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A REGULAR SUMMABILITY METHOD WHICH SUMS 
THE GEOMETRIC SERIES TO ITS PROPER VALUE 

IN THE WHOLE COMPLEX PLANE 

BY 

L U D W I G T O M M 

ABSTRACT. In this paper an explicit regular sequence-to-
sequence summability method is presented which sums the geomet
ric series to the value 1/(1-z) in all of C\{1} and to infinity at the 
point 1. The method also provides compact convergence in C \ [ l , o°) 
and therefore improves well-known results by Le Roy, Lindelôf and 
Mittag-Leffler. 

Several authors (Le Roy [1], Lindelôf [2], Mittag-Leffler [3]) have given 
explicit regular summability methods which sum the geometric series to the 
function 1/(1 -z) in its Mittag-Leffler star C\[l,o°). 

In this paper we present a regular method which sums the geometric series to 
the value 1/(1 — z) in all of C\{1} and to infinity at the point 1. The method 
described in the following theorem provides compact convergence in 
C \ [ l , o°)—so do the methods in [1], [2], [3]—, and pointwise convergence in all 
of C\{1}. Moreover we get uniform convergence on every compact subset of 
H = {x + iy: x > l , y > 0 } . 

THEOREM. The continuous method defined bya) 

(1) Cfc(x) = ^ e-(fc/x)(logk--) (x > 1, fc = 0 , 1, . . .) 
X 

is regular, and the transform 

(2) CTX(Z)= t Ck(x) ' ( l + Z + ' " + Zk) (Z€C,X>1) 

of the geometric series has the following properties. 

(3) lim ax(z) = - uniformly on every compact subset 
o/C\[l ,oo) resp. H = {x + iy | x > l , y > 0 } . 

(4) lim<rx(l)=oo. 
X—>°° 
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REMARKS 

(a) In (1) we might replace TT by any function / : ( l , ° ° ) -» [0 , °°) which 
satisfies the conditions (i) /(x) = o(logx) as x -*œ 5 and (ii) 
lim inf^oo f(x)> TT/2, and still ax(z) would have the properties (3) and 
(4). A proof to this more general version of the above theorem—without 
(4)—is given in [4]. 

(b) From (1) we can also obtain a discrete row-finite method A =(arijk)n,k=o 
with the same summation properties, e.g. by defining 

{log ft 

n 

0 

e-(k/n)(iogk-^) if n = 2, 3 , . . . and k < nn, 

else. 

The A-transform an(z) of the geometric series also satisfies (3). The 
simple proof to this can be found in [4]. 

Proof to the Theorem 
1. At first we show that ck(x) is regular by checking the Toeplitz conditions. 

Clearly limx_̂ oo ck(x) = 0 for k = 0 , 1 , . . . . It remains to prove that 

(5) lim Yé ck(x) = l 
'k=0 

and that the series Zk=okk(x)| are uniformly bounded for x > l . We will also 
show that 

(6) lim £ |ck(x)| = l . 

(It is easily seen that the series in (6) converge for x > 1.) We define for x > 1 

H(x)= I |ck(x)|, 
0=sk<xA/(logx) 

R(x)= I |ck(x)|. 
k>x/7(logx) 

Then we obtain that 

and—since 

I \ck(x)\ = H(x) + R(x\ 
:=0 

(T)-'I-«> max 
0<k<x/V(logx) 

exp 
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as x—»°°— 

£ ck(x) = H ( x ) + ^ - X . I e x p ( - i ^ ^ ) 
k=0 X 0<k<xMlogx) \ X / 

x ( e x p ( ^ ) - l ) + 0(tf(x)) 

= H ( X ) ( 1 + O(1)) + 0 (K(JC) ) as x->«>. 

In order to complete the proof for regularity we need to show that 

(7) H(x) —> 1 as x —> oo? 

(8) J R ( X ) - » 0 as x->oo? and that 

(9) H(x), i?(x) are uniformly bounded for x > 1. 

As to (9) we observe that the expressions exp[-(fc/x)log(fc/x)] are uniformly 
bounded by a constant K for x > l , fc>0. Therefore both H(x) and R(x) are 
bounded by 

logx y I fc^ \ I fc1 k ^ ^ l o g x 
x k = 

2, e x p l — l o g x l e x p l — l o g - l < K -
k=0 \ X / \ X X/ 

•IW-^f-ï x ^ . ™ . - . . logx/x 
-exp(—logx/x) 

logx 

which is bounded for x > l . Thus (9) is proved. 
To show (8) we use the estimate 

|U(x)| < — • £ exp( - - log x)exp( - - log - ) < K 
x k>xMlogx) \ X / \ X XI 

x I ( e x p ( - ^ ) ) W * * f exp(-V(logx)) 
k>x/vaogx)V \ x J) l - exp( - logx/x) 

which converges toO asx-»°o . 
For (7) we can use the relation 

Ik k\ I 
max | e x p ( — l o g - 1 - 1 =o( l ) as x—>oo. 

0<k<x/(logx) \ X XI I 

We get 

H O . ) - ! » * I e x p M l o g x V l ^ e x p M l o g f ) - ! ) ) 
* 0<k<x/V(logx) ^ * ' \ \ v * X/ / / 

= ̂ - X I (exP(-^))k(l + o(l)) 
* 0<k<x/70ogx) ^ ^ X / / 

log x/x 

1 — exp(—log x/x) 

= l + o(l) as x—>o° 

(1 + O(<r7(logx))) 
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2. Our next aim is to show (4), which will be done by proving that 
oo 

(10) lim X k-ck(x) = co. 
x^°°k=i 

(Hence (4) is obtained by adding up the limits in (5) and (10).) 
Like in 1. we write 

ck(x) = exp — l o g x • expl — l o g — h n r -
X \ X I \ X X X) 

and use the fact that 

expl—log— \ - ITT- 1 = l + o(l) 
\ X X X) 

as x —»oo 

uniformly for k<x/V(logx) ( x > l ) , and that the same term is uniformly 
bounded for x>l, fcef^0-

From this it follows that 

(11) t kck(x) = 1^^ £ fc e x p ( - - l o g x)(l +o(D) 

v x k>xA/(logx) \ X / / 

as x —>oo. 

The first term on the right hand side of (11) is equal to 

fc£i . e-dogx)/x(1 _ e-do«x)/x)-2 . ( 1 + o ( 1 ) ) = _±_ ( 1 + o ( 1 ) ) 

x logx 

and the O-term is 

= o{e-Jilo^i^ (1 -e-o°««)/«)-2 + V(iog x)(i - e ^ * * ' " ) " 1 ) ) 

which is o(x/log x). Thus we have 

I kck{x)=- (l + o(l)) 
k=i l o g * 

which implies (10). 

3. In order to prove (3) we now derive an "integral representation" for the 
transform TX(Z) = J%=0 ck(x)zk of the sequence (zn)neNo. Namely if 

47T 
z = peie, p > 0 , O < 0 < 2 T T and x>-2TT-0 
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then we have 

(12) T,(*) = i ^ f 
X J , 

—where 
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c - , ( e + W 2 x ) e x p 

1/2 
-ijlogft/p*)) 

| Q ( z ) l^4 + 2^) 

dt + ——Q(z) 
x 

and A is a uniform constant not depending on p, $ or x. 
To show (12) we consider the curves yn = Y(1) + Yn2) + Yn3) + Yn4) (n = 0 , 1 , . . •) 

with the parametrisations 

7(1)(0 = | e - " , IT ir 
— < t < — 
2 2 

1 
Tn («) = - i t , ~^t^n + 

1 

Also 

(13) 

we define 

y?(t) 

y{:\t) 

expf u(logp 
T?(iA — 
r\U) — 

= (n + 

= -it, 

+ i0 ) -

e2™ -

¥• 
- ( » + 

- (Log w -

- 1 

7T 

" 2 s 

¥• 

frr)) 

7T 

t S = 2 

1 
< — 

2 

for for K$E(-OO,0]UF 

With the residue theorem we obtain 

(14) t c k W z k = — [ F(u)du for n = l , 2 , . . . . 

There is some positive constant K such that 

(15) 
1 

e2™ -1 
;K and 

1-e-
< K for M€Yn, v = 2 ,3 ,4 , 

n = 0 , l , . . . . 

For n = 0 , 1 , . . . we have 

(16) f F(u) du = i(n+^) • J F((M + | V V <*f. 

If w = (n+|)e i t , 0< t<7r /2 , then the modulus of the integrand of the last 
integral is equal to 

i T | e x p ( ( n + i ) ( c o s t log ^ | _ - (e+^àn t)) 
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which is not greater than 

K e x p ( ( n + i ) - c o s f l o g — ^ ) ; 
'(n+è) 

and for 

it is equal to 

^l e xH(n4)( c o s t i o g (^)-("+ !v- t~ 2 7 r ) s i n f ) \l-e 

which also doesn't exceed 

K e x p ( ( » + | ) c o s H o g — | ^ ) . 
'(n+iY 

Therefore we get the following estimate for the integral in (16). 

(17) J F(u)du < (2n + l ) x [ e 
-n/2 

aCOStdt 

where 
/ 1\ (n + ly 

a = = r + 2 J l o g — p 
1/2) l/x 

If n > px, then a is positive and we can write 
• ir/2 f ir/2 l»ir/2 fir/2 p 

J0 J0 Jo 2a 

Hence for n > px we have 

If p^^^SK. fsiWl 
IJL(3) I 2a p 

from which it follows that 

(18) lim I F(u)du=0. 

Substituting n=0 in (17) we obtain for Y (1 ) = —Y0
3) 

If F(u)du|<ldP (21/xp)(cost)/2 dr 

J» TT/2 i t 1 \ \ ( C ° S t ) / 2 

0 H P + 2^)) * 
After omitting the exponent (cos t)/2 and evaluating the last integral we obtain 

(19) |f FMdu\sK^^). 
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In order to show (12) we still have to consider the integrals $ym and Jy^. We 
shall now give an estimate for the integrals Sy™ F(u) du = -îJï/21/2 F(-it) dt. For 
^<f < n + | we have 

IH-»l=ïr7^exp(-,(2,-e-|î)) 

which doesn't exceed 

ï^ e x p H< ( 2 i r - e ) ) f o r x>2^-e-
Therefore, as n —> oo, $ya)F(u) du approaches a number the modulus of which is 
less than 

— ^ — f exp(-lt(2ir-6))dt=—-^ r - — î — . 
l - e ^ J o F \ 8 V 5 (1 -6 - " ) 2 ? r - 0 

Hence 

(20) llim f F(u)du |<—~ —^— . 

We complete the proof for (12) by considering the integrals 

ç çn + 1/2 

F(u) du = -i F(it) dt = î(Ii(n) + I2(n)) 

—where 

h(n)= P e- t ( e + W 2 x )exp(-i- log(t /px)) A, 
Jl /2 \ X / 

J 'n + 1/2 i / / TT\ t \ 

The WeierstraG M-test shows that the limits limn^oo Ii(n), limn_>00I2(n) both 
exist. The integral I^n) approaches the integral in (12) as n —» oo. And for I2(n) 
we can give the estimate 

|I2(n)|<P—-i— e-2^dt = ——-—-1 ' J0 l-e~* 27 r ( l - e - 7 r 
) ' 

These two results together with (18), (19) and (20) show that we may take the 
limit as n —> oo in (14) to obtain (12). 

4. With the help of (12) we are now able to prove (3). It is easy to verify the 
identity 

<TX(Z) = - (T X (1 ) -ZT X (Z) ) for z ^ l , 
1 - z 

and the Toeplitz condition (5) implies that limx_>0OTx(l) = 1. Therefore it 
suffices to show that 

(21) l imrx(z) = 0 
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uniformly on all compact sets described in (3). In fact it even suffices to show 
that (21) holds 

(a) uniformly on every disc Dr: = {z: \z\ < r} with 0 < r< 1, 
(b) uniformly on every sector A(0O, R): = {peie: 5 < p < K , 0O<2TT-0O} with 

JR>1, O < 0 O < T T , and 

(c) uniformly on every sector D(r, R): = {peie: r<p<R, O<0<?r/2} with 
Kr<R. 

ad (a): If 0 < r < l and x > l , then we have uniformly on Dr 

k ( z ) N l k ( x ) | r k < I |cfc(x)|+ I \ck(x)W* 
k=0 0<k<Vx k>Vx 

; ^ ( W x ) + r*< I |cfc(x)|. 

Because of (6) and 0 < r < 1 the last expression approaches zero as x-^oo 
which proves (21) for the case (a). 

ad (b): Let R>1 and O<0o<7r. For X>4TT/60 we may use the "integral 
representation" (12) for all elements z = pel6 of A(0O, R), and by taking 
absolute values in (12) we obtain the inequality 

X J1/2 X \ 2 7 7 - 0 / X J0 

+ logx 
\ 0O/ x \ 0O / 

This estimate for |TX(Z)| implies (21) for the case (b). 
ad (c): Let l < r < J R . Again, if 

Air 
x> 

27T-7T/2 3 ' 

we may use the "integral representation" (12) for all elements z = pel° of 
D(r, JR). After cutting the integral in (12) into three parts we obtain the 
inequality 

(22) |rx(z)| < ^ p (| Jx| + \I2\ + \I3\ + |Q(z)|) 

where 

Zi = f X e - ' ^ - ^ e x p f - J - l o g C t / p ^ ) ) ^ , I2 = T . . . , 73= f " • • • • 

Now we can use the inequality in (12) for |Q(z)| and give trivial estimates for i\ 
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and I3 to obtain 

(23) 

Also we have 

| Q ( Z ) | = S A ( K + - ^ — ) 
\ 277-^ /2 / 

\h\^Jx 

\\I3\À° -t(7T/2x) 

12) 

2x 
dt = — e 

77 

-(ir/2)x 

i / 2 = ; c L^) d e x p ( -^ i o 8 ( f / p x ) ) 
where 

G(0 = 9t(e+ir/2x), ( log(p70- l ) . 

As r > l , there exists a constant x 1 > | (depending on r) such that x2<rx/e for 
x >x1 ? and hence G(t) is positive throughout the interval [y/x, x2] if x>xx. The 
derivative G'(0 in this interval is given by 

G ' ( r ) = e ' ( 8 + ^ ( 0 + | - ) g ( f ) 

where 

g(0=log 
te -K) 

% rx 2y/x 
^ l o g — 

X e 77 

Since this lower bound for g(t) in [Jx, x2] tends to infinity as x —» oo? there 
exists a constant x2 —*i such that for x>x2 g(t)—and therefore also G'(t)—is 
positive in this interval. Thus, if x^x2, the function l/G(t) is positive and 
decreasing in [Jx, x2] and we may apply the second mean value theorem to the 
real and imaginary part of I2, which yields 

u,i ̂  
4x Ax 4 

G(Jx) expiû •)(log(r*/V*)- 1) 
•X->=C J o g / . 

Therefore there exists a constant x 3 > x 2 such that \I2\^5/logr for x^x3. 
Inserting this inequality and (23) in (22) we obtain the estimate 

rx(z)|: . log* (v*+ -+-
2x 

log r 77 
l + 2AR\ 

which holds uniformly for x > x3 and z e D(r, R). This implies (21) for the case 
(c) which completes the proof to our theorem. 
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