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Abstract. This work emphasizes that heterogeneity, diversity, discontinuity, and discreteness in
data is to be exploited in classification and regression problems. A global a priori model may not
be desirable. For data analytics in cosmology, this is motivated by the variety of cosmological
objects such as elliptical, spiral, active, and merging galaxies at a wide range of redshifts. Our
aim is matching and similarity-based analytics that takes account of discrete relationships in
the data. The information structure of the data is represented by a hierarchy or tree where the
branch structure, rather than just the proximity, is important. The representation is related to
p-adic number theory. The clustering or binning of the data values, related to the precision of
the measurements, has a central role in this methodology. If used for regression, our approach is
a method of cluster-wise regression, generalizing nearest neighbour regression. Both to exemplify
this analytics approach, and to demonstrate computational benefits, we address the well-known
photometric redshift or ‘photo-z’ problem, seeking to match Sloan Digital Sky Survey (SDSS)
spectroscopic and photometric redshifts.

Keywords. Cluster-wise regression, p-adic and m-adic number representation, inherent hierar-
chical properties of data

1. General Introduction
We are concerned with matching, and drawing inferences (extrapolation and inter-

polation, prediction, distributional degree of association, etc.) from structures that are
discrete. In addition to being discrete, there are associations, similarities and identities
that are relevant. Also relevant are incorporation, inclusion, properties of an object being
a subset of properties of one or more other objects.

A reasonable and a natural representation for such structures is an ultrametric or tree
topology. Our objects are taken as nodes of a tree. A tree is a synonym for hierarchy.
These objects, or entities, could, if desired, include sub-objects and sub-entities also. In
set notation, a hierarchy is a partially ordered set, or poset: let sets q, q′, associated with
nodes, have a least common parent node, q′′. Parent/child node ordering uses q, q′ ⊂ q′′.
For a partially ordered set, it is required that for any two subsets. q, q′ ∈ 2I , for power
set 2I where I is the union of all sets, or the universal set: one class is a subset of the
other, as the only permitted overlapping: q ∩ q′ = ∅ or either q ⊂ q′, or q′ ⊂ q.

2. Real Number System: Practicalities of p-Adic and m-Adic
Number Systems

In our Baire, longest common prefix, metric, from which we can directly (i.e. in linear
computational time) read off a hierarchy, we must explain why the resulting clusters are
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146 F. Murtagh

meaningful in the following sense: why is it reasonable to have different clusters, from
the top or first level or partition onwards, for 2.9999 and 3.000, for example?

Firstly, our approach assumes precise measurement to a given precision. Our Baire
method favours contexts where the digits of precision of measurement are ordered (de-
creasing importance associated with increasing digit of precision). Hence our Baire method-
ology is designed for fast, exact proximity matching.

So – tree branch is what is important here, rather than just the proximity, alone, of
singletons. We might even say, if the singletons are derived from, or originate from, the
root, then precisely how they came about from the root, i.e. their path from the root,
that is what we want to especially take into consideration. In this very particular sense
then, we have that 0.50 is distinct from 0.49, and, we reason further, 0.500 is distinct
from 0.499, and so on, just due to the account taken of digit priority.

A further perspective on this, and justification for the role of digit sequence, is as
follows. Consider that we are measuring with these two exemplary numbers here, and
what we additionally want to do is to “take time into account”, with time steps, say milli-
seconds, being used for determining each additional digit in what we are measuring. We
are determining our numbers, digit by digit. In each such digit stage, or, informally
expressed, in each such “time-step”, we are adding detail and precision to our measured
values.

Of course it is to be accepted that in a real number system, by convention a p-adic
number system when p = ∞, 0.5 is identical to, and can be expressed as 0.499999....
Irrespective of whether taking real numbers as an m-adic number system, with m = 10,
or, with their important mathematical properties, considering p-adic number systems,
for p prime, our concluding remark is as follows. We take into consideration a priority
order of digits.

One further example of this adic number representation is as follows. In Khrennikov
et al. (2016), the dynamics of fluid flows in tree branchings is at issue. This is with
application to petroleum underground reservoirs.

3. Previous Work
Determining Photometric Redshifts from Colour and Magnitude Observed Data, and

Evaluating relative to Spectroscopic Redshifts

In Vanzella et al. (2004) there is predicting of photometric redshifts “from an ultra deep
multicolor catalog”. Training is carried out with spectroscopic redshifts. This is noted:
“the difficulty in obtaining spectroscopic redshifts of faint objects”, and then: “A crucial
test in all cases is the comparison between the photometric and spectroscopic redshifts
which is typically limited to a subsample of relatively bright objects”. The SDSS DR1
catalogue used is “almost entirely limited to z < 0.4”. The test sample is 88108 galaxies,
and 24892 galaxies in the training sample. It is noted how other approaches to nonlinear
regression, including a Bayesian method, polynomial regression and nearest-neighbour
regression are claimed to perform worse (citing Csabai et al. (2003)). The latter work,
Csabai et al. (2003), uses approximately 35000 galaxies with spectroscopic redshifts, from
the SDSS EDR (Early Data Release) database, pre-DR1 (Data Release 1, the most recent
at the time of writing, being DR-12). In Csabai et al. (2003), 0.2 < z < 0.3 redshifts are
used. Colour and magnitude data are used to estimate photometric redshifts. In Firth
et al. (2003), a training set of 10000 and a test set of 7000 SDSS objects (galaxies but
indicating that stars are also included, with z < 0.5).
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Interval Measurements for Bayesian “stacking” Modelling; Accuracy and Correctness of
Measurement

In Shu et al. (2012) velocity distributions are at issue, for association with galaxy sizes, to
“determine ‘dynamical masses’ that are independent of stellar-population assumptions”,
with that to be used for evolution of galaxies for given mass, following relationship esti-
mation with mass and gravitational potential. Interest is in elliptical galaxies, that are
“To a first approximation ... ‘pressure-supported’ rather than rotationally supported”.
Velocity dispersion is to be based on spectroscopic data. Now, in particular for faint,
even if luminous, galaxies, there will be uncertainty and non-Gaussianity in measure-
ment. From SDSS III, 430000 galaxies are used, primarily with redshifts 0.2 < z < 0.8.
Eigenspectra are determined from principal components analysis. Because of the impreci-
sion of measurement the following is carried out, in the estimation of velocity dispersion.
Both in redshift and in absolute magnitude, respectively with intervals of 0.04 and 0.1,
galaxies are binned. Therefore, for error or imprecision of measurement, binning, i.e.
interval measurements, are a way to somewhat robustify the data. Based on extensive
analyses, it is concluded that here the “stacking” of multiple spectra is replaced by a
new “Bayesian stacking” approach. (The hierarchical Bayesian approach is summarized
in section 3.2 of Shu et al. (2012)).

In Bolton et al. (2012), use is also made of the work of Shu et al. (2012). Under “Known
issues”, there are the following: the use of probability priors on principal component
analysis coefficient combinations; spectra that are obscured by others, e.g. quasar spectra,
by AGN spectra; spectra affected by “cross-talk from bright stars”; superpositioning of
observed objects; and a few classes of object, and detector suitability (“fibers near the
edge of the spectrograph camera fields of view”).

Nonlinear Regression

In d’Abrusco et al. (2016), multilayer perceptrons (MLPs) are used to relate photometric
redshifts to spectral information. Varying object classes (normal galaxies, stars, late
type stars, nearby AGNs, distant AGNs) are subject to principal component analysis of
spectra, to provide an eigenvector-based spectral classification index.

The case is then made for carrying out the nonlinear regression, using MLP, on two
different redshift intervals, z < 0.25 and z > 0.25. Differing galaxy populations are
associated with these redshift intervals. A total of 449370 galaxies were studied. Just
interestingly, consideration was given to not too full redshift intervals used for training,
but [0.01, 0.25] ⊂ [0.0, 0.27] and [0.25, 0.48] ⊂ [0.23, 0.50].

The foregoing work is pursued in d’Abrusco et al. (2007). SDSS DR4 data was used. A
most comprehensive introduction is provided (section 1, Introduction, section 2, Photo-
metric redshifts). Included is the following note: “photometric redshift samples are useful
if the structure of the errors is well understood”, because this points to the reliability
of, and confidence in, measurement. Later there are these statements: “photometric red-
shift estimates depend on the morphological type, age, metallicity, dust, etc. it has to
be expected that if some morphological parameters are taken into account besides the
magnitudes or colors alone, estimates of photometric redshifts should become more ac-
curate.” In this work, the “near universe”, z < 0.5, is at issue, and also with discussion
of “the near and intermediate redshift universe”, z < 1. As before, two separate MLPs
were used on this data, for “nearby”, z < 0.25, and for “distant”, z > 0.25 objects. These
objects comprised 449370 galaxies.

https://doi.org/10.1017/S1743921317001569 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921317001569


148 F. Murtagh

A most revealing statement is the following: “the derivation of photometric redshifts
requires, besides an accurate evaluation of the errors, also the identification of a homo-
geneous sample of objects.”

4. Data Analysis
4.1. Data and Objectives To Be Pursued

SDSS (Sloan Digital Sky Survey) data used was from Data Release 5, Adelman-McCarthy
et al. (2007), relating to the following: “Stripe 82 is an equatorial region repeatedly
imaged during 2005, 2006, and 2007”, Stripe 82 (2016). Data were as follows: number of
objects: 443094; right ascension, declination, spectroscopic redshift, photometric redshift.
Then minimum redshifts, respectively spectroscopic and photometric, are: 0.000100049,
0.0001035912, and the maximum redshifts are: 0.599886, 0.5961629.

Our objective is to assess spectroscopic redshift from photometric redshift. While re-
gression, whether classical linear (statistical least squares), or nonlinear (multilayer per-
ceptron, k-nearest neighbour, etc.) are relevant, we seek the following.

(a) Take the discreteness of measurement into account.
(b) Therefore, we take distinction of value to be primarily associated with the discrete

sourcing of our measurements, rather than being solely a statistical uncertainty or error
component of our measurement.

(c) However statistical uncertainty or error component of measurement are taken as
integral to the discreteness of sourced data.

(d) It arises from this reasoning that what is important in practice is to be able to
codify one’s data, in the sense both of data encoding and of data representation, here
related to number theory.

(e) From the data encoding and representation, we are seeking to associate data in-
terpretation and understanding, with the discrete sourcing of our measured data.

While cosmology presents the primary motivation for our m-adic and p-adic analytics,
applications and opportunities for similar perspectives are numerous in other sciences
also. (A small set of notes follow. Notationally m > 2 is typically a positive integer, and
p is prime. An m-adic number system is a ring, while a p-adic number system constitutes
a field. A field has a multiplicative inverse for non-zero values, i.e. it permits division.)

4.2. Preliminary Data Analysis
For initial exploratory analysis purposes, we consider the histograms, cf. Figure 1. While
mainly peaked around the lower redshifts, there are some other interesting smaller peaks.
The digits of precision of the data are at issue. It is to be noted that some data values
are limited to about three digits of precision.

A first analysis will look at the very first digit of precision. From the 443094 objects, we
find that a 0 first digit of precision is shared by 162034 spectroscopic and photometric
redshifts; a 1 first digit of precision is common to 144602 redshifts; a 2 first digit of
precision is common to 22643 redshifts; a 3 first digit of precision is common to 26441
redshifts; a 4 first digit of precision is common to 11166 redshifts; and a 5 first digit of
precision is common to 21 redshifts. Overall, the first digit of precision of the spectroscopic
and photometric redshifts is common to 366907 objects, that is, 83% of all cases.

This is encouraging to begin with. It indicates one relevant and useful way to determine
commonality, or association, between the more reliable spectroscopic redshifts and the
possibly more accessible photometric redshifts. The next stage of our analysis is to see if
this finding, of 83% commonality of spectroscopic and photometric redshift measurement,
can be furthered.
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Figure 1. Full precisions, 7 or 8 digits. Top, spectroscopic, and bottom, photometric.

If we look at both the shared first digit of precision, and additionally a difference in
the first digit of precision of at most 1, then we find that 99.6% of all the spectroscopic
and photometric redshift measurement are that close in measurement value. While this
is motivational, it requires further study of just what redshifts differ by 1 in the first
digit of precision. However, we do not consider such a finding as generally and broadly
applicable.

5. Re-Representing Our Data in p-Adic and Other Number Systems
5.1. Number Systems Other Than Real

In the regression-oriented matching of spectroscopic redshift and photometric redshift
values, motivation for our approach is as follows.

With reference to the histograms displayed in the previous section, in 3-dimensional
Euclidean space, assumed distribution functions could be used to calibrate one such dis-
tribution function against another. This “calibration” could be cluster-based, through
determining, for example, a Gaussian mixture fit to the assumed distribution functions.
Gaussian model-based mixtures can also be hierarchical, providing model-based cluster
trees, Murtagh et al. (2005). Another viewpoint could be to use RA and Dec local de-
pendencies. That could imply the regression of RA, Dec, zs on zp (the latter denoting
spectroscopic redshift, photometric redshift).

Now, compared to a Euclidean and Hilbert space, we are dealing with discrete object
locations and clustered, albeit delimited, regions of objects. A graph and more particu-
larly, a tree is an appropriate representation, rather than a continuous space. Although
a side remark in the current context, it was noted in section 2 how an ordered time
dimension, in particular through being ordered rather than being real-valued, can also
be subsumed in this approach.

Because of the directly mapped, rooted tree representation that can be associated with
any m-adic number representation, we proceed as follows: consider our given decimal or
base 10 measurements, as m-adic with m = 10. Efficiently derive other m-adic number
representations, to assess them.
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Figure 2. Spectroscopic redshifts. Initial m-adic display, for m = 10. Three digits of precision
used, increasing on the ordinate. The abscissa lists the spectra.

5.2. Re-Representing Data in Other Number Systems, through Efficient Approximation
In Murtagh (2016), the following innovative approach was developed for re-representing a
data set, represented m-adically by a closest fit approximation by a data set, represented
(m − 1)-adically.

For all neighbour or adjacent digit values, at a given precision level, that have the
same parent digit value, i.e. at these digit values’ immediate preceding precision level,
assess the following. Firstly, if these neighbour values are identical, then there will be no
intervention. Secondly, if these neighbour values differ by more than 1, then there will be
no intervention. Thirdly, if these neighbour values differ by 1, then assessment is made of
what overall pair of such values, with the same parent value, and differing by 1, are such
that their cardinality is minimal. We are going to merge this set of neighbour values.
The following properties of this processing are as follows. By design, this constitutes a
minimal overall change in our data. This implies one digit less, in the entirety of data
representation. Therefore this is a best approximation to our data, starting from an m-
adic representation, and passing to an m−1-adic representation. There remains one final
part of this processing: from the chosen set of neighbour digit values, the larger of these
two values is altered to the smaller of these two values. That is carried out in the data.
Very finally, for consistency and coherence of number representation, all values that were
greater than this modified value are decreased by 1.

The effectiveness of this approach was demonstrated in Murtagh (2016). Computation-
ally it is linear in the numbers of objects multiplied by the number of digits of precision.
That is, it is linear in the data set size, expressing the total number of digits.

5.3. m-Adic Fitting of Spectroscopic Redshifts
As described in the previous subsection, we fit the given m-adic data, for m = 10, with
the best fitting m = 9-adic representation; then with the (stepwise) best fitting m = 8-
adic representation; then with the (stepwise) best fitting p = 7-adic representation; then
with the (stepwise) best fitting m = 6-adic representation; then with the (stepwise)
best fitting p = 5-adic representation; then with the (stepwise) best fitting m = 4-adic
representation; then with the (stepwise) best fitting p = 3-adic, or ternary, representation;
and finally with the (stepwise) best fitting p = 2-adic, or binary, representation.

The outcomes are shown in the following figures. Since some of the redshift data values
are just three digits in precision, that was the extent of data precision that was used. See
Figures 2, 3.
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Figure 3. Spectroscopic redshifts. p-Adic display, for p = 7.
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Figure 4. Spectroscopic redshifts. Squared distance, i.e. error, original 10-adic representation,
and the sequence of m-adic best fits.

In Figure 4 there is a plot of distances squared, i.e. squared error, between the original
(m-adic, with m = 10) data and the other m-adic representations. Note that appropriate
normalization (rescaling to (0, 1) for each m-adic representation) precedes the calculation
of distance squared.

A minor remark follows on Figure 4: the best p-adic fit to our data is the 7-adic
representation.

5.4. m-Adic Fitting of Photometric Redshifts

As described in the previous subsection, for spectroscopic redshifts, we now study the
photometric redshifts.

The outcomes are shown in the following figures. Three-digit data precision was used.
See Figure 5.

In Figure 6 there is a plot of distances squared, between the original m-adic represen-
tation, for m = 10, and the succession of best fits.
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Figure 5. Photometric redshifts. Initial m-adic display, for m = 10. Three digits
of precision used.
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Figure 6. Photometric redshifts. Squared distance, i.e. error, original 10-adic representation,
and the sequence of m-adic best fits.

5.5. m-Adic Regression: Best Fit of Spectrometric Redshifts by Photometric Redshifts
From Table 1, we see that the binary representation, of spectroscopic and photometric
redshifts, gives the best, closest correspondence. This is for all digits. Since we desire exact
matching, as far as possible, rather than just such a real-valued degree of approximation,
we look further for that objective.

In Table 2, it is seen that up to 57% of the digits in the ternary, or 3-adic, represen-
tations of spectroscopic and photometric redshifts, are identical. Let us see next, if this
can be improved upon.

Table 3 displays the most successful outcome here. We are using just the first digit of
the representation of redshifts, in m-adic representations, for m = 10, 9, . . ., 3, 2. We
find that for the cases of either p-adic with p = 5, 5-adic, or m-adic with m = 4, we have
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Table 1. Totalled distance between spectroscopic and photometric redshifts

Representation Distance

Original, m-adic 3497.347
m-adic, m = 9 3219.545
m-adic, m = 8 2960.628
p-adic, p = 7 2463.237
m-adic, m = 6 2102.937
p-adic, p = 5 1798.283
m-adic, m = 4 1401.31
p-adic, p = 3 1009.443
p-adic, p = 2 940.8114

Table 2. Identical digits between spectroscopic and photometric redshifts, the total number,
and as the fraction of all digits in these 443094 objects.

Representation No. identical digits Fraction

Original, m-adic 508376 0.3824441
m-adic, m = 9 361332 0.2718249
m-adic, m = 8 404957 0.3046434
p-adic, p = 7 446470 0.3358731
m-adic, m = 6 487841 0.3669959
p-adic, p = 5 712084 0.5356907
m-adic, m = 4 745784 0.5610427
p-adic, p = 3 757357 0.5697489
p-adic, p = 2 736578 0.5541172

Table 3. Compared to Table 2, here just the first digit of precision is used. Identical digits
between spectroscopic and photometric redshifts, the total number, and as the fraction of all
digits in these 443094 objects.

Representation No. identical digits Fraction

Original, m-adic 366907 0.8280568
m-adic, m = 9 213872 0.4826786
m-adic, m = 8 247360 0.5582563
p-adic, p = 7 262474 0.5923664
m-adic, m = 6 262474 0.5923664
p-adic, p = 5 434736 0.9811372
m-adic, m = 4 434736 0.9811372
p-adic, p = 3 395490 0.8925646
p-adic, p = 2 395490 0.8925646

98% identity between spectroscopic and photometric redshifts. Thus, from this data set,
comprising (SDSS, DR5, Stripe 82) redshifts for 443094 objects, the desired equivalence
between spectroscopic and photometric redshifts, points to desirability of either 4-adic or
5-adic redshift encoding. These, respectively, comprise their values using the digit sets,
0, 1, 2, 3 and 0, 1, 2, 3, 4. Most of all in such representations, there are natural, implicit
hierarchical data representations, i.e. here, regular 4-way and 5-way trees. If we were to
accept a little less identity between the redshifts, to have just over 89% measurement
identity, then we would be content with either of the ternary (p-adic with p = 3), or
binary (p-adic with p = 2) representations.
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6. Conclusions
It is acknowledged that the experimental work here has only used a training set in order

to specify a model for matching based on number representation. If used for regression, it
is seen to be a method of cluster-wise regression, generalizing nearest neighbour regres-
sion. The clustering or binning of the data values has a central role in this methodology.

Precision of measurement is a statistical issue, that was so fundamental to the seminal
work of Carl Friedrich Gauss. In this work, our focus has been on clustering, or binning,
or interval specification. For real valued data, this is an approach to replacing a range of
values, in an interval, with a cluster label, e.g. x + ε −→ c with x, ε ∈ R, c ∈ Z+.

Longer term, our objective is more to do with tracking, and in a non-statistical sense,
inferring structure from the data. Such structure includes relative distance from the ob-
server, and associated with this, inter- and intra-distances for clustered objects. Central
to this is the topology rather than geometry manifested by observed (spatial, shaped,
ordered) data. Another, longer term goal, is the explicit incorporation of the time dimen-
sion.

Extending this methodology is additionally of interest, as written in Murtagh (1998),
“Clearly those interested in (re)structuring data for any purpose ought to keep a close
watch for innovative and interesting approaches in the cosmological simulation field in
the future!”. This continues: “However, the structuring of particles with a view towards
force calculations has also something to learn from experience in the cluster analysis
field.”

Finally, of note, is the potential to relate this work (in a manner, to be determined)
with the p-adic and adelic number theoretical explanations of dark matter and dark
energy, Dragovich (2005). In Murtagh (2017), there is some further discussion of this. In
Dragovich (2005), a section heading is as follows (p. 40): “Adelic Universe with Real and
p-Adic Worlds”, and there is this motivation (p. 26): “Let us use terms real and p-adic to
denote those aspects of the universe which can be naturally described by real and p-adic
numbers, respectively. We conjecture here that the visible and dark sides of the universe
are real and p-adic ones, respectively.”

In the different context of social science, Murtagh et al. (2011) considers hierarchical
representation of extent and degree of change in multivariate time series. The aim is
to uncover relationships between social violence and market forces. There also, internal
structure arising from inherent heterogeneity in our data is directly used.
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Bolton, A. S., Schlegel, D. J., Aubourg, É., Bailey, S., Bhardwaj, V., Brownstein, J. R., Burles,

S., Chen, Y.-M., Dawson, K., Eisenstein, D. J., Gunn, J. E., Knapp, G. R., Loomis, C. P.,
Lupton, R. H., Maraston, G., Muna, D., Myers, A. D., Olmstead, M. D., Padmanabhan,
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