A REGULAR SUMMABILITY METHOD WHICH SUMS THE GEOMETRIC SERIES TO ITS PROPER VALUE IN THE WHOLE COMPLEX PLANE

BY
LUDWIG TOMM

Abstract

In this paper an explicit regular sequence-tosequence summability method is presented which sums the geometric series to the value $1 /(1-z)$ in all of $\mathbb{C} \backslash\{1\}$ and to infinity at the point 1 . The method also provides compact convergence in $\mathbb{C} \backslash[1, \infty)$ and therefore improves well-known results by Le Roy, Lindelöf and Mittag-Leffler.

Several authors (Le Roy [1], Lindelöf [2], Mittag-Leffler [3]) have given explicit regular summability methods which sum the geometric series to the function $1 /(1-z)$ in its Mittag-Leffler star $\mathbb{C} \backslash[1, \infty)$.

In this paper we present a regular method which sums the geometric series to the value $1 /(1-z)$ in all of $\mathbb{C} \backslash\{1\}$ and to infinity at the point 1 . The method described in the following theorem provides compact convergence in $\mathbb{C} \backslash[1, \infty)$-so do the methods in [1], [2], [3]-, and pointwise convergence in all of $\mathbb{C} \backslash\{1\}$. Moreover we get uniform convergence on every compact subset of $H=\{x+i y: x>1, y \geq 0\}$.

Theorem. The continuous method defined by ${ }^{(1)}$

$$
\begin{equation*}
c_{k}(x)=\frac{\log x}{x} e^{-(k / x)(\log k-i \pi)} \quad(x>1, k=0,1, \ldots) \tag{1}
\end{equation*}
$$

is regular, and the transform

$$
\begin{equation*}
\sigma_{x}(z)=\sum_{k=0}^{\infty} c_{k}(x) \cdot\left(1+z+\cdots+z^{k}\right) \quad(z \in \mathbb{C}, x>1) \tag{2}
\end{equation*}
$$

of the geometric series has the following properties.

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sigma_{x}(z)=\frac{1}{1-z} \tag{3}
\end{equation*}
$$

uniformly on every compact subset of $\mathbb{C} \backslash[1, \infty)$ resp. $H=\{x+i y \mid x>1, y \geq 0\}$.

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sigma_{x}(1)=\infty . \tag{4}
\end{equation*}
$$

Received by the editors September 11, 1981.
AMS (1980) Subject Classification: 40G99.
${ }^{(1)}$ We define $0 \log 0=0$.
(C) 1983 Canadian Mathematical Society.

Remarks

(a) In (1) we might replace π by any function $f:(1, \infty) \rightarrow[0, \infty)$ which satisfies the conditions (i) $f(x)=o(\log x)$ as $x \rightarrow \infty$, and (ii) $\lim \inf _{x \rightarrow \infty} f(x)>\pi / 2$, and still $\sigma_{x}(z)$ would have the properties (3) and (4). A proof to this more general version of the above theorem-without (4)-is given in [4].
(b) From (1) we can also obtain a discrete row-finite method $A=\left(a_{n, k}\right)_{n, k=0}^{\infty}$ with the same summation properties, e.g. by defining

$$
a_{n, k}= \begin{cases}\frac{\log n}{n} e^{-(k / n)(\log k-i \pi)} & \text { if } n=2,3, \ldots \text { and } k \leq n^{n} \\ 0 & \text { else. }\end{cases}
$$

The A-transform $\sigma_{n}(z)$ of the geometric series also satisfies (3). The simple proof to this can be found in [4].

Proof to the Theorem

1. At first we show that $c_{k}(x)$ is regular by checking the Toeplitz conditions. Clearly $\lim _{x \rightarrow \infty} c_{k}(x)=0$ for $k=0,1, \ldots$ It remains to prove that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sum_{k=0}^{\infty} c_{k}(x)=1 \tag{5}
\end{equation*}
$$

and that the series $\sum_{k=0}^{\infty}\left|c_{k}(x)\right|$ are uniformly bounded for $x>1$. We will also show that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sum_{k=0}^{\infty}\left|c_{k}(x)\right|=1 \tag{6}
\end{equation*}
$$

(It is easily seen that the series in (6) converge for $x>1$.) We define for $x>1$

$$
\begin{aligned}
& H(x)=\sum_{0 \leq k \leq x / \sqrt{ }(\log x)}\left|c_{k}(x)\right|, \\
& R(x)=\sum_{k>x / \sqrt{ }(\log x)}\left|c_{k}(x)\right| .
\end{aligned}
$$

Then we obtain that

$$
\sum_{k=0}^{\infty}\left|c_{k}(x)\right|=H(x)+R(x)
$$

and-since

$$
\max _{0 \leq k \leq x / \sqrt{(\log x)}}\left|\exp \left(\frac{i k \pi}{x}\right)-1\right|=o(1)
$$

as $x \rightarrow \infty-$

$$
\begin{aligned}
\sum_{k=0}^{\infty} c_{k}(x)= & H(x)+\frac{\log x}{x} . \sum_{0 \leq k \leq x / \sqrt{ }(\log x)} \exp \left(-\frac{k \cdot \log k}{x}\right) \\
& \times\left(\exp \left(\frac{i k \pi}{x}\right)-1\right)+O(R(x)) \\
= & H(x)(1+o(1))+O(R(x)) \quad \text { as } \quad x \rightarrow \infty .
\end{aligned}
$$

In order to complete the proof for regularity we need to show that

$$
\begin{array}{lll}
H(x) \rightarrow 1 & \text { as } & x \rightarrow \infty \\
R(x) \rightarrow 0 & \text { as } & x \rightarrow \infty, \tag{8}
\end{array} \text { and that }
$$

$$
\begin{equation*}
H(x), R(x) \text { are uniformly bounded for } x>1 \tag{9}
\end{equation*}
$$

As to (9) we observe that the expressions $\exp [-(k / x) \log (k / x)]$ are uniformly bounded by a constant K for $x>1, k \geq 0$. Therefore both $H(x)$ and $R(x)$ are bounded by

$$
\begin{gathered}
\frac{\log x}{x} \sum_{k=0}^{\infty} \exp \left(-\frac{k}{x} \log x\right) \exp \left(-\frac{k}{x} \log \frac{k}{x}\right) \leq K \frac{\log x}{x} \\
\times \sum_{k=0}^{\infty}\left(\exp \left(-\frac{\log x}{x}\right)\right)^{k}=\frac{\log x / x}{1-\exp (-\log x / x)}
\end{gathered}
$$

which is bounded for $x>1$. Thus (9) is proved.
To show (8) we use the estimate

$$
\begin{aligned}
|R(x)| \leq & \frac{\log x}{x} \cdot \sum_{k>x / \sqrt{ }(\log x)} \exp \left(-\frac{k}{x} \log x\right) \exp \left(-\frac{k}{x} \log \frac{k}{x}\right) \leq K \frac{\log x}{x} \\
& \times \sum_{k>x / \sqrt{ }(\log x)}\left(\exp \left(-\frac{\log x}{x}\right)\right)^{k} \leq K \frac{\log x / x}{1-\exp (-\log x / x)} \exp (-\sqrt{ }(\log x))
\end{aligned}
$$

which converges to 0 as $x \rightarrow \infty$.
For (7) we can use the relation

$$
\max _{0 \leq k \leq x /(\log x)}\left|\exp \left(-\frac{k}{x} \log \frac{k}{x}\right)-1\right|=o(1) \quad \text { as } \quad x \rightarrow \infty
$$

We get

$$
\begin{aligned}
H(x) & =\frac{\log x}{x} \sum_{0 \leq k \leq x / \sqrt{ }(\log x)} \exp \left(-\frac{k}{x} \log x\right)\left(1+\left(\exp \left(-\frac{k}{x} \log \frac{k}{x}\right)-1\right)\right) \\
& =\frac{\log x}{x} \sum_{0 \leq k \leq x / \sqrt{ }(\log x)}\left(\exp \left(-\frac{\log x}{x}\right)\right)^{k}(1+o(1)) \\
& =\frac{\log x / x}{1-\exp (-\log x / x)}\left(1+O\left(e^{-\sqrt{ }(\log x)}\right)\right) \\
& =1+o(1) \text { as } \quad x \rightarrow \infty .
\end{aligned}
$$

2. Our next aim is to show (4), which will be done by proving that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sum_{k=1}^{\infty} k \cdot c_{k}(x)=\infty \tag{10}
\end{equation*}
$$

(Hence (4) is obtained by adding up the limits in (5) and (10).)
Like in 1 . we write

$$
c_{k}(x)=\frac{\log x}{x} \exp \left(-\frac{k}{x} \log x\right) \cdot \exp \left(-\frac{k}{x} \log \frac{k}{x}+i \pi \frac{k}{x}\right)
$$

and use the fact that

$$
\exp \left(-\frac{k}{x} \log \frac{k}{x}+i \pi \frac{k}{x}\right)=1+o(1) \quad \text { as } \quad x \rightarrow \infty
$$

uniformly for $k \leq x / \sqrt{ }(\log x)(x>1)$, and that the same term is uniformly bounded for $x>1, k \in \mathbb{N}_{0}$.

From this it follows that

$$
\begin{align*}
\sum_{k=1}^{\infty} k c_{k}(x)= & \frac{\log x}{x} \sum_{k=1}^{\infty} k \exp \left(-\frac{k}{x} \log x\right)(1+o(1)) \tag{11}\\
& +O\left(\frac{\log x}{x} \sum_{k>x / \sqrt{ }(\log x)} k \exp \left(-\frac{k}{x} \log x\right)\right)
\end{align*}
$$

as $x \rightarrow \infty$.
The first term on the right hand side of (11) is equal to

$$
\frac{\log x}{x} \cdot e^{-(\log x) / x}\left(1-e^{-(\log x) / x}\right)^{-2} \cdot(1+o(1))=\frac{x}{\log x}(1+o(1))
$$

and the O-term is

$$
\begin{aligned}
& O\left(\frac{\log x}{x} \sum_{\mu=1}^{\infty}\left(\mu+\frac{x}{\sqrt{ }(\log x)}\right) \cdot e^{-\sqrt{ }(\log x)} e^{-(\mu / x) \log x}\right) \\
& \quad=O\left(e^{-\sqrt{ }(\log x)}\left(\frac{\log x}{x}\left(1-e^{-(\log x) / x}\right)^{-2}+\sqrt{ }(\log x)\left(1-e^{-(\log x) / x}\right)^{-1}\right)\right)
\end{aligned}
$$

which is $o(x / \log x)$. Thus we have

$$
\sum_{k=1}^{\infty} k c_{k}(x)=\frac{x}{\log x} \cdot(1+o(1))
$$

which implies (10).
3. In order to prove (3) we now derive an "integral representation" for the transform $\tau_{x}(z)=\sum_{k=0}^{\infty} c_{k}(x) z^{k}$ of the sequence $\left(z^{n}\right)_{n \in \mathbb{N}_{0}}$. Namely if

$$
z=\rho e^{i \theta}, \quad \rho>0, \quad 0 \leq \theta<2 \pi \quad \text { and } \quad x>\frac{4 \pi}{2 \pi-\theta}
$$

then we have

$$
\begin{equation*}
\tau_{x}(z)=i \frac{\log x}{x} \int_{1 / 2}^{\infty} e^{-t(\theta+\pi / 2 x)} \exp \left(-i \frac{t}{x} \log \left(t / \rho^{x}\right)\right) d t+\frac{\log x}{x} Q(z) \tag{12}
\end{equation*}
$$

-where

$$
|Q(z)| \leq A\left(\rho+\frac{1}{2 \pi-\theta}\right)
$$

and A is a uniform constant not depending on ρ, θ or x.
To show (12) we consider the curves $\gamma_{n}=\gamma^{(1)}+\gamma_{n}^{(2)}+\gamma_{n}^{(3)}+\gamma_{n}^{(4)}(n=0,1, \ldots)$ with the parametrisations

$$
\begin{aligned}
& \gamma^{(1)}(t)=\frac{1}{2} e^{-i t}, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2} \\
& \gamma_{n}^{(2)}(t)=-i t, \quad \frac{1}{2} \leq t \leq n+\frac{1}{2} \\
& \gamma_{n}^{(3)}(t)=\left(n+\frac{1}{2}\right) e^{i t}, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2} \\
& \gamma_{n}^{(4)}(t)=-i t, \quad-\left(n+\frac{1}{2}\right) \leq t \leq-\frac{1}{2} .
\end{aligned}
$$

Also we define

$$
\begin{equation*}
F(u)=\frac{\exp \left(u(\log \rho+i \theta)-\frac{u}{x}(\log u-i \pi)\right)}{e^{2 \pi i u}-1} \text { for } u \notin(-\infty, 0] \cup \mathbb{N} . \tag{13}
\end{equation*}
$$

With the residue theorem we obtain

$$
\begin{equation*}
\sum_{k=1}^{n} c_{k}(x) z^{k}=\frac{\log x}{x} \int_{\gamma_{n}} F(u) d u \text { for } n=1,2, \ldots \tag{14}
\end{equation*}
$$

There is some positive constant K such that

$$
\left|\frac{1}{e^{2 \pi i u}-1}\right| \leq K \quad \text { and } \quad\left|\frac{1}{1-e^{-2 \pi i u}}\right| \leq K \text { for } \quad u \in \gamma_{n}^{(\nu)}, \quad \begin{align*}
\nu & =2,3,4, \tag{15}\\
n & =0,1, \ldots
\end{align*}
$$

For $n=0,1, \ldots$ we have

$$
\begin{equation*}
\int_{\gamma_{n}^{(3)}} F(u) d u=i\left(n+\frac{1}{2}\right) \cdot \int_{-\pi / 2}^{\pi / 2} F\left(\left(n+\frac{1}{2}\right) e^{i t}\right) e^{i t} d t . \tag{16}
\end{equation*}
$$

If $u=\left(n+\frac{1}{2}\right) e^{i t}, 0 \leq t \leq \pi / 2$, then the modulus of the integrand of the last integral is equal to

$$
\left|\frac{1}{e^{2 \pi i u}-1}\right| \exp \left(\left(n+\frac{1}{2}\right)\left(\cos t \log \frac{\rho}{\left(n+\frac{1}{2}\right)^{1 / x}}-\left(\theta+\frac{\pi-t}{x}\right) \sin t\right)\right)
$$

which is not greater than

$$
K \exp \left(\left(n+\frac{1}{2}\right) \cdot \cos t \log \frac{\rho}{\left(n+\frac{1}{2}\right)^{1 / x}}\right) ;
$$

and for

$$
u=\left(n+\frac{1}{2}\right) e^{i t}, \quad-\frac{\pi}{2} \leq t \leq 0
$$

it is equal to

$$
\left|\frac{1}{1-e^{-2 \pi i u}}\right| \exp \left(\left(n+\frac{1}{2}\right)\left(\cos t \log \frac{\rho}{\left(n+\frac{1}{2}\right)^{1 / x}}\right)-\left(\theta+\frac{\pi-t}{x}-2 \pi\right) \sin t\right)
$$

which also doesn't exceed

$$
K \exp \left(\left(n+\frac{1}{2}\right) \cos t \log \frac{\rho}{\left(n+\frac{1}{2}\right)^{1 / x}}\right) .
$$

Therefore we get the following estimate for the integral in (16).

$$
\begin{equation*}
\left|\int_{\gamma_{n}^{(3)}} F(u) d u\right| \leq(2 n+1) K \int_{0}^{\pi / 2} e^{-\alpha \operatorname{cost}} d t \tag{17}
\end{equation*}
$$

where

$$
\alpha=\left(n+\frac{1}{2}\right) \log \frac{(n+1 / 2)^{1 / x}}{\rho} .
$$

If $n>\rho^{x}$, then α is positive and we can write

$$
\int_{0}^{\pi / 2} e^{-\alpha \cos t} d t=\int_{0}^{\pi / 2} e^{-\alpha \sin t} d t \leq \int_{0}^{\infty} e^{-2 \alpha t / \pi} d t=\frac{\pi}{2 \alpha}
$$

Hence for $n>\rho^{x}$ we have

$$
\left|\int_{\gamma_{n}^{(3)}} F(u) d u\right| \leq \frac{(2 n+1) K \pi}{2 \alpha}=K \pi / \log \frac{(n+1 / 2)^{1 / x}}{\rho}
$$

from which it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\gamma^{(3)}} F(u) d u=0 . \tag{18}
\end{equation*}
$$

Substituting $n=0$ in (17) we obtain for $\gamma^{(1)}=-\gamma_{0}^{(3)}$

$$
\begin{aligned}
\left|\int_{\gamma^{(1)}} F(u) d u\right| & \leq K \int_{0}^{\pi / 2}\left(2^{1 / x} \rho\right)^{(\cos t) / 2} d t \\
& \leq K \int_{0}^{\pi / 2}\left(2 \pi\left(\rho+\frac{1}{2 \pi-\theta}\right)\right)^{(\cos t) / 2} d t .
\end{aligned}
$$

After omitting the exponent $(\cos t) / 2$ and evaluating the last integral we obtain

$$
\begin{equation*}
\left|\int_{\gamma^{(1)}} F(u) d u\right| \leq K \pi^{2}\left(\rho+\frac{1}{2 \pi-\theta}\right) . \tag{19}
\end{equation*}
$$

In order to show (12) we still have to consider the integrals $\int_{\gamma_{n}^{(2)}}$ and $\int_{\gamma_{n}^{(4)}}$. We shall now give an estimate for the integrals $\int_{\gamma_{n}^{(2)}} F(u) d u=-i \int_{1 / 2}^{n+1 / 2} F(-i t) d t$. For $\frac{1}{2} \leq t \leq n+\frac{1}{2}$ we have

$$
|F(-i t)|=\frac{1}{1-e^{-2 \pi t}} \exp \left(-t\left(2 \pi-\theta-\frac{3 \pi}{2 x}\right)\right)
$$

which doesn't exceed

$$
\frac{1}{1-e^{-\pi}} \exp \left(-\frac{5}{8} t(2 \pi-\theta)\right) \text { for } \quad x>\frac{4 \pi}{2 \pi-\theta}
$$

Therefore, as $n \rightarrow \infty, \int_{\gamma_{n}^{(2)}} F(u) d u$ approaches a number the modulus of which is less than

$$
\frac{1}{1-e^{-\pi}} \int_{0}^{\infty} \exp \left(-\frac{5}{8} t(2 \pi-\theta)\right) d t=\frac{8}{5\left(1-e^{-\pi}\right)} \cdot \frac{1}{2 \pi-\theta}
$$

Hence

$$
\begin{equation*}
\left|\lim _{n \rightarrow \infty} \int_{\gamma_{n}^{(2)}} F(u) d u\right| \leq \frac{2}{1-e^{-\pi}} \cdot \frac{1}{2 \pi-\theta} . \tag{20}
\end{equation*}
$$

We complete the proof for (12) by considering the integrals

$$
\int_{\gamma_{n}^{(4)}} F(u) d u=-i \int_{1 / 2}^{n+1 / 2} F(i t) d t=i\left(I_{1}(n)+I_{2}(n)\right)
$$

-where

$$
\begin{aligned}
& I_{1}(n)=\int_{1 / 2}^{n+1 / 2} e^{-t(\theta+\pi / 2 x)} \exp \left(-i \frac{t}{x} \log \left(t / \rho^{x}\right)\right) d t \\
& I_{2}(n)=\int_{1 / 2}^{n+1 / 2} \frac{1}{1-e^{-2 \pi t}} \exp \left(-t\left(2 \pi+\theta+\frac{\pi}{2 x}\right)-i \frac{t}{x} \log \left(t / \rho^{x}\right)\right) d t .
\end{aligned}
$$

The Weierstra βM-test shows that the limits $\lim _{n \rightarrow \infty} I_{1}(n), \lim _{n \rightarrow \infty} I_{2}(n)$ both exist. The integral $I_{1}(n)$ approaches the integral in (12) as $n \rightarrow \infty$. And for $I_{2}(n)$ we can give the estimate

$$
\left|I_{2}(n)\right| \leq \int_{0}^{\infty} \frac{1}{1-e^{-\pi}} e^{-2 \pi t} d t=\frac{1}{2 \pi\left(1-e^{-\pi}\right)}
$$

These two results together with (18), (19) and (20) show that we may take the limit as $n \rightarrow \infty$ in (14) to obtain (12).
4. With the help of (12) we are now able to prove (3). It is easy to verify the identity

$$
\sigma_{x}(z)=\frac{1}{1-z}\left(\tau_{x}(1)-z \tau_{x}(z)\right) \text { for } z \neq 1
$$

and the Toeplitz condition (5) implies that $\lim _{x \rightarrow \infty} \tau_{x}(1)=1$. Therefore it suffices to show that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \tau_{x}(z)=0 \tag{21}
\end{equation*}
$$

uniformly on all compact sets described in (3). In fact it even suffices to show that (21) holds
(a) uniformly on every disc $D_{r}:=\{z:|z| \leq r\}$ with $0<r<1$,
(b) uniformly on every sector $\Delta\left(\theta_{0}, R\right):=\left\{\rho e^{i \theta}: \frac{1}{2} \leq \rho \leq R, \theta_{0} \leq 2 \pi-\theta_{0}\right\}$ with $R>1,0<\theta_{0}<\pi$, and
(c) uniformly on every sector $D(r, R):=\left\{\rho e^{i \theta}: r \leq \rho \leq R, 0 \leq \theta \leq \pi / 2\right\}$ with $1<r<R$.
ad (a): If $0<r<1$ and $x>1$, then we have uniformly on D_{r}

$$
\begin{aligned}
\left|\tau_{x}(z)\right| & \leq \sum_{k=0}^{\infty}\left|c_{k}(x)\right| r^{k} \leq \sum_{0 \leq k \leq \sqrt{ } x}\left|c_{k}(x)\right|+\sum_{k>\sqrt{ } x}\left|c_{k}(x)\right| r^{\sqrt{ } x} \\
& \leq \frac{\log x}{x}(1+\sqrt{ } x)+r^{\sqrt{ } x} \sum_{k=0}^{\infty}\left|c_{k}(x)\right| .
\end{aligned}
$$

Because of (6) and $0<r<1$ the last expression approaches zero as $x \rightarrow \infty$ which proves (21) for the case (a).
ad (b): Let $R>1$ and $0<\theta_{0}<\pi$. For $x>4 \pi / \theta_{0}$ we may use the "integral representation" (12) for all elements $z=\rho e^{i \theta}$ of $\Delta\left(\theta_{0}, R\right)$, and by taking absolute values in (12) we obtain the inequality

$$
\begin{gathered}
\left|\tau_{x}(z)\right| \leq \frac{\log x}{x} \int_{1 / 2}^{\infty} e^{-t(\theta+\pi / 2 x)} d t+\frac{\log x}{x} A\left(\rho+\frac{1}{2 \pi-\theta}\right) \leq \frac{\log x}{x} \int_{0}^{\infty} e^{-t \theta_{0}} d t \\
+\frac{\log x}{x} A\left(R+\frac{1}{\theta_{0}}\right)=\frac{\log x}{x}\left(A R+\frac{A+1}{\theta_{0}}\right)
\end{gathered}
$$

This estimate for $\left|\tau_{x}(z)\right|$ implies (21) for the case (b).
ad (c): Let $1<r<R$. Again, if

$$
x>\frac{4 \pi}{2 \pi-\pi / 2}=\frac{8}{3},
$$

we may use the "integral representation" (12) for all elements $z=\rho e^{i \theta}$ of $D(r, R)$. After cutting the integral in (12) into three parts we obtain the inequality

$$
\begin{equation*}
\left|\tau_{x}(z)\right| \leq \frac{\log x}{x}\left(\left|I_{1}\right|+\left|I_{2}\right|+\left|I_{3}\right|+|Q(z)|\right) \tag{22}
\end{equation*}
$$

where

$$
I_{1}=\int_{1 / 2}^{\sqrt{x}} e^{-t(\theta+\pi / 2 x)} \exp \left(-i \frac{t}{x} \log \left(t / \rho^{x}\right)\right) d t, \quad I_{2}=\int_{\sqrt{x}}^{x^{2}} \ldots, I_{3}=\int_{x^{2}}^{\infty} \cdots
$$

Now we can use the inequality in (12) for $|Q(z)|$ and give trivial estimates for I_{1}
and I_{3} to obtain

$$
\left\{\begin{array}{l}
|Q(z)| \leq A\left(R+\frac{1}{2 \pi-\pi / 2}\right) \tag{23}\\
\left|I_{1}\right| \leq \sqrt{ } x \\
\left|I_{3}\right| \leq \int_{x^{2}}^{\infty} e^{-t(\pi / 2 x)} d t=\frac{2 x}{\pi} e^{-(\pi / 2) x}
\end{array}\right.
$$

Also we have

$$
i I_{2}=x \int_{\sqrt{x}}^{x^{2}} \frac{1}{G(t)} d \exp \left(-i \frac{t}{x} \log \left(t / \rho^{x}\right)\right)
$$

where

$$
G(t)=e^{t(\theta+\pi / 2 x)}\left(\log \left(\rho^{x} / t\right)-1\right)
$$

As $r>1$, there exists a constant $x_{1}>\frac{8}{3}$ (depending on r) such that $x^{2}<r^{x} / e$ for $x \geq x_{1}$, and hence $G(t)$ is positive throughout the interval $\left[\sqrt{ } x, x^{2}\right]$ if $x \geq x_{1}$. The derivative $G^{\prime}(t)$ in this interval is given by

$$
G^{\prime}(t)=e^{t(\theta+\pi / 2 x)}\left(\theta+\frac{\pi}{2 x}\right) g(t)
$$

where

$$
g(t)=\log \frac{\rho^{x}}{t e}-\frac{1}{t\left(\theta+\frac{\pi}{2 x}\right)} \geq \log \frac{r^{x}}{x^{2} e}-\frac{2 \sqrt{ } x}{\pi}
$$

Since this lower bound for $g(t)$ in $\left[\sqrt{ } x, x^{2}\right]$ tends to infinity as $x \rightarrow \infty$, there exists a constant $x_{2} \geq x_{1}$ such that for $x \geqq x_{2} g(t)$-and therefore also $G^{\prime}(t)$-is positive in this interval. Thus, if $x \geqq x_{2}$, the function $1 / G(t)$ is positive and decreasing in $\left[\sqrt{ } x, x^{2}\right]$ and we may apply the second mean value theorem to the real and imaginary part of I_{2}, which yields

$$
\left|I_{2}\right| \leq \frac{4 x}{G(\sqrt{ } x)} \leq \frac{4 x}{\exp \left(\frac{\pi}{2 \sqrt{ } x}\right)\left(\log \left(r^{x} / \sqrt{ } x\right)-1\right)} \underset{\text { as } x \rightarrow \infty}{\longrightarrow} \frac{4}{\log r}
$$

Therefore there exists a constant $x_{3} \geq x_{2}$ such that $\left|I_{2}\right| \leq 5 / \log r$ for $x \geq x_{3}$. Inserting this inequality and (23) in (22) we obtain the estimate

$$
\left|\tau_{x}(z)\right| \leq \frac{\log x}{x}\left(\sqrt{ } x+\frac{5}{\log r}+\frac{2 x}{\pi} e^{-\pi x / 2}+2 A R\right)
$$

which holds uniformly for $x \geq x_{3}$ and $z \in D(r, R)$. This implies (21) for the case (c) which completes the proof to our theorem.

References

1. Le Roy, Annales de la Faculté des sciences de Toulouse (2), 2 (1900), 317-430 (323).
2. Lindelöf, Journal de mathématiques (5), 9 (1903), 213-21.
3. Mittag-Leffler, Atti del IV congressi Internaz. i. 67-85; Rome 1908.
4. Tomm, L., Über die Summierbarkeit der geometrischen Reihe mit regulären Verfahren; author's dissertation; Ulm, West Germany.

Univ. of Western Ontario
London, Ontario

