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Abstract. Using the definition of regular p-group given by M. Hall [1], a new class
of finite groups called regular-nilpotent has been defined. The action of these groups as
automorphisms of compact Riemann surfaces has been investigated. It is proved that
a necessary and sufficient condition for a Fuchsian group to cover a regular-nilpotent
group is that its orbit genus be zero and its periods satisfy the least common multiple
condition, first defined by Harvey [2] and Maclachlan [4].
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1. Introduction. This paper is another sequel to [6] in which I used the notion
of p-localization defined in [3] to obtain the best possible bound 16 (g − 1) for the
order of a finite nilpotent group acting as the group of automorphisms of a Riemann
surface of genus g ≥ 2. Marshall Hall [1] has defined a particular class of p-groups
called regular p-groups. These p-groups have the property that, for any two elements
a, b and any integer of the form n = pα, the identity (ab)n = anbnSn

1Sn
2 · · · Sn

t is satisfied.
Here S1, S2, . . . , St are appropriate elements from the commutator subgroup of the
group generated by a and b. In this paper, we define yet another class of finite groups
called regular-nilpotent: namely, the nilpotent groups all of whose p-Sylow subgroups
are regular p-groups. After establishing the existence of such finite groups, we then look
for necessary and sufficient conditions under which this particular type of nilpotent
group is covered by a co-compact Fuchsian group. We also generalize a property,
described in [8], of 3-groups of automorphisms of Riemann surfaces to any other odd
prime. More precisely, we shall show that for any odd prime p ≥ 3, the smallest p-group
covered by the Fuchsian group (0; p, p, p2) is an irregular group Cp wr Cp of order pp+1.
Here wr denotes wreath product.

2. Notation and terminology. Let P be a finite p-group whose order is pn, where
p is a prime. If P is of class less than p and n = pα, P = 〈a1, a2, . . . , ar〉, then we have

(a1a2 · · · ar)n = an
1an

2 · · · an
r S n

1 S n
2 · · · S n

t ,

where S 1, S 2, . . . , S t are elements of the commutator subgroup of the group P

Part (A). Known facts about regular p-groups.
1. Every p-group of class less than p is regular.
2. Every p-group of order at most pp is regular.
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3. The group P is regular if every subgroup generated by two elements in P is
regular.

4. Every subgroup and every factor group of a regular p-group are also regular.
5. If P is a finite p-group, P is regular if and only if for any a, b in P we have

(ab)p = apbpSp, where S ∈ [P1, P1] and P1 = 〈a, b〉.
6. If P is regular with n = pα, then the following conditions are satisfied.

(i) [an, b] = 1 if and only if [a, b]n = 1, where a ∈ P, b ∈ P.
(ii) If [an, b] = 1, then [a, bn] = 1.

(iii) A commutator S involving an element u has order at most that of u modulo
the centre of P.

(iv) The order of the elements a1a2 · · · ar is at most max{|ai| : 1 ≤ i ≤ r}.
7. If in a regular p-group we have an = bn = 1, then ab has order at most n.

Part (B). Well-known facts about Fuchsian groups and p-localization.
1. A Fuchsian group is a discrete subgroup � of orientation preserving isometries

of the upper half-plane D with hyperbolic structure. Moreover, if D/� is a compact
surface, then � has the following presentation:

�(S ) =
〈

x1, x2, . . . , xs, a1, b1, . . . , agbg

∣∣∣∣∣xmi
i (i = 1, . . . , s),

s∏
i=1

xi

g∏
j=1

[aj, bj]

〉

where S = (g : m1, m2, . . . , ms) is the signature of the group �. The integers
m1, m2, . . . , ms are the periods of � and g is its orbit genus. The groups of
automorphisms of compact Riemann surfaces are the quotient groups of Fuchsian
groups. Every Fuchsian group has an associated fundamental region whose hyperbolic
area µ(�) depends only on the group itself. Suppose that � has the signature S defined
above. Then

µ(�) = 2π

[
(2g − 2) +

s∑
k=1

(
1 − m−1

k

)]
.

2. If �1 is a subgroup of finite index in the group �(S), where S is a non-degenerate
signature, then there is a signature S 1 such that �1

∼= �(S 1) and we have the following
Riemann–Hurwitz index formula

[� : �1] = µ(�(S1))/µ(�(S )).

3. It is well known that a compact Riemann surface of genus g ≥ 2 can be
represented as the quotient group D/�, where � is a Fuchsian group with signature
(g; −) called the surface group of genus g. Here – denotes the empty set of periods.

4. A finite group G acts as the group of automorphisms of a given surface group
if and only if there is a Fuchsian group � and a homomorphism � from � onto G
having � as its kernel. Such a homomorphism will be smooth; (that is, has torsion-free
kernel). Also � admits G as a smooth factor group. Moreover, the homomorphism
� : � → G is smooth if and only if it preserves the periods of the Fuchsian group �.

5. Suppose that S = (g; m1, m2, . . . , ms) is the signature of the Fuchsian group
�. Let αi be the largest number such that pαi | mi(i = 1, . . . , s). The signature
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Sp = (g; pα1 , pα2 , . . . , pαs ) is called the p-localization signature of S. We have

�(Sp) =
〈

x′
i, . . . , x′

s, a′
1, b′

1, . . . , a′
g, b′

g

∣∣∣∣∣x′pα1

1 , . . . , x′pαs

s ,

s∏
i=1

x′
i

gj=1∏ (
a′

jb
′
ja

′−1
j b′−1

j

)〉
.

6. A signature S is called p-local if every period of S is already a power of the same
prime p so that S = Sp. We also call the homomorphism lp : �(S) → �(Sp), obtained
by extending the function defined on the generating sets by

xi → x′
i, aj → a′

j, bk → b′
k (i = 1, 2, . . . , s; j, k = 1, . . . , g),

the p-localization homomorphism.
7. Each smooth homomorphism � : �(S ) → G = Gp1 × Gp2 × · · · Gps from �(S )

onto the finite nilpotent group G that can be written as the direct product of its
Sylow subgroups Gpi(i = 1, 2, . . . , s) determines a set of homomorphisms of the form
�pi : �(Spi ) → Gpi such that if y ∈ �(S ) and gi = �pi (lpi (y)), then we have �(y) =
g1g2 · · · gs. Therefore, we can obtain all possible smooth homomorphisms from the
Sylow p-subgroups of G.

3. Regular-nilpotent groups of automorphisms. We shall now introduce and study
the action of a class of finite nilpotent groups that we call regular-nilpotent as
automorphisms of a compact Riemann surface of genus g ≥ 2.

DEFINITION 3.1. P is said to be a regular p-group if for any pair of elements a, b in
P and n = pα we have

(ab)n = anbnS n
1S n

2 · · · S n
t ,

where the S i are elements of the commutator subgroup [P 1, P 1] of the group P 1 =
〈a, b〉.

DEFINITION 3.2. A finite group G is called regular-nilpotent if it is nilpotent and all
of its Sylow subgroups are regular p-groups.

THEOREM 3.1. Let Sp = (g; pα1 pα2 , . . . , pαs ) be a p-local signature. The Fuchsian
group �(Sp) covers a regular p-group Gp if Sp has orbit genus g = 0 and its periods are
all equal; that is, α1 = α2 = · · · = αs = α.

Proof. By Corollary 6.7 of [3], �(Sp) is residually a finite p-group, since Sp is a
p-local signature. Since g = 0, every nilpotent automorphism group covered by �(Sp)
is a finite p-group by Theorem 2.1.1 of [6]. Hence we have

�(Sp) =
〈
x1, x2, . . . , xs

∣∣∣xpα1

1 = xpα2

1 = · · · = xps
s = x1x2 · · · xs = 1

〉
.

Now suppose that α = max{x1, x2, . . . , αs}. On the one hand we have the
inequalities pαj ≤ pα(j = 1, . . . , s). On the other hand, if we let xN be an element of
order pα, then from the long relation of �(Sp) given above we obtain

(
x−1

N

)pα = (xN+1xN+2 · · · xsx1x2 · · · xN−1)pα = 1.

https://doi.org/10.1017/S0017089502008923 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502008923


4 REZA ZOMORRODIAN

However, if Gp is a regular p-group, then by Property 6(iv) of § 2 Part A we have

|xN+1xN+2 · · · x1x1x2 · · · xN−1| = pα ≤ |xj| = pαj (j 
= N ),

where |y| denotes the order of the element y in G. Hence pαj = pα(j 
= N). The result
now follows.

We note that the result is not true in general for signatures Sp with non-zero orbit
genus. Moreover, since �(Sp) covers the regular p-group Gp smoothly, the signature
Sp cannot be degenerate. See [3]. This implies that s ≥ 2. For s = 2, Sp is still a non-
degenerate signature, since here we have m1 = m2.

The next theorem generalizes the observation in [7, p. 240] on 3-groups of
automorphisms. This explains why the smallest 3-group of automorphisms must have
order 81 and must be Z3 wr Z3. Note that here, however, we are merely dealing with
the Fuchsian groups (p, p, p2), which do not necessarily give an upper bound for the
rest of the p-groups of automorphisms. �

THEOREM 3.2. Let p be an odd prime. Consider the Fuchsian group � =
�(0; p, p, p2). The smallest nilpotent group G covered by � has the following properties.

(i) G ∼= Sylow p-subgroup of Sp2 ∼= Cp wr Cp.
(ii) G = 〈x, y|xp = yp = (xy)p2 = [x, [x, yn]] = 1 (n = 1, 2, . . . , p − 1).

(iii) The order of G is given by |G| = pp+1.
(iv) G is not a regular p-group.

Proof. First, we shall investigate the p-subgroup of the symmetric group Sp2 on
p2 letters. We shall show that this group is generated by two elements of order p
whose product has order p2. The Sylow subgroups of Sp2 are easily constructed by
means of the wreath product. Observe that the factors of (p2)! divisible by p are
p, 2p, 3p, . . . , (p − 1)p, p2. Hence (p2)! is divisible by pp−1 × p2 = pp+1 and this is the
highest power of p dividing (p2)!

Now Sp2 has a subgroup which is the direct product of the cyclic groups
generated by the p-cycles a1 = (1, 2, . . . , p), a2 = (p + 1, p + 2, . . . , 2p), a3 =
(2p + 1, . . . , 3p), . . . , ap = (p2 − p + 1, . . . , p2). Consider another element of order p;
for example

b = (1, p + 1, 2p + 1, . . . , P2 − p + 1)(2, p + 2, 2p + 2, . . . , p2 − p + 2) · · ·
× (p, 2p, 3p, . . . , p2).

It can be checked that

ak+1 = bakb−1 = b2ak−1b−2 = · · · = bka1b−k.

Therefore, we have

ak = bk−1a1b1−k (k = 2, . . . , p),

G = 〈a1, a2, . . . , ap, b〉 = 〈a1, b〉 ∼= Cp wr Cp

and the last group is a p-Sylow subgroup of Sp2 . Moreover |G| = pp+1.
To find a presentation for this group we consider the relations ap

1 = bp = 1 and
note that

a1b = (1, p + 2, 2p + 2, . . . , p(p − 1) + 2, 2, p + 3, . . . , . . . , p2)
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is a p2-cycle. To get the extra relation we note that

ai+1aj+1 = aj+1ai+1 ⇒ (bia1b−i)(bja1b−j) = (bja1b−j)(aia1b−i).

Setting j − i = k, the relation above becomes

a1b−ka1bk = b−ka1bka1 ⇒ [a1, [a1, bk]] = 1.

By § 2, Item 7 of Part (A), the order of a1b is at most p and so this group is
irregular. �

THEOREM 3.3. A Fuchsian group �(0; m1, m2, . . . , ms) with orbit genus zero can cover
a regular nilpotent group G = Gp1 × Gp2 × · · · × Gpk if and only if its periods satisfy

l.c.m {m1, m2, . . . , m̂j, mj+1, . . . , mk} = l.c.m {m1, m2, . . . , mk}.
Here m̂j means that mj should be omitted from the list.

Proof. We use an idea from Section 5 of [3] to localize the given signatures
Spi = (0; pαi1

i , pαi2
i , . . . , pαis

i ). Then we use our Theorem 3.1 to show that for each of
the localized signatures Spi we must have αi1 = αi2 = · · · = αis = αi (i = 1, 2, . . . , k).
From this we deduce that S can be localized into the p-localization signatures
Sp1 = (0; pα1

1 , . . . , pα1
1 ), Sp2 = (0; pα2

2 , . . . , pα2
2 ), . . . , Spk = (0; pαk

k , . . . , pαk
k ).

Obviously, the signatures above each might have a different number of periods,
but each must contain at least two periods in order to be a non-degenerate signature.
Hence, if pi|

∏
j mj, then the same power pαi

i of the prime pi must divide at least two of
the periods mi. We can now conclude that

l.c.m {m1, m2, . . . , m̂j, mj+1, . . . , mk} = l.c.m {m1, m2, . . . , mk}.
= pα1

1 × pα2
2 × · · · × pαk

k .

The proof is complete, since the argument can easily be reversed.

REMARK . The least common multiple condition has earlier been used in [2]
and [4].
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