marchioli 2019; Dotto, Soldati
& Marchioli 2020). To date, only one experimental work (Alipour et al. 2021) is available
in literature and it describes the effect of curvature on the orientation and rotation rate
of rigid and curved fibres. However, the effect of the relative size of the fibres to the
flow structures has not yet been considered. In this work, we aim precisely at this gap
and we investigate experimentally the dynamics of slender, rigid and non-axisymmetric
fibres in turbulent channel flow. We focus on the importance of the fibre size relative to
the flow scales. This we obtain by maintaining the size of the fibres and increasing the
shear Reynolds number. In addition, we chose this fibre size so that fibres remain small
compared with the channel height (O(10−2)) and the Kolmogorov length scale for all
Reynolds number considered.

The wall-normal concentration of straight rods in a channel flow has been investigated
in previous works (Krochak, Olson & Martinez 2010; Zhu, Yu & Shao 2018) and it was
shown to be influenced by both near-wall coherent structures and the fibre aspect ratio.
Abbasi Hoseini, Lundell & Andersson (2015) observed that fibre–wall interactions depend
on fibre size and aspect ratio. The wall-normal fibre distribution is representative of the
collective fibre behaviour, but it is not sufficient to investigate in detail the individual
fibre dynamics, which is strongly influenced by the fibre velocity. Indeed, the analysis
of the mean velocity profile reveals that fibres move faster than the fluid near the wall,
possibly suggesting a fibre accumulation in near-wall high-speed regions of the flow
(Capone et al. 2017), i.e. in high-speed streaks. In addition to their influence on the
wall-normal fibre concentration, the flow structures play a role in the fibre alignment.
In the frame of HIT, Ni, Ouellette & Voth (2014) used the Cauchy–Green strain tensor,
which quantifies the Lagrangian stretching experienced by a material element, to analyse
the orientation of non-inertial rods and fluid vorticity. They observed that both the fluid
vorticity vector and the principal axis of the rods align with the extensional direction of the
left Cauchy–Green strain tensor (ê1). In this frame, ê1 is the eigenvector associated with
the maximum eigenvalue of the left Cauchy–Green strain tensor, and corresponds to the
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Influence of Reynolds number on fibre dynamics

direction of stretching. The eigenvector ê3 is associated with the minimum eigenvalue and
corresponds to a compression of the fluid element. Finally, the eigenvector ê2, associated
with the intermediate eigenvalue, could correspond to either stretching or compression.
It has been observed from the Eulerian strain tensor (Ashurst et al. 1987; Huang 1996)
that, instantaneously, the vorticity tends to align with ê2. However, Ni et al. (2014) and
Pujara, Voth & Variano (2019) showed that, in HIT, when a Lagrangian measurement is
performed, vorticity tends to align with ê1, as well as non-inertial fibres, provided that
the measurements cover a sufficiently long time interval. In the instance of wall-bounded
flows, Zhao & Andersson (2016) observed that in the centre of channel and for Lagrangian
measurements performed over sufficiently long time intervals, in agreement with what is
observed in HIT (Ni et al. 2014), both vorticity and rods align with ê1. In contrast, in
the near-wall region the vorticity preferentially aligns with ê2, whereas rods align with
ê1. In addition to these results on the alignment of rods, direct numerical simulations of
particle-laden flows confirm experimental findings and shed new light on the preferential
alignment of spheroids (Voth 2015; Zhao et al. 2015). However, the behaviour of curved
rigid fibres has not been completely characterised, and it has been proposed that the
near-wall fibre dynamics is controlled by sweep and ejection events (Abbasi Hoseini et al.
2015). Using a three-dimensional reconstruction method, we will provide evidence that
supports these findings, and correlate the preferential fibre orientation with the presence
of near-wall coherent structures. We also observe that the asymmetry in the fibre shape
(curvature) plays a major role in determining the fibre dynamics, and the influence of
the flow structures is relevant for fibres with low curvature and in low-speed regions of
the flow. We provide a physical explanation to justify the behaviour of the fibres in the
near-wall region, and analyse in detail the effect of Reynolds number and fibre shape on
fibre concentration, orientation and tumbling. Finally, we will show that, in the limit of
straight fibres, our measurements agree with previous experimental and numerical works
(Zhao et al. 2015; Shaik et al. 2020).

We analysed the behaviour of slender, neutrally buoyant, non-axisymmetric fibres in
turbulent channel flow. Experiments are performed in the TU Wien Turbulent Water
Channel (Alipour et al. 2021), a 10 m long and 80 cm wide closed water channel (aspect
ratio 10) with full optical access. The facility, specifically designed to investigate the
behaviour of fibre-laden flows, has been operated for three different values of shear
Reynolds number Reτ , namely 180, 360 and 720. High-speed and time-resolved recordings
are used to track the fibres. Finally, a tomographic reconstruction (Elsinga et al. 2006)
coupled with a discrimination and modelling algorithm (Alipour et al. 2021) is used
to identify the fibre shape and orientation. Fibres are divided in three different classes,
according to their mean value of curvature (i.e. to their shape). The results are presented
in terms of wall-normal fibre concentration, orientation, velocity and tumbling rates for all
Reynolds numbers and curvatures considered.

The paper is organised as follows: in § 2, the experimental facility and the methodology
are described. Results are presented in terms of the wall-normal distribution of fibre
concentration, velocity, orientation and tumbling in § 3, and the effect of the turbulent
coherent structures is analysed. Results are also compared with previous numerical and
experimental measurements. Finally, in § 4 we provide an overview of the results obtained
and of the interplay of fibre dynamics and near-wall flow structures.

2. Experimental set-up

In this work, we performed three-dimensional tracking of fibres in turbulent channel flow.
The fibres are polyamide based, slender and non-axisymmetric. A microscope view in dry
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Figure 1. (a) Sample of fibres used for the experiments. Fibres are polyamide based and appear as slender
and non-axisymmetric objects. Fibre shapes are classified according to their mean curvature, κ∗. Three fibres,
corresponding to the three different curvature classes used throughout this work, are highlighted in red. (b) Test
section of the TU Wien Turbulent Water Channel. Dimensions of the cross-section, width w and height 2h, are
indicated. The laser volume, represented by the green region and obtained through a series of optics located
below the channel, is placed at the channel mid-span. Four cameras looking through water-filled prisms are
used to record the three-dimensional motion of the particles. To reduce the optical image distortion due to
astigmatism, cameras look through prisms filled with water. The laboratory reference frame (x, y, z, respectively
streamwise, wall-normal and spanwise directions) is also shown.

conditions is reported in figure 1(a). We use the experimental facility, fibre modelling and
tracking methodology presented in Alipour et al. (2021). Measurements are performed at
three different values of shear Reynolds number, namely Reτ = 180, 360 and 720. The
shear Reynolds number, Reτ = uτ h/ν, is based on shear velocity (uτ ), half-channel height
(h = 40 mm) and kinematic viscosity of the fluid (ν). The shear velocity is obtained
by fitting the mean streamwise velocity profile obtained experimentally to the velocity
profile obtained from direct numerical simulations (Moser, Kim & Mansour 1999; Alipour
et al. 2021; Iwamoto, Suzuki & Kasagi 2002). In the following, we briefly report on the
experimental apparatus (channel geometry, imaging system and fibre properties, § 2.1),
on the single-phase flow statistics (§ 2.2) and on the fibre discrimination, modelling and
tracking approach (§ 2.3).

2.1. Experimental apparatus and fibre properties
The experiments are performed in the TU Wien Turbulent Water Channel, a 10 m long
closed channel with a cross-section of 80 cm × 8 cm (w × 2h, where h is the half-channel
height). The flow is driven by gravity and the test section (shown in figure 1b) is located
approximately 8.5 m downstream from the entrance. The fluid used for the experiments
is water at the average temperature of 15 ◦C, for which the kinematic viscosity is ν =
1.1386 × 10−6 m2 s−1 (Huber et al. 2009).

The imaging system consists of a high-speed laser (527 nm, double cavity, 25 mJ per
pulse, pulse repetition 1–50 kHz Litron LD60-532 PIV) and four Phantom VEO 340 L
cameras (sensor size of 2560 × 1600 pixel at 0.8 kHz). The cameras, located in linear
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Influence of Reynolds number on fibre dynamics

Flow parameters Imaging parameters Flow and fibre scales

Reτ Reτ,eff Phase Resolution f Volume �t τ ν/uτ L+
f

(–) (–) (px) (Hz) (mm3) (s) (s) (10−3 m) (–)

180 195 Water 1280 × 1280 600 53.4 × 53.4 × 14 165∗ 0.0366 0.204 5.9
Fibres 1280 × 1280 1000 53.4 × 53.4 × 14 21.88

360 363 Water 1280 × 1280 1000 53.4 × 53.4 × 14 800∗ 0.0104 0.11 10.9
Fibres 1280 × 1280 1800 53.4 × 53.4 × 14 12.15

720 703 Water 1024 × 1104 1800 44.9 × 48.4 × 13 1920∗ 0.0028 0.057 21.6
Fibres 1024 × 1104 2600 44.9 × 48.4 × 13 8.82

Table 1. Summary of the flow and imaging parameters adopted. The reference and effective Reynolds
numbers, respectively Reτ and Reτ,eff , are reported. Imaging parameters for the single-phase (water) and
particle-laden (fibres) are indicated. The time interval �t over which statistics are collected is also indicated. In
single-phase recordings, ‘∗’ refers to the full recording time. Statistics are ensemble averaged over uncorrelated
fields equally spaced in time (1 s for all Reτ ). For instance, for Reτ = 720, 1920 uncorrelated velocity fields
are used to compute the mean velocity profile. Viscous time scale (τ = ν/u2

τ ) and length scale (ν/uτ ), as well
as dimensionless fibre length scale (L+

f = Lf uτ /ν) are indicated for all Reτ considered.

configuration at the sides of the channel as in figure 1(b), are equipped with Scheimpflug
adaptors and look through water-filled prisms to minimise the optical astigmatism. The
measurement volume, located at the mid-span of the channel, has a size that is changed
with the Reynolds number. Details of flow and imaging parameters for all experiments
considered are reported in table 1. Image acquisition and single-phase velocimetry have
been carried out using Davis 10 (LaVision GmbH).

To investigate the behaviour of non-axisymmetric objects, we used polyamide 6.6
(PA6.6) precision cut flock (Flockan) fibres. The fibres, a sample of which in dry
conditions is reported in figure 1(a), have density ρ = 1.15 × 103 kg m−3 and cutting
length Lf = 1.2 mm (linear density of 0.9 dtex, diameter df ≈ 10 μm). Fibres, which
appear as planar and slender objects (anisotropy ratio, λ = Lf /df ≈ 120), are characterised
by a curvature that is also visible to the naked eye. Using the Euler–Bernoulli theory for
beams, given the fibre Young’s modulus (Bunsell 2001) and the drag coefficient of the
rods (Tang et al. 2014), we estimated that fibre deformation due to flow conditions is
reasonably small (less than 1 % of the fibre length for straight fibres, and even lower in
the instance of curved ones). Therefore, we will consider the fibres to be rigid objects.
Fibres with a smaller Young’s modulus can, however, exhibit large deformations and
very different interactions with the flow (Allende, Henry & Bec 2018), and the present
findings might not apply. The Stokes number of the fibres (Bernstein & Shapiro 1994;
Alipour et al. 2021), calculated as the ratio of fibre response time to the viscous time of
the flow (τ = ν/u2

τ ) varies between St = 0.001 (Reτ = 180) and St = 0.011 (Reτ = 720).
When computed with respect to the Kolmogorov time scale, the Stokes number of the
fibres is even lower, and varies between St = 3.9 × 10−4 (Reτ = 180) and St = 4.3 × 10−4

(Reτ = 720). Therefore, we conclude that the inertia of the fibres has negligible effect.

2.2. Single-phase velocimetry
The single-phase velocimetry has been obtained with the shake-the-box (STB) algorithm
(Schanz, Gesemann & Schröder 2016), a three-dimensional and time-resolved particle
tracking method (4D-PTV). The flow is seeded with tracer particles (polyamide
spherical particles, diameter 20 μm, density 1.03 g cm−3), which are also used for
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Figure 2. Streamwise velocity profiles for the three shear Reynolds numbers considered. Fluid velocity (U+)
and wall-normal coordinates (y+) are reported in wall units. Symbols refer to experimental measurements
labelled as Reτ = 180 (�), Reτ = 360 (©) and Reτ = 720 (�) (see table 1 for a summary of the parameters
of the experiments). For greater clarity, profiles are offset in the vertical direction by six wall unit steps. Solid
lines refer to the velocity profiles obtained from direct numerical simulations at Reτ = 180 (Moser et al. 1999),
Reτ = 350 (Alipour et al. 2021) and Reτ = 650 (Iwamoto et al. 2002). Dashed lines indicate the theoretical
profiles in the inner (U+ = y+) and outer (U+ = 2.5 ln y+ + 5.2) layers.

the volume-self-calibration (VSC) algorithm (Wieneke 2008) required for the fibre
reconstruction and tracking. To increase the signal-to-noise ratio of the recorded images, a
series of preparatory steps has been applied (e.g. time and spatial filtering, background
noise removal). Further details on the image pre-processing applied are described
in Alipour et al. (2021). Afterwards, VSC is performed assuming 8 × 8 × 5 (x, y, z)
sub-volumes (average disparity error of ≈0.02 pixel, within the limits recommended by
Wieneke 2008).

The tracers are tracked through the STB method, after optical transfer functions are
obtained and used to correct their shape. In each snapshot, on average, a number of
particle tracks greater than 2 × 104 has been detected by the STB tracking algorithm for
different Reτ cases. In figure 2, we compare the quality of the flow produced in the TU
Wien Turbulent Water Channel against the results obtained in direct numerical simulations
(DNS) (Moser et al. 1999; Alipour et al. 2021; Iwamoto et al. 2002). The streamwise
fluid velocity (U+) is reported as a function of the distance from the wall (y+), and
both variables are expressed in inner units for the three Reynolds number considered.
We observe that the mean velocity profiles obtained from 4D-PTV (STB, symbols) are in
excellent agreement with the DNS results (solid line) over the whole channel height.

2.3. Fibre discrimination, modelling and tracking
We employ a multiplicative algebraic reconstruction technique (MART, Elsinga et al.
2006) to find the three-dimensional (3-D) distribution of light intensity obtained from 2-D
images. The images consist of tracers and fibres and thus, after MART reconstruction
is obtained, a discrimination process is required to identify the clusters of voxels
corresponding to fibres. The fibres are non-axisymmetric objects that have a complex
shape. Therefore, their geometry is modelled to find a simple mathematical description that
allows the determination of their orientation. Finally, the fibres are followed in subsequent
snapshots and tracked to find their trajectory, velocity and rotation rate. The process of
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Figure 3. Summary of the methodology adopted to identify the location and orientation of the fibres. Each
snapshot consists of four images (a) that are pre-processed and used to obtain the 3-D light intensity
distribution (b), consisting of tracers (blue) and fibres (red). Each cluster of voxels larger than a specific
threshold is identified as a fibre (c), and the geometry of it is determined (d). Finally, the local reference
frame of the fibres is found, and the orientation with respect to the laboratory reference frame is obtained (e).
See Alipour et al. (2021) for further details on the mathematical modelling of the fibres.

discrimination, modelling and tracking, extensively explained by Alipour et al. (2021), is
summarised in figure 3. A description of the main steps follows.

Each snapshot of the experiment consists of four images obtained simultaneously from
the cameras arranged as in figure 1. The recorded images contain a 2-D distribution of
light intensities, corresponding to both fibres and tracer particles. One snapshot obtained
from 4 cameras is shown in figure 3(a-1)–(a-4). After a few pre-processing operations
(see also § 2.2), the images are analysed to find the 3-D matrix of light intensities via
MART reconstruction (figure 3b). For this purpose DaVis 10 (LaVision GmbH) is used.
Location (spatial coordinates) and light intensity of the voxel corresponding to fibres and
tracers, respectively red and blue objects in figure 3(b), are known. Due to the presence
of optical noise, not all the cluster of the reconstructed voxels represent the fibres, and
a discrimination process is essential. In this step, by means of an in-house code, we
discriminate between the fibres and detect their positions in space. Each cluster of voxels
is analysed: the size (maximum length) of the clusters is identified and those that do not
exceed a specific size threshold are removed. As a result, only the larger clusters are
kept, as shown in figure 3(c). Finally, each cluster is examined to determine the best-fit
second-order curve used to model the fibre.

The choice of second-order polynomials is based on physical and geometrical
observations. In particular, from microscope images (figure1a), one can observe that fibres
present a nearly planar geometry. The fitting process, which is shown in figure 3(d), is
based on the curvilinear coordinate s, with 0 � s � Lf . The polynomial curve obtained is
used to determine orientation, centre of mass and curvature of each fibre. In particular,
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(a) (b) (c)

(d ) (e) ( f )

0 < κ∗ < 0.28 0.28 < κ∗ < 0.42 0.42 < κ∗

y

–zx
y

x–z
y

x

Figure 4. Raw image obtained by one camera and corresponding to a portion of the domain is shown in
(a). In (b), clusters of voxels identified as fibres within this volume are shown. Tracers and spurious objects
are removed and finally fibres are modelled as in (c), where they are coloured according to their value of
normalised curvature, κ∗. An example of the voxel distribution and corresponding fibre model are reported in
(d–f ) for κ∗ < 0.28, 0.28 < κ∗ < 0.42 and κ∗ > 0.42, respectively.

the reference frame of the laboratory translated to the mid-point of the fibre (O′′x′′y′′z′′)
is determined. The natural reference frame of the fibre (O′x′y′z′), i.e. a local reference
frame centred on the mid-point of the fibre and aligned with the eigenvectors of the inertia
tensor, is also determined and used as reference to discuss the orientation of the fibre. In
addition, the rotation rates experienced by the fibres with respect to the reference frame
O′x′y′z′, known as spinning and tumbling, are determined. Fibre orientation angles and
rotation rates are defined as in figure 3(e). When the geometry of the fibre is determined,
a local value of curvature is obtained for all values of s considered. Then, the mean
value of curvature computed over the entire fibre length (κ) is computed. Finally, it is
normalised by the curvature κ0 = π/Lf , i.e. the curvature of a fibre having length Lf
and shape of half a circle, and the dimensionless curvature κ∗ = κ/κ0 is obtained. This
definition suggests that the normalised curvature is κ∗ = 0 for straight fibres and κ∗ = 1
for semi-circumference shaped fibres. Fibres of different shape, i.e. having different
curvature, are highlighted in the microscope image of figure 1(a) To properly describe
the fibre shape, a large number of voxels is required. As an example, a raw image obtained
by one camera and corresponding to a portion of the domain is shown in figure 4(a). In
figure 4(b), the clusters of voxels identified as fibres within this volume are shown. In this
case, tracers and spurious objects (e.g. objects that cannot be tracked for a sufficiently long
time) are removed. Finally, the modelled fibres are reported in figure 4(c), where they are
coloured according to their value of normalised curvature, κ∗. Fibres are classified here
into three categories, and an example of voxel distribution and corresponding fibre model
is reported in figure 4(d–f ) for κ∗ < 0.28, 0.28 < κ∗ < 0.42 and κ∗ > 0.42, respectively.
Additional details on the distribution of the fibre curvature and length are available in
Appendix A.

The above mentioned procedure is iterated over subsequent snapshots to track the fibres
and compute velocity and rotation rates. First, each fibre is identified in two consecutive
frames by searching within a sphere of radius five voxels centred on the mid-point of
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the fibre at the first snapshot. The measurements are time-resolved (see table 1), and the
displacement of the fibres between two consecutive frames is less than four voxels. After
tracking the fibre over at least 20 consecutive snapshots, trajectories and orientations are
filtered (second-order polynomial filtering) to remove spurious fluctuations, and then the
statistics are computed. This approach is considered a good compromise to capture the
fibre dynamics and to reduce the noise from the experimental measurements (Rowin &
Ghaemi 2019). The window size of the filter is 2.8τ and only the fibres tracked for a time
greater than 5τ are considered for the statistics.

3. Results

We discuss the fibre dynamics in the near-wall region, and we present some fibre motions
resulting from the interaction of the fibres with the near-wall flow structures. We analyse
concentration, velocity, orientation and rotation rates of the fibres as a function of the
distance from the wall. We also investigate the effect of the fibre shape and of the fibre size
relative to the flow scales, i.e. the influence of different values of curvature and Reynolds
number, respectively.

3.1. Near-wall fibre dynamics
To have a pictorial view of the specific motions that fibres can have in the near-wall region,
we show in figure 5 non-processed images of fibre dynamics close to the wall. These
non-processed pictures are taken from one camera aimed at the volume of illumination.
All the images refer to the experiment performed at Reτ = 180. During the entire trajectory
and in this region very close to the wall, fibres experience a strong shear, which is
responsible for the variety of motions observed and that characterise the dynamics of
anisotropic particles. The time the snapshots refer to is reported on top of each panel, and
it is expressed in wall units (t+ = t/τ ). Please note that at Reτ = 180, the time interval
between two consecutive snapshots corresponds to 0.027 time wall units (see table 1). See
also the animations in the supplementary movies for a time-resolved evolution of the fibre
dynamics.

In figure 5(a–c), the near-wall trajectory of one fibre over three snapshots is shown.
The fibre is first observed to move towards to the wall (figure 5a). Then, the fibre further
approaches the boundary with one end (figure 5b) and finally it rotates clockwise about
that end (figure 5c), in a mechanism that is also named ‘pole vaulting’ (Capone et al. 2017).
A different example of near-wall fibre motion is provided in figure 5(d–f ). The fibre in this
case experiences an in-plane almost purely translational motion in the spanwise direction
pointing into the page. Indeed, we can observe that the fibre becomes less visible and
gradually leaves the illumination volume. Fibre orientation is nearly constant and without
appreciable changes. This motion is also defined as ‘drift’ (Wang et al. 2012). Finally, from
figure 5(g) we show three fibres which are almost at the same distance from the wall but
at different spanwise positions (not visible from the figure). From figures 5(h) and 5(i) we
see that fibres 1 and 3 are travelling faster than fibre 2. This clearly indicates that fibre 2 is
trapped in a region of lower streamwise velocity. The statistics of the qualitative motions
explained in this figure will be presented in §§ 3.2–3.5, and these qualitative observations
will be used to justify specific statistical trends.

3.2. Concentration
We consider here the fibre distribution as a function of the wall-normal coordinate, y+.
For each curvature class, we introduce the normalised fibre concentration defined as the
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Figure 5. Near-wall fibre dynamics and interaction with the boundary at Reτ = 180. The time the snapshots
refer to, expressed in wall units, is written on top of each panel, and it is indicated with t+ = t/τ . (a–c) Fibre
rotating about one end near the wall (‘pole vaulting’, Capone et al. 2017). (d–f ) Fibre travelling in the in-plane
(spanwise) direction, but keeping its orientation (‘drift’, Wang et al. 2012). (g–i) Three fibres (labelled as 1, 2
and 3) at different wall-normal locations and experiencing different streamwise velocities. See also animations
in the supplementary movies available at https://doi.org/10.1017/jfm.2021.1145 for a time-resolved evolution of
the fibre dynamics.

fibre count (N) divided by the total number of fibres detected in that curvature class (N0).
Additional details on the number of fibres detected and used to compute the statistics in
each experiment, i.e. for each value of shear Reynolds number considered, are reported in
Appendix A. To compute the statistics, the measurement region is uniformly divided into
90 bins in the wall-normal direction. The statistics are reported for half-channel height
(0 � y+ � Reτ ) and for three ranges of curvature (κ∗). We will analyse first the effect of
Reynolds number and then the effect of curvature on the fibre distribution.

The horizontally averaged (x–z) normalised fibre number concentration, N/N0, is
reported in figure 6 for all values of curvature κ∗ considered. Curvature increases from
(a) to (c), as indicated in the panels, and the three values of Reynolds number are shown.
We observe that, for all values of curvature, increasing the Reynolds number produces an
increase of fibre concentration in the near-wall region. A possible explanation for this
effect can be found by looking at the behaviour of the near-wall coherent structures.
Wallace, Eckelmann & Brodkey (1972) and Kim, Moin & Moser (1987) observed that,
in shear flows, the wall region is dominated by sweep events, whereas ejections are the
dominant motions away from the wall. This disparity is more evident on increasing the
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y+

(a) κ∗ < 0.28 (b) 0.28 ≤ κ∗ ≤ 0.42 (c) κ∗ > 0.42
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Figure 6. (a) The x–z averaged normalised fibre number concentration (N/N0, solid lines) is shown as a
function of the distance from the wall (y+) for three different Reynolds numbers (Reτ ). The mean value of
concentration (vertical dashed lines) is indicated. The fibre curvature, κ∗, is indicated on top of each panel and
it increases from (a) to (c).

shear Reynolds number, Reτ (Wallace 2016). This could lead to a higher wall-ward flux of
fibres, eventually increasing their near-wall concentration.

However, the increase of particle presence in the near-wall region is also influenced
by curvature. To demonstrate the effect of curvature, we plot the same data of figure 6
in figure 7, where the horizontally averaged (x–z) normalised fibre number concentration,
N/N0, as a function of curvature is reported for all Reynolds numbers considered. While no
remarkable difference occurs in the core of the flow (centre of the channel), in the near-wall
region non-axisymmetric fibres tend to accumulate more than straight ones. This trend,
which is consistent for all Reynolds numbers considered, occurs over a region of variable
thickness, from y+ � 50 when Reτ = 180, to y+ � 150 for Reτ = 720. The minimum y+
location at which fibres are detected is also variable with Reτ : since the physical extension
of fibres and domain is kept constant, the dimensionless fibre length (L+

f ) increases with
Reτ .

We wish to comment here on the near-wall accumulation reported by Alipour et al.
(2021) for 10 � y+ � 20, in which the concentration is higher than in figure 7(b). In
this work, the measurement region has been extended in the wall-normal direction and
the measurements have been improved, so that we are able to provide data closer to
the wall. As a result, when Reτ = 360, fibres are tracked down to y+ = 5 and the
normalised concentration values for 10 � y+ � 20 slightly differ from previously reported
measurements. We would also like to point out a possible source of uncertainty in the
method used. Due to the presence of laser reflection, measurements very close to the
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(a) Reτ = 180 (b) Reτ = 360 (c) Reτ = 720
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Figure 7. (a) The x–z averaged normalised fibre number concentration (N/N0, solid lines) is shown as a
function of the distance from the wall (y+) for three different curvature classes (κ∗). The mean value of
concentration (vertical dashed lines) is indicated, as well as the location corresponding to the fibre length
in inner units (L+

f , horizontal dashed lines). The Reynolds number, Reτ , is indicated on top of each panel and
it increases from (a) to (c).

channel bottom wall (0–200 μm) have lower accuracy compared with the rest of the
channel, possibly influencing the magnitude of the fibre concentration measured. However,
concentration profiles obtained for fibres belonging to different curvature classes exhibit a
trend that is consistent along the channel height, showing no change for the lowest value
of y+ reported. This observation suggests that the uncertainty on the fibre measurements
induced by the laser reflections has no important impact on the statistics considered. While
the influence of fibre curvature is particularly important in the near-wall region, the effect
of the Reynolds number is apparent over a wider proportion of the domain considered. For
Reτ = 180 and 360, we report a reduction of the concentration from the channel centre
towards the walls. This observation, in agreement with previous works on straight rods
(Krochak et al. 2010; Zhu et al. 2018), is valid for all curvature classes. The situation
is different when Reτ = 720: the concentration profiles show an opposite tendency with
respect to lower values of Reτ , with a local increase of the number of curved fibres from
the centre towards the wall.

We speculate that the reduction of fibre concentration observed in the near-wall region
for Reτ = 180 and 360 is due to the possible interaction of the fibres with the wall
(see also Capone et al. 2017). Abbasi Hoseini et al. (2015) observed that fibre–wall
interactions depend on fibre size and aspect ratio. To further investigate this aspect, we
show in figure 8 the joint p.d.f. of fibre wall-normal position (y+) and orientation (ϑy
or ϑz) for Reτ = 180 and y+ � 20. The two angles considered, ϑy and ϑz, depicted in
the inset of figure 8(a), represent the angles formed by the principal axis of the fibre
(x′) with the laboratory reference frame translated to the mid-point of the fibre (y′′
and z′′, respectively). Due to symmetry, angles shown are reduced to the first quadrant.
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Figure 8. Fibre preferential position and orientation for Reτ = 180 in the region y+ � 20. Joint probability
density function (p.d.f.) of wall-normal position and orientation, y+ − ϑy in (a,b) and y+ − ϑz in (c,d), are
reported. The angles are defined as in the inset of (a). Two classes of fibres are considered: nearly straight
(κ∗ < 0.28, panels a,c) and highly curved (κ∗ > 0.42, panels b,d).

The joint p.d.f.s of (y+, ϑy) and (y+, ϑz) are reported in figures 8(a,c) and 8(b,d), for
straight (κ∗ < 0.28) and curved (κ∗ > 0.42) fibres, respectively. We observe that both
straight and curved fibres (figure 8a,b) align preferentially parallel to the wall, i.e. the angle
ϑy is large (π/3 � ϑy � π/2). However, from a closer view one can observe that, while
for curved fibres ϑy ≈ π/2 for 3 � y+ � 10 (figure 8b), for straight fibres the peak of the
probability distribution corresponds to ϑy ≈ π/2 and y+ � 3 (figure 8a). One possible
justification for this difference consists of the effect of the geometry of the fibres. When
ϑy = π/2, the centre of mass of straight fibres can stay up to y+ = df uτ /ν = 0.05, with df
fibre diameter. When fibres have large values of curvature, instead, the minimum distance
of the centre of mass depends on the orientation of the fibre plane with respect to the
laboratory reference frame. Possible configurations are shown in figure 9. For instance,
the fibre plane can be perpendicular to the wall and aligned with the streamwise direction
(figure 9a), or on a plane parallel to the wall (figure 9b,c). However, when ϑy = π/2,
the other two angles are complementary, i.e. ϑx + ϑz = π/2. Beside the effect of the
geometry of the particle, another possible justification for the different behaviour observed
for straight and curved fibres in the region 0 � y+ � 10 could be the different fibre–wall
(rebound) and fibre–coherent structure interactions (Marchioli & Soldati 2002).

We consider now the orientation that the fibres have with respect to the spanwise
direction (ϑz), and we analyse the joint p.d.f. of (y+, ϑz) shown in figures 8(c) and 8(d), for
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ϑy = π/2

ϑz = π/2
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ϑy = π/2

ϑz = π/2
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ϑy = π/2

ϑz = π/6
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Figure 9. Examples of possible fibre orientations. The reference frame of the fibre (x′y′z′) is represented
and the component perpendicular to the plane of the fibre (y′) is explicitly indicated. Three configurations
corresponding to ϑy = π/2 are shown. The fibre can stay on a plane perpendicular to the wall and aligned with
the streamwise direction (a), or on a plane parallel to the wall (b,c). However, when ϑy = π/2, the other two
angles are complementary, i.e. ϑx + ϑz = π/2.

straight and curved fibres, respectively. It is clear in this case that, within the region y+ �
10, straight fibres align preferentially with ϑz = π/6 (figure 8c). Outside of this region, i.e.
for 10 � y+ � 20, fibre orientation corresponds either to ϑz = π/6 or to ϑz = π/2. The
picture is different for fibres with κ∗ > 0.42 (figure 8d). The dominant orientation over the
domain considered is ϑz ≈ π/2. However, when y+ � 10, a considerable number of fibres
align with ϑz ≈ π/12. These differences suggest, again, that the curvature of the fibres
plays a crucial role in their dynamics, making the fibres respond differently to near-wall
coherent structures.

The orientation of curved fibres, reported figures 8(b) and 8(d), indicates that their
preferential alignment corresponds to ϑy ≈ ϑz ≈ π/2. As a results, one can observe that
the principal axis of the fibre (x′) remains aligned with the streamwise direction (x ≡ x′,
e.g. in figure 9a,b). We identify two possible fibre motions fulfilling this condition: (i)
fibres are mainly carried in the streamwise direction (i.e. the alignment of the principal
axis of the fibre is constant), and (ii) fibres experience drift. A drift motion consists of
a translational movement along a path parallel to the wall but not aligned with the flow
direction. It has been shown numerically (Wang et al. 2012; Thorp & Lister 2019) that
non-asymmetric fibres in shear flows are prone to exhibit such a motion. However, further
measurements in wider domains (i.e. wider measurement region in spanwise direction) are
required to study this phenomenon in more detail.

3.3. Streamwise velocity
We report in figure 10 the mean streamwise velocity profile of the fibres (three curvature
classes considered, solid lines) obtained for three values of the shear Reynolds number,
namely Reτ = 180, 360 and 720. Profiles are compared against single-phase experiments
(unladen flow, dashed lines). For better visualisation, profiles are spaced by applying an
additive coefficient equal to 12. Due to experimental limitations, we resolve the near-wall
region up to y+ = 1, 5 and 10 for Reτ = 180, 360 and 720, respectively. For all Reτ and κ∗
considered, fibre velocity profiles match the fluid velocity in the centre, in agreement with
experimental observations of Capone et al. (2017). Approaching the near-wall region, a
deviation from the single-phase profile starts at y+ � 20 = 3.4L+

f for Reτ = 180, at y+ �
40 = 3.7L+

f for Reτ = 360 and at y+ � 60 = 2.8L+
f for Reτ = 720. This suggests that,
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Figure 10. The x–z averaged streamwise velocity (U+) obtained for fibres (solid lines) for three values of the
shear Reynolds number, as indicated. For greater clarity, profiles are offset in the vertical direction by twelve
wall unit steps. Fibres are divided according to their curvature, κ∗, into three different classes. Fluid velocity
profiles (unladen flow, dashed line) obtained from single-phase measurements are also shown.

in this configuration, fibres tend to move faster than the mean flow for y+ approximately
lower than 3L+

f . In particular, fibres are observed to move faster than the fluid, as also
reported by Capone et al. (2017), possibly due to the fibres tendency to stay preferentially
in high-speed streaks (Abbasi Hoseini 2014). Abbasi Hoseini et al. (2015) have also shown
that this behaviour depends on the length-to-diameter fibre ratio: the larger the aspect
ratio, the higher the fibre near-wall velocity. A similar behaviour is reported by Shaik
et al. (2020), who investigated the dynamics of larger fibres, having a Stokes number
approximately two orders of magnitude larger than that in the present study.

To investigate more in detail the relationship existing between the fibre velocity and
the coherent structures of the flow, we focus on the p.d.f. of the streamwise velocity of
the fibres. At the channel centre, we did not observe any remarkable difference in the
p.d.f. (U+) of the fibres compared with unladen flow, possibly due to the homogeneity
of the flow. Therefore, our discussion will focus on the near-wall region (10 � y+ � 20).
We report in figure 11 the p.d.f. of the streamwise velocity of the fibres (bullets, solid
lines) and of the unladen flow (squares, dashed lines). Data (symbols) and fitted curves
(spline, lines) are reported for Reτ = 180. However, similar results are obtained for higher
Reynolds numbers (Reτ = 360 and 720). We divide the dataset according to the fibre or
tracer location (quadrant, Q) in the u − v space, with u and v the stream- and wall-normal
velocity fluctuations. For tracers, p.d.f.s are shown in sweep (Q4, black) and ejection
(Q2, red) events. For fibres, in addition, also the overall fibre behaviour is shown (cyan),
regardless of the fibre locations in the quadrant classification. Two curvature classes are
considered: κ∗ < 0.28 in figure 11(a) and κ∗ > 0.42 in figure 11(b). We observed that the
probability density functions of fibres (cyan solid lines) are characterised by two peaks
(bimodal distribution) for both fibre curvatures considered. We believe that in this region
the fibre average velocity could be influenced by the near-wall coherent structures. Indeed,
as suggested by Abbasi Hoseini et al. (2015), who performed experiments at Reτ = 170
and large fibre aspect ratio, the bimodal distribution of p.d.f. (U+) observed for the fibres
is nothing but the footprint of sweeps and ejections. To further investigate this aspect,
we consider the fibre p.d.f. (U+) conditioned to the Q2 (ejections, red solid lines) and
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Figure 11. The p.d.f. of the streamwise velocity (U+) for fibres (bullets, solid lines) and tracers (squares,
dashed lines). Data (symbols) and fitted curves (spline, lines) are reported for Reτ = 180 and in the near-wall
region (10 � y+ � 20). For tracers, p.d.f.s are shown in sweep (Q4, black) and ejection (Q2, red) events.
For fibres, in addition, also the overall fibre p.d.f. is shown (cyan), regardless of the fibre locations in the
quadrant classification. For the fibres, two curvature classes are considered (κ∗ < 0.28, panel a) and (κ∗ >

0.42, panel b).

Q4 (sweeps, black solid lines) events. We observe that the two peaks of the p.d.f. (U+)
computed for all the fibres (cyan solid line) are approximately in the same position as the
peaks of the p.d.f. (U+) computed for Q2 and Q4. However, a difference in the shape and
magnitude of the curves is apparent, and it is due to the Q1 and Q3 events, which are less
probable than Q2 and Q4 events but still contribute to the overall p.d.f. (U+) of the fibres
(cyan lines). A further observation is that while high curvature fibres (figure 11b) sample
the Q2 and Q4 events with the same probability as the tracers (dashed lines), although this
is not the case for low curvature fibres (figure 11a): fibres in Q2 events are characterised
by a higher mean velocity compared with the tracers in the same quadrant. We focus now
on the range of velocities 0 � U+ � 5, approximately corresponding to 0 � y+ � 5. This
portion corresponds to a near-wall region having a thickness approximately equivalent to
one fibre length, L+

f = 5.9 (see table 1). In this interval, the probability of finding fibres
with a given curvature is a function of κ∗ itself: curved fibres (κ∗ > 0.42) correspond
to higher values of p.d.f. (U+) than the straighter ones (κ∗ < 0.28). Therefore, curved
fibres are expected to move slowly in this region compared with the straight ones. This
dynamics could possibly justify the curvature-induced concentration increase observed
in figure 7.

We conclude that the tendency of the fibres to interact with the near-wall coherent
structures is influenced by their shape (i.e. by their curvature), similarly to what has been
observed in § 3.2. We will show in § 3.4 that the fibre orientation is also influenced by the
relative size of the fibres to flow structures (Reτ ). However, to fully investigate the fibre
interaction with the near-wall coherent structures, further investigations in wider domains
are required.
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3.4. Orientation
Preferential orientation of anisotropic particles in turbulent flows has been investigated
in detail with the aid of experiments and simulations (Voth & Soldati 2017). It has been
shown that, in HIT, non-inertial axisymmetric rods (e.g. fibres) align with their symmetry
axis parallel with the vorticity vector and the Lagrangian stretching direction of the flow,
whereas the symmetry axis of oblate objects (e.g. disks) is perpendicular to the flow
vorticity. The situation can radically change in the near-wall region of a channel flow (Voth
2015; Zhao & Andersson 2016). Channel flow studies are mainly limited to straight rods
(Challabotla, Zhao & Andersson 2015; Capone et al. 2017; Shaik et al. 2020) or flexible
fibres (Dotto & Marchioli 2019; Dotto et al. 2020), and rigid non-axisymmetric fibres
have been considered only in our previous study (Alipour et al. 2021). In this section, we
analyse the preferential orientation of the fibres in the near-wall region and we propose a
physically grounded mechanism that justifies the preferential orientations observed.

We investigate the orientation of the fibres at different Reynolds numbers and we link
the fibre orientation to the asymmetry in shape of the fibres and the fibre interaction with
flow structures in the near-wall region. Fibres are divided into three classes according to
their curvature κ∗. The results are shown in terms of the angle that the principal axis
of the fibre (x′) forms with the laboratory reference frame translated to the mid-point of
the fibre (O′′x′′y′′z′′, see also figure 3e). In particular, we consider in figure 12 the p.d.f.
of ϑy (angle between fibre principal axis, x′, and wall-normal direction of the translated
laboratory reference frame, y′′), ϑx (angle between x′ and x′′) and ϑz (angle between x′ and
z′′). Both measurements (symbols) and fitting functions (solid lines) are shown. We focus
here on the near-wall region, defined as the portion of domain in which a discrepancy
between the velocity of fibre-laden and unladen flow is observed (see also figure 10 and
relative discussion in § 3.3). This region corresponds to y+ � 20 when Reτ = 180, y+ �
40 when Reτ = 360 and y+ � 60 when Reτ = 720, which approximately corresponds to
0 � y+ � 3L+

f .
We first consider the dynamics at low Reynolds number, Reτ = 180. The angles ϑx and

ϑz, shown in figure 12(b,c), exhibit a bimodal (i.e. double peak) trend. For all classes
considered, the peaks are located at different values of these angles: ϑx = π/3 and ϑz =
π/6 for κ∗ < 0.28, ϑx = 5π/12 and ϑz = π/12 for 0.28 � κ∗ � 0.42 and ϑx = π/12 and
ϑz = 5π/12 for κ∗ > 0.42. The values of ϑx and ϑz are geometrically correlated, since
their sum should give π/2. Indeed, (see figure 12a) the dominant peak of ϑy is close to
π/2, regardless of the curvature class. This indicates that the principal axis of the fibre
(x′) lays on a plane parallel to the channel wall, and therefore the other two orientation
angles have to give ϑx + ϑz = π/2. We consider now the dynamics at Reτ = 360, in
figure 12(d–f ). Although the value of the p.d.f. at ϑy = π/2 is lower than in the case
at Reτ = 180, a bimodal behaviour for ϑx and ϑz is still observed (figure 12e, f ). This
behaviour, however, is less visible when fibres with curvature κ∗ > 0.42 are considered.
Finally, for Reτ = 720, the configuration ϑy = π/2 is again most likely to be observed
(figure 12g), i.e. the principal axis of the fibres belongs to a plane parallel to the wall,
but in this case the p.d.f. is less sharp, indicating a more scattered distribution of fibre
orientation angles. However, the double peak is still visible in the distribution of the ϑx
and ϑz (figure 12h,i)

Based on our observations, the asymmetry in the fibre shape is the main parameter
dictating the preferential orientation of the fibres, but we believe that a second parameter
affecting the orientation of the fibres is their interaction with the near-wall coherent
structures. In order to investigate this, we split the fibres into two groups labelled
as ascending and descending fibres, i.e. fibres moving away and towards the lower
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Figure 12. The p.d.f. of the orientation angles of the fibres, which are divided according to their curvature
into three classes. Results are shown in the near-wall region, identified as y+ � 20 for Reτ = 180 (a–c),
y+ � 40 for Reτ = 360 (d–f ) and y+ � 60 for Reτ = 720 (g–i). Orientation angles are defined by ϑx, ϑy
and ϑz as in figure 3(e), and the associated p.d.f.s are shown in the left, central and right columns, respectively.
Measurements (symbols) and fitted data (spline fitting, solid lines) are shown.

wall, respectively. In figure 13, we consider the region 1 � y+ � 20 for Reτ = 180. We
report the joint p.d.f.s of fibre streamwise velocity, U+, and the angle between the fibre
principal axis (x′) and the spanwise direction of the laboratory reference frame (z′′), ϑz.
Figure 13(a–c) refers to the joint p.d.f. of fibres for all three curvature classes, regardless
of their ascending or descending motion. As expected, the peaks of these p.d.f.s are at
the values of the angles that are dominant in figure 12(c). Indeed, in figures 12(c) and
13(a–c) all fibres are considered, regardless of their motion in the wall-normal direction.
We consider now the descending fibres (figure 13d–f ), for which the peak of the p.d.f.
(U+) is located for 10 � U+ � 14. We speculate that these fibres are mainly carried down
to the wall by sweep events (Abbasi Hoseini et al. 2015). This assumption is supported by
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Figure 13. Joint-p.d.f. of fibre streamwise velocity (U+) and spanwise orientation (ϑz) in the near-wall region
(1 < y+ < 20) for Reτ = 180. Fibres are classified into three curvature classes, with curvature κ∗ increasing
from left to right. Joint-p.d.f.s are shown considering all the fibres (a–c), fibres moving downward (descending,
(d–f )) or upward (ascending, (g–i)). Evolution of the complex ascending–descending motion of one fibre
tracked in the near-wall region (j). The wall is indicated by the grey surface, the laboratory reference frame
is also shown.

the data reported in figure 11 and marked as sweep. The same conclusions can be drown
looking at the statistics of the ascending fibres, presented in figure 13(g–i). The peak of
the p.d.f. (U+) is in the region 4 � U+ � 8, again in agreement with the data reported in
figure 11 and marked as ejection.

We further observe in figure 13(g–i) that ascending fibres are more likely oriented
in the streamwise direction, i.e. the number of fibres with ϑz = π/2 is larger when
fibres are ascending than when fibres are descending. In particular, the probability of
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finding ascending fibres with ϑz < π/3 is much lower compared with the descending
ones (figure 13d–f ). This observation holds for all curvature classes. We observe from
figure 13(g) that, at Reτ = 180, straighter fibres (κ∗ < 0.28) sampling the low-speed
upward motions (4 < U+ < 7), align preferentially with the streamwise direction (ϑz =
π/2). In contrast, fibres sampling higher velocities of upward motion (Q1) do not align
preferentially with the streamwise direction (ϑz = π/6). This observation suggests that,
in the near-wall region, the preferential alignment of the straighter fibres is controlled
by their velocity. We also observe that, at highest Reynolds number, the straighter fibres
align less with ϑ = π/2, (figure 12(i), Reτ = 720), and the orientation ϑz = π/2 is not
dominant anymore. We believe that this is an effect of the larger velocity experienced by
the fibres due to their geometry, since the higher Reτ , the higher the value of L+

f = Lf uτ /ν.
As a result, fibres will most likely stay at higher y+, where they will experience a larger
velocity while they are ascending.

Finally, we analyse the effect of curvature on the orientation of the fibres. These data
can be directly compared against the results shown in figure 12(b,c), where the p.d.f. (ϑx)
and p.d.f. (ϑz) for fibres of all curvatures show a bimodal distribution. From figure 12(b,c)
it is also clear that the probability of having fibres nearly aligned with the streamwise
direction (ϑz = 5π/12) increases with the curvature. We consider first the fibres belonging
to the first curvature class (κ∗ < 0.28, i.e. straighter fibres). When both ascending and
descending fibres are considered (figure 13a), it is apparent that there are two peaks
and that the dominant one is located at ϑz = π/6, as also observed in figure 12(c). As
mentioned above, additional information on the behaviour of the fibres can be obtained
when fibres are distinguished as ascending and descending: fibres moving away from the
wall are characterised by a low speed (4 < U+ < 7). As a result, it is more likely that
ascending fibres are aligned with the streamwise direction (figure 13g). The situation is
different for curved fibres (κ∗ > 0.42), which are mainly aligned with the flow both in
the ascending and descending cases. Please note that the preferential orientation observed
for straight fibres still holds for a small portion of the curved fibres (figure 13f,i). Finally,
we observe that the orientation of the fibres belonging to the intermediate curvature class,
figure 13(b,e,h), can be interpreted as a combination of the situations described above
for straight and curved fibres. Our findings support the idea that curvature is the dominant
parameter determining the fibre orientation. In addition, fibre orientation is also controlled
by their velocity, and the lower the velocity, the higher the chance of finding fibres aligned
with ϑz = π/2. One possible explanation for this effect is that fibre orientation is sensitive
to the fluid spanwise velocity fluctuations. Indeed, larger values of streamwise velocity
correspond to larger values of spanwise velocity. As a result, it is harder for the fibres to
align with the streamwise direction (ϑz = π/2) if the velocity experienced by the fibre is
large.

3.5. Rotational dynamics
The effect of curvature on the tumbling rate of non-axisymmetric fibres has been analysed
by Alipour et al. (2021). It was shown that curvature plays a crucial role, producing an
increase of the fibre tumbling. We consider here the effect of the shear Reynolds number
(Reτ ) on the tumbling of the fibres, and we investigate all the channel regions, from the
walls to the centre, i.e. 0 � y+ � Reτ . We will first define the tumbling for the present
particles, and then discuss the results obtained.

A possible reference frame for axisymmetric particles consists of their three main axes,
i.e. the symmetry axis (x′) and two perpendicular axes (y′, z′). Therefore, the solid body
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rotation rate of axisymmetric particles, Ω = ωx + ωy + ωz, can be decomposed into a
component ωx aligned with the symmetry axis (x′), called spinning, and two components
(ωy and ωz) perpendicular to the symmetry axis and aligned with y′ and z′, defined as
tumbling (Voth & Soldati 2017). Please note that z′ belongs to the plane of the fibre,
whereas y′ is perpendicular to it. Since curved fibres have no symmetry axis, we arbitrarily
define the spinning as the rotation rate about the fibre principal axis (x′) and the two
tumbling components as the rotation about y′ and z′. The configuration is shown in
figure 3(e). The solid body rotation, Ω , can be split in spinning and tumbling components,
respectively Ωs and Ω t, so that

Ω = ωx + (ωy + ωz) = Ωs + Ω t (3.1)

with squared magnitude:

ΩsΩs = ωx · ωx = ω2
x , (3.2)

ΩtΩt = ωy · ωy + ωz · ωz = ω2
y + ω2

z . (3.3)

Hereinafter, we will consider the effect that flow and fibre properties have on the mean
squared tumbling rate 〈ΩtΩt〉, i.e. the tumbling rate ΩtΩt defined as in (3.3) and averaged
over a horizontal plane (x–z). In this way, the results can be shown as a function of
the distance from the wall, y+ (figure 14). We provide the statistics of mean tumbling
expressed in wall units, 〈Ω+

t Ω+
t 〉 = 〈ΩtΩt〉τ 2, with τ = ν/u2

τ reported in table 1 for all
experiments considered. To compute the tumbling from the experimental measurements,
we employed a second-order polynomial as the time filter, with a constant kernel size
of 2.8τ , and we considered fibres that are tracked for at least 5τ . We observed that
different values of kernel size can give tumbling rates that are different in magnitude (Voth,
Satyanarayan & Bodenschatz 1998; Voth et al. 2002), but the qualitative behaviour of the
tumbling, e.g. as a function of κ∗ or y+, is not affected.

We consider first the measurements performed at Reτ = 180 (figure 14a). The tumbling
of the fibres, which are divided into three curvature classes, is represented by circles,
whereas fitted experimental data (spline) are shown as solid lines. The magnitude of the
mean squared tumbling rate, 〈Ω+

t Ω+
t 〉, is sensitive to the distance from the wall, y+: for

all curvature classes the tumbling rate increases from the centre towards the wall, and
this increase is larger for straight fibres (κ∗ < 0.28) than for curved ones (κ∗ � 0.28). In
addition, near the wall the behaviour of the fibres with low and intermediate values of
curvature is similar for all Reτ considered. We compare now our results against the DNS
performed by Zhao et al. (2015). In these simulations, prolate ellipsoids (λ = 50, St =
0) in turbulent channel flow at Reτ = 180 are considered, and give 〈Ω+

t Ω+
t 〉 = 0.0037

at y+ = 10. This result, reported in figure 14(a) as one single filled diamond, is in fair
agreement with the experimental measurements obtained for straight fibres (κ∗ < 0.28).
We remark that the magnitude of the tumbling measured experimentally is sensitive to the
filtering procedure adopted. For instance, a larger kernel size of the time filtering would
result in a lower tumbling rate.

We analyse now the measurements performed at Reτ = 360, reported in figure 14(b).
Also, at this value of Reynolds number, an increase of the tumbling rate from the centre
towards the walls is observed and we propose a possible physical interpretation. In the
centre of the channel, vorticity and rods both align with the Lagrangian stretching direction
(ê1). In contrast, on approaching the channel walls, while fibres maintain the same
alignment (ê1) vorticity alignment changes towards a direction that is perpendicular to ê1
(Zhao & Andersson 2016). As a results, the action that the flow produces on the fibres can
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Figure 14. The x–z averaged tumbling of the fibres 〈Ω+
t Ω+

t 〉 (expressed in wall units) is shown as a function
of the wall-normal coordinate, y+. Measurements of fibres, divided into three curvature classes, are shown
(circles) as well as the corresponding 95 % confidence intervals (shaded regions). The three Reynolds numbers
considered, Reτ = 180, 360 and 720, are shown in (a), (b) and (c), respectively. Results are compared against
numerical simulations (Reτ = 180, λ = Lf /df = 50, St = 0, Zhao et al. 2015, filled diamond) and experimental
measurements (Reτ = 435, St = 0.22 and λ = 31, St = 0.34 and λ = 12, Shaik et al. 2020, empty symbols).

increase their rotation rate about a direction perpendicular to their principal axis (aligned
with ê1), i.e. their tumbling rate increases. The same applies to the Reτ = 180 and 720,
where an increase of the tumbling rate from the centre towards the walls is also observed.
In addition, we also observe that 〈Ω+

t Ω+
t 〉 is a function of the fibre curvature. We compare

our results with the experimental measurements proposed by Shaik et al. (2020), where
straight fibres are tracked in a turbulent channel flow at Reτ = 435. They investigated the
behaviour of fibres having Stokes numbers St = 0.22 (λ = 31) and St = 0.34 (λ = 47),
considerably larger than the ones used in this study. However, when the fibres belonging
to the first class are considered (κ∗ < 0.28), the results proposed here are in fair agreement
with the experimental measurements of Shaik et al. (2020) for St = 0.22 (triangles).

Finally, we analyse the behaviour of the fibres at Reτ = 720 in figure 14(c). Also in
this case, fibres tend to tumble faster when approaching the walls of the channel, and the
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Influence of Reynolds number on fibre dynamics

larger the curvature, the higher the tumbling rate. We can conclude that, in general and
regardless of the Reynolds number, the near-wall squared tumbling rate is in the range of
0.09 � 〈Ω+

t Ω+
t 〉 � 0.012 for all curvature values. Moreover, 〈Ω+

t Ω+
t 〉 remains almost

constant in the near-wall region, which corresponds to y+ � 10, y+ � 40 and y+ � 60 for
Reτ = 180, 360 and 720, respectively.

4. Conclusions

In this work, we investigate experimentally the dynamics of non-axisymmetric fibres in
channel flow turbulence, and we focus specifically on the importance of the fibre size
relative to the flow scales. With this aim, we maintained the size of the fibres as a constant
and we increased the shear Reynolds number. Experimental measurements, performed
in the TU Wien Turbulent Water Channel, consist of high-resolution and time-resolved
recordings. Fibre position and orientation are inferred from 3-D MART reconstruction
(Alipour et al. 2021). We provide experimental measurements of concentration, velocity,
orientation and tumbling rates of the fibres and we link the results observed to the
flow–particle interactions. The physical extension of the domain and fibres is maintained
constant. As a result, by changing the shear Reynolds number, we control the relative size
of fibres and flow structures. We confirmed previous findings at Reτ = 360 and we also
compare the results obtained against DNS and experiments of straight fibres in turbulent
channel flow.

First, we observe that fibre concentration in the wall-normal direction is influenced by
the fibre shape for all Reynolds numbers considered. The concentration is uniform and
independent of curvature in the centre of the channel, whereas it is sensitive to the value of
curvature in the near-wall region: the higher the curvature, the higher the fibres tendency to
accumulate near the wall. This result is of practical importance for industrial applications
where the concentration of fibres is the parameter that has to be controlled. For instance,
fibre accumulation and distribution in the flow could be controlled by selecting fibres
characterised by specific values of curvature. We also observed that the extension of the
region over which the effect of curvature is observed depends on the Reynolds number.
A detailed analysis of fibre orientation suggests that the concentration profiles observed
are produced by the effect of fibre shape (curvature) and by the interaction of the fibres
with the near-wall coherent structures. We also observe that the effect of curvature is
dominant, whereas the role of the flow structures is significant for fibres with low curvature
in low-speed regions of the flow.

Our measurements reveal that, in the centre of the channel, fibres move with the same
velocity as the fluid. However, for all curvatures and Reynolds numbers considered, we
observed that the fibres in the near-wall region move faster than the fluid. This is possibly
justified by the tendency of the fibres to stay preferentially in high-speed regions of the
flow (high-speed streaks). By means of the p.d.f. of the streamwise velocity of the fibres,
we further characterise the dynamics of the fibres in the near-wall region. We observe that
fibre behaviour is nothing but the footprint of the near-wall coherent structures, which are
responsible for the fibre movement towards and away from the wall.

We considered the orientation of the fibres with respect to the laboratory reference
frame, and we provide a physical interpretation of the bimodal distribution observed for
the p.d.f. of the orientation angles. From a detailed investigation of the orientation and
streamwise velocity of the fibres, we conclude that their behaviour near the channel walls
is strongly controlled by their asymmetry in shape (curvature). In the near-wall region,
fibres with high curvature tend to align their principal axis with the streamwise direction.
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In contrast, low curvature fibres are more sensitive to the local flow conditions, and when
in high-speed regions of the flow, they align less with the streamwise direction. Although
the effect of the flow structures is more apparent at Reτ = 180, the behaviour described
above is observed for all Reynolds numbers considered.

Finally, we analysed the effect of the Reynolds number on the fibres tumbling rate over
the entire domain, from wall to centre. The value of the tumbling rate, made dimensionless
with the viscous time scale, is nearly constant in the near-wall region, whereas it decreases
on approaching the centre of the channel. When fibres with low curvature are considered,
results of the present database are in fair agreement with numerical (Zhao et al. 2015) and
experimental (Shaik et al. 2020) measurements of straight rods in turbulent channel flow.
However, we observed that curvature plays a key role in the fibre tumbling at all Reynolds
numbers investigated: curved fibres are prone to tumble more than straight ones, possibly
suggesting an analogy between the dynamics of curved fibres and oblate spheroids (disks).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.1145.
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Appendix A. Additional details on the experimental set-up

A.1. Characterisation of fibre geometry
Fibres considered in this study are, in general, all different and characterised by a complex
geometry. To describe their shape with only two parameters, we considered their curvature
and length. The p.d.f.s of fibre normalised curvature (κ∗) and length (Lf ) are reported
in figure 15 for the Reynolds numbers considered. Measurements of both κ∗ and Lf are
obtained from the tomographic reconstruction method employed. The distribution of fibre
curvature (figure 15a) is nearly the same in all the experiments performed, with a peak
in correspondence of κ∗ ≈ 0.3. Similarly, the distribution of the measured fibre length is
consistent among the experiments (figure 15b). However, we observe that, in this case, the
p.d.f. (Lf ) is narrower compared with the p.d.f. (κ∗), with a clear peak at the nominal fibre
length (1.2 mm).

A.2. Additional details on the fibre statistics
The number of fibres identified and tracked in each experiment is variable and depends
on minimum track length considered. Indeed, in order to provide reliable measurements
of velocity and rotation rates, the fibres are tracked over a long time interval. This ensures
that the fibres reconstructed are not the result of the clustering of tracers or optical noise,
but represent physical objects, with a time-persistent shape. The time interval considered
for the tracking is defined as a function of the viscous time scale of the flow, τ , reported in
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Figure 15. The p.d.f. of fibre normalised curvature (κ∗, panel a) and length (Lf , panel b) is reported for the
three values of Reynolds number considered, Reτ . Fibre length and curvature distribution is nearly the same
in all the experiments performed. The peak of the p.d.f. (Lf ) is in agreement with the nominal fibre length
(1.2 mm).

Flow parameters Fibres number

Reτ Reτ,eff τ �T > τ �T > 2.8τ �T > 6τ

(–) (–) (s) (–) (–) (–)

180 195 0.0366 124 345 49 738 7249
360 363 0.0104 137 955 27 591 16 817
720 703 0.0028 117 951 39 317 16 306

Table 2. Number of fibres tracked for each Reynolds number (Reτ ) as a function of the track length (�T), i.e.
the minimum time interval over which the fibres are tracked. The length of the tracks is specified as a function
of the viscous time scale of the flow (τ ).

table 2 for all Reynolds numbers considered. The number of fibres tracked at each Reτ is
reported in table 2 for three different values of track length, �T , where the track length is
defined as the minimum time interval over which the fibre is tracked. It is trivial to observe
that, by increasing the track length considered, the number of fibres always decreases. The
statistics presented in this work have been obtained accounting for the fibres tracked for
�T > 2.8τ .
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