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Abstract: We introduce direct and inverse problems,
which describe dynamical processes causing change in
the Earth system and its space environment. A well-
posedness of the problems is defined in the sense of
Hadamard and in the sense of Tikhonov, and it is linked
to the existence, uniqueness, and stability of the problem
solution. Some examples of ill- and well-posed problems
are considered. Basic knowledge and approaches in data
assimilation and solving inverse problems are discussed
along with errors and uncertainties in data and model
parameters as well as sensitivities of model results.
Finally, we briefly review the book’s chapters which
present state-of-the-art knowledge in data assimilation
and geophysical inversions and applications in many
disciplines of the Earth sciences: from the Earth’s core
to the near-Earth environment.

1.1 Introduction

Many problems in Earth sciences are related to dynamic
processes within the planet, on its surface, and in its space
environment. Geoscientists study the processes using obser-
vations and measurements of their manifestations. Each
process can be presented by a model described by physical
and/or chemical laws and a set of relevant parameters. The
model, in its turn, can be represented by a mathematical
model; that is, a set of partial differential equations or
ordinary differential equations with boundary and/or initial
conditions defined in a specific domain. The mathematical
model links its parameters and variables with a set of
data from observations and measurements and provides
a connection between the causal characteristics of the
dynamic process and its effects. The causal characteristics
include, for example, physical parameters (such as velocity,
temperature, pressure), parameters of the initial and bound-
ary conditions, and geometrical parameters of a model
domain.

The aim of the direct mathematical problem is to deter-
mine the effects of a dynamic model process based on the
knowledge of its causes, and hence to find a solution to the
mathematical problem for a given set of model parameters.
An inverse problem is the opposite of a direct problem. An

inverse problem is considered when there is a lack of infor-
mation on the causal characteristics but information on the
effects of the dynamic process exists (e.g. Kirsch, 1996;
Kabanikhin, 2011; Ismail-Zadeh et al., 2016). For example,
the seismic wave velocities inferred from seismograph’s
measurements on the Earth’s surface are related to a fault
rupture in the lithosphere; the rupture process and the wave
propagation are described mathematically by the wave
equation, which relates causal characteristics (the velocity,
density, and elastic properties) with their effects. The heat
flow measured at the Earth’s surface and inferred
temperature can be related to the heat equation linking
temperature, thermal conductivity, density, and specific
heat.

For centuries, physicists searched for and discovered the
causes of the effects of the geophysical processes they
observed, so that they solved simplified inverse problems.
Inverse problems, as formalised mathematical studies, have
been initiated in the twentieth century (e.g. Weyl, 1911).
These problems allow for determining model parameters
or specific model conditions that cannot be directly
observed. Inverse problems can be subdivided into time-
reverse or retrospective problems (e.g. to determine initial
conditions in the past and/or to restore the development of
a dynamic process), coefficient problems (e.g. to determine
the coefficients of the model and/or boundary conditions),
geometrical problems (e.g. to determine the location of heat
sources in a model domain or the geometry of the model
boundary), and some others.

1.2 Inverse Problems and Well-Posedness

The idea of well- (and ill-)posedness in the theory of partial
differential equations was introduced by Hadamard (1902).
A mathematical model of a geophysical problem is well-
posed if (i) a solution to this problem exists, and the solution
is (ii) unique and (iii) stable. Problems for which at least one
of these three properties does not hold are called ill-posed.
Existence of the problem’s solution is normally proven by
mathematicians, at least in the simplest cases. Meanwhile, if
the solution exists, itmay not be unique, allowing formultiple
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theoretical solutions, as in the case of potential-field inter-
pretation. The non-uniqueness of potential-field studies is
associated with the general topic of scientific uncertainty in
the Earth sciences, because problems are generally addressed
with incomplete and imprecise data (Saltus and Blakely,
2011). The requirement of stability is the most important in
numerical modelling. If a problem lacks the property of
stability, then its solution is almost impossible to compute,
because computations are polluted by unavoidable errors. If
the solution of a problem does not depend continuously on
the initial data, then, in general, the computed solution may
have nothing to do with the true solution.

Inverse problems are often ill-posed. For example, the retro-
spective (inverse) problem of thermal convection is an ill-
posed problem, since the backward heat problem, describing
both heat advection and conduction backwards in time, pos-
sesses the property of instability (e.g.Kirsch, 1996). In particu-
lar, the solution to the problem does not depend continuously
on the initial data. This means that small changes in the
present-day temperature field may result in large changes of

predicted temperatures in the past. Following Ismail-Zadeh
et al. (2016), this statement is explained using a simple problem
related to the one-dimensional (1-D) diffusion equation
(Example 1).

Although inverse problems are quite often unstable
and hence ill-posed, there are some methods for solving
them. The idea of conditionally well-posed problems
and the regularisation method were introduced by
Tikhonov (1963). According to Tikhonov, a class of
admissible solutions to conditionally ill-posed problems
should be selected to satisfy the following conditions: (i)
a solution exists in this class, (ii) the solution is unique
in the same class, and (iii) the solution depends continu-
ously on the input data (i.e. the solution is stable). The
Tikhonov regularisation is essentially a trade-off
between fitting the observations and reducing a norm
of the solution to the mathematical model of
a geophysical problem. We show the differences between
the Hadamard’s and Tikhonov’s approaches to ill-posed
problems in Example 2.

Example 1

Consider the following problem for the 1-D backward diffusion
equation

∂uðt; xÞ= ∂t ¼ ∂ 2uðt; xÞ= ∂x2; 0 ≤x ≤ π; t < 0; ð1:1Þ

with the following boundary and initial conditions

uðt; 0Þ ¼ 0 ¼ uðt; πÞ; t ≤ 0; uð0; xÞ ¼ ϕnðxÞ; 0 ≤x ≤ π: ð1:2Þ

At the initial time, the function ϕnðxÞ is assumed to take the
following two forms:

ϕnðxÞ ¼
sinðð4nþ 1ÞxÞ

4nþ 1
and ϕ0ðxÞ≡ 0: ð1:3Þ

We note that

max
0 ≤ x ≤ π

jϕnðxÞ � ϕ0ðxÞj ≤
1

4nþ 1
→ 0 at n→∞: ð1:4Þ

The two solutions of the problem

unðt; xÞ ¼
sinðð4nþ 1ÞxÞ

4nþ 1
expð�ð4nþ 1Þ2tÞ at ϕnðxÞ ¼ ϕn and

ð1:5Þ
u0ðt; xÞ≡ 0 at ϕnðxÞ ¼ ϕ0 ð1:6Þ

correspond to the two chosen functions of ϕnðxÞ, respectively. At
t ¼ �1 and x ¼ π=2

un �1;
π
2

� �
� u0 �1;

π
2

� �
¼ 1

4nþ 1
expðð4nþ 1Þ2Þ→∞ at n→∞:

ð1:7Þ

At large n, two closely set initial functions ϕn and ϕ0 are
associated with the two strongly different solutions at t ¼ �1
and x ¼ π=2. Hence, a small error in the initial data (1.4) can
result in very large errors in the solution to the backward
problem (1.7), and therefore the solution is unstable, and the
problem is ill-posed in the sense of Hadamard.

Example 2

Consider the problem for the 1-D backward diffusion equation
(like the problem presented in Example 1)

∂uðt; xÞ= ∂t ¼ ∂ 2uðt; xÞ= ∂x2; 0 ≤x ≤ π; �T ≤ t < 0; ð1:11Þ

with the boundary and initial conditions (1.2). The solution of
the problem satisfies the inequality

‖ uðt; xÞ ‖ ≤ ‖ uðT; xÞ ‖ �t=T ‖ uð0; xÞ ‖ 1þt=T ; ð1:12Þ

where the norm is presented as ‖ uðt; xÞ ‖ 2 ≡
ðπ
0

u2ðt; xÞdx. We
note that the inequality

‖ uðt; xÞ ‖ ≤M�t=T ‖ u0 ‖
1þt=T ð1:13Þ

is valid in the class of functions ‖ uðt; xÞ ‖ ≤M ¼ const
(Samarskii and Vabischevich, 2007). Inequality (1.13) yields
a continuous dependence of the problem’s solution on the initial
conditions, and hence to well-posedness of the problem in the
sense of Tikhonov. Therefore, the Tikhonov approach allows
for developing methods for regularisation of the numerical
solution of unstable problems.
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1.3 Data Assimilation

With a growth of data related to Earth observations and
laboratory measurements, the enhancement of data quality
and instrumental accuracy, as well as the sophistication of
mathematical and numerical models, the assimilation of
available information into the models to determine specific
states of geophysical/geochemical dynamic processes as
accurately as possible becomes an essential tool in solving
inverse problems. Data assimilation can be defined as the
incorporation of observations and initial/boundary condi-
tions in an explicit dynamic model to provide time continu-
ity and coupling among the physical characteristics of the
dynamic model (e.g. Kalnay, 2003; Lahoz et al., 2010; Law
et al., 2015; Asch et al., 2016; Ismail-Zadeh et al., 2016;
Fletcher, 2017).

Data assimilation has been pioneered by meteorologists
and successfully applied to improve operational weather
forecasts (e.g. Ghil and Malanotte-Rizzoli, 1991; Kalnay,
2003). To produce forecasts, initial conditions are required
for the weather prediction models resembling the current
state of the atmosphere. Data assimilation starts with
‘unknown’ forecasts and applies corrections to the forecast
based on observations and estimated errors in the observa-
tions and in the forecasts. The difference between the fore-
cast and the observed data at a certain time is assessed using
different methods to make new forecast to better fit the
observations.

Data assimilation and geophysical inversions have also
been widely used in oceanography (e.g. Ghil andMalanotte-
Rizzoli, 1991; Bennett, 1992), hydrology (e.g. McLaughlin,
2002), seismology (e.g. Backus and Gilbert, 1968), geody-
namics (e.g. Bunge et al., 2003; Ismail-Zadeh et al., 2003;
2004; 2016), geomagnetism (Fournier et al., 2007; Liu et al.,
2007), and other Earth science disciplines (e.g. Park and Xu,
2009; Lahoz et al., 2010; Blayo et al., 2014). We note, that
depending on the geoscience discipline, data assimilation is
also referred to as state estimation, history matching, and
data-driven analysis.

1.4 Data Assimilation and Inversions: Basic
Approaches and Sensitivity Analysis

Part I of the book introduces basic knowledge and
approaches in data assimilation and inversions and presents
a high-order sensitivity analysis to obtain best estimate
results with reduced uncertainties.

There are two basic approaches to solve inverse problems:
classical and Bayesian. The classical approach considers
a mathematical model as a true model describing the phys-
ical process under study, and geoscientific data as the only
available data set with some measurement errors. The goal

of this approach is to recover the true model (e.g. initial or
boundary conditions). Another way to treat a mathematical
model is the Bayesian approach, where the model is con-
sidered as a random variable, and the solution is
a probability distribution for the model parameters (e.g.
Aster et al., 2005).

Chapter 2 discusses these approaches in more detail.
This chapter also provides an accessible general intro-
duction to the breadth of geophysical inversions and
presents similarities and connections between different
approaches (Valentine and Sambridge, this volume).
Chapter 3 introduces the Bayesian data assimilation
providing a history of geophysical data assimilation
and its current directions (Grudzien and Bocquet, this
volume).

All variables in data assimilation models (e.g. state vari-
ables describing physical properties, such as velocity, pres-
sure, or temperature; initial and/or boundary conditions;
and parameters such as viscosity or thermal diffusivity) can
be polluted by errors. The source of errors comes from
imperfect measurements and computations. Experimental
or calibration standard errors result in measurement
errors. Systematic errors in numerical modelling are asso-
ciated with a mathematical model, its discretisation, and
iteration errors. Model errors are associated with the ideal-
isation of Earth system dynamics by a set of conservation
equations governing the dynamics. Model errors can be
defined as the difference between the actual Earth system
dynamics and the exact solution of the mathematical
model. Discretisation errors are associated with the differ-
ence between the exact solution of the conservation equa-
tions and the exact solution of the algebraic system of
equations obtained by discretising these equations. And
iteration errors are defined as the difference between the
iterative and exact solutions of the algebraic system of
equations (Ismail-Zadeh and Tackley, 2010). Also, errors
can stem from imperfectly known physical processes or
geometry. Determining the changes in computed model
responses that are induced by variations in the model
parameters (e.g. due to errors) is the scope of sensitivity
analysis, which is linked to the stability of systems to small
errors.

Sensitivity analysis assists in understanding the stabil-
ity of the model solution to small perturbations in input
variables or parameters. For instance, consider the ther-
mal convection in the Earth’s mantle. If the temperature
in the geological past is determined from the solution of
the backward thermal convection problem using present
mantle temperature assimilated to the past, the following
question arises: what will be the temperature variation
due to small perturbations of the present temperature
data? The gradient of the objective functional (represent-
ing the misfit between the model and measured tempera-
ture) with respect to the present temperature in
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a variational data assimilation gives the first-order sensi-
tivity coefficients (e.g. Hier-Majumder et al., 2006).
A second-order adjoint sensitivity analysis presents
some challenges associated with cumbersome computa-
tions of the product of the Hessian matrix of the object-
ive functional with a vector (Le Dimet et al., 2002).

Chapter 4 discusses higher-order sensitivity and uncer-
tainty analysis to obtain best estimates with reduced uncer-
tainties. The analysis is applied to an inverse radiation
transmission problem, to an oscillatory dynamical model,
and to a large-scale computational model involving thou-
sands of uncertain parameters. The examples illustrate
impacts of the first-, second-, and third-order response
sensitivities to parameters on the expectation, variance,
and skewness of the respective model responses (Cacuci,
this volume).

1.5 Data Assimilation and Inverse Problems in ‘Fluid’
Earth Sciences

Part II of the book is dedicated to applications of data
assimilation and inversions to problems related to the cryo-
sphere, hydrosphere, atmosphere, and near-Earth environ-
ment (‘fluid’ Earth spheres).

Estimates of seasonal snow often bear significant uncer-
tainties (e.g. due to error-prone forcing data and parameter
estimates), and data assimilation becomes a useful tool to
minimise inherent limitations that result from the uncer-
tainty. Chapter 5 reviews current snowmodels, snow remote
sensing methods, and data assimilation techniques that can
reduce uncertainties in the characterisation of seasonal
snow (Girotto et al., this volume). Although some proper-
ties at the surface of glaciers and ice sheets can be measured
from remote sensing or in-situ observations, other charac-
teristics, such as englacial and basal properties, or past
climate conditions, remain difficult or impossible to
observe. Data assimilation in glaciology assists in inferring
unknown properties and boundary conditions to be
employed in numerical models (Morlighem and Goldberg,
this volume). Chapter 6 presents common applications of
data assimilation in glaciology, and some of the new direc-
tions that are currently being developed.

Data assimilation in many hydrological problems shares
distinct peculiarities: scarce or indirect observation of
important state variables (e.g. soil moisture, river discharge,
groundwater level), very incomplete or largely conceptual
modelling, extreme spatial heterogeneity, and uncertainty
on controlling physical parameters (Castelli, this volume).
Chapter 7 discusses the peculiarities of data assimilation for
state estimation andmodel inversion in hydrology related to
the following applications: soil moisture, runoff for flood
and inundation prediction, static geophysical inversion in

groundwater modelling, and dynamic geophysical inversion
in coupled surface water and energy balance.

Robust estimates of trace gas emissions that impact air
quality and climate provide important knowledge for
informed decision-making. Better monitoring and increas-
ing data availability due to expanding observing networks
provide information on the changing composition of the
atmosphere. Chapter 8 discusses the use of various inverse
modelling approaches to quantify emissions of environmen-
tally important trace gases, with a focus on the use of satel-
lite observations. It presents the inverse problem of
retrieving the atmospheric trace gas information from the
satellite measurements, and the subsequent use of these
satellite data for inverse modelling of sources and sinks of
the trace gases (Jones, this volume).

Models of volcanic cloud propagation due to volcanic
eruptions assist in operational forecasts and provide invalu-
able information for civil protection agencies and aviation
authorities during volcanic crises. Quantitative operational
forecasts are challenging due to the large uncertainties that
typically exist when characterising volcanic emissions in real
time, and data assimilation assists in reduction of quantita-
tive forecast errors (Folch and Mingari, this volume).
Chapter 9 reviews state-of-the-art in data assimilation of
volcanic clouds and its use in operational forecasts.

Energetic charged particles trapped by the Earth mag-
netic field present a significant hazard for Earth orbiting
satellites and humans in space, and data assimilation helps
to reconstruct the global state of the radiation particle
environment from observations (Shprits et al. this volume).
Chapter 10 describes recent studies related to data assimila-
tion in the near-Earth electron radiation environment.
Applications to the reanalysis of the radiation belts and
ring current, real-time predictions, and analysis of the miss-
ing physical processes are discussed in the chapter.

1.6 Data Assimilation and Inverse Problems in Solid
Earth Sciences

Part III presents methods and applications of data assimila-
tion and inversions in problems of the solid Earth sciences:
geochronology, volcanology, seismology, gravity, geodesy,
geodynamics, and geomagnetism.

Chapter 11 presents applications of inverse methods,
namely, trans-dimensional Markov chain Monte Carlo, to
geochronological and thermochronological data to identify
the number of potential source components for detrital mater-
ial in sedimentary basins and to extract temperature histories
of rocks over geological time (Gallagher, this volume).

Lava dome growth and lava flow are two main manifest-
ations of effusive volcanic eruptions. Chapter 12 discusses
inverse problems related to lava dynamics. One problem is
related to a determination of the thermal state of a lava flow
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from thermal measurements at its surface using
a variational data assimilation method. Another problem
aims to determine magma viscosity by comparison of
observed and simulated lava domes employing artificial
intelligence methods (Ismail-Zadeh et al., this volume).

Chapter 13 deals with data assimilation for real-time
shake-mapping and ground shaking forecasts to assist in
earthquake early warning systems. The current seismic
wavefield is rapidly estimated using data assimilation, and
then the future wavefield is predicted based on the physics of
wave propagation (Hoshiba, this volume).

Global seismic tomography using time domain waveform
inversion is overviewed in Chapter 14 in the context of
imaging the Earth’s whole mantle at the global scale. The
chapter discusses how the tomography problem is addressed,
data selection approaches, definitions of the misfit function,
and computation of kernels for the inverse step of the
imaging procedure, as well as the choice of optimisation
method (Romanowicz, this volume). The diversity of seismic
inverse problems – in terms of scientific scope, spatial scale,
nature of the data, and available resources – precludes the
existence of a silver bullet to solve the problems. Chapter 15
describes smart methods for solving the inverse problems,
which increase computational efficiency and usable data vol-
umes, sometimes by orders of magnitude (Gebraad et al., this
volume).

Chapter 16 deals with joint inversions as a hypothesis
testing tool to study the Earth’s subsurface. It presents an
application of joint inversions of gravity andmagnetic data
with seismic constraints in the western United States. As
a result of the joint inversions, high velocity structures in
the crust are found to be associated with relatively low-
density anomalies, potentially indicating the presence of
melt in a rock matrix (Moorkamp, this volume). An appli-
cation of gravity inversion of Bouguer anomalies is pre-
sented in Chapter 17 focusing on the Moho depth and
crustal density structure in the Tibetan Plateau. The inver-
sion results clearly recognise a thick Tibetan crust and
Moho depths of more than 60 km (Jin and Xuan, this
volume).

Chapter 18 describes geodetic inversions and applica-
tions in geodynamics. Rapid development of the Global
Navigation Satellite Systems (GNSS) allows enhanced
geodynamic studies providing information about global-
scale plate motions, plate boundary deformation, seismo-
tectonic deformation, volcanology, postglacial isostatic
rebound, ice flow, and water mass flow. A geophysical
interpretation of GNSS observations is based on rheo-
logical models used to predict surface motions related to
various tectonic processes and the corresponding inversion
technique permitting us to separate the processes and to
evaluate their parameters (Steblov and Vladimirova, this
volume).

In Chapter 19, basic methods for data assimilation used
in geodynamic modelling are described: backward

advection method, variational (adjoint) method, and
quasi-reversibility method. To demonstrate the applicabil-
ity of the methods, two models are considered: a model of
restoring prominent mantle plumes from their diffused
stage, and a model of reconstruction of the thermal state
of the mantle beneath the Japanese islands and their sur-
roundings during forty million years. Also, this chapter
discusses challenges, advantages, and disadvantages of
the data assimilation methods (Ismail-Zadeh, Tsepelev,
and Korotkii, this volume). Chapter 20 deals with global
mantle convection in the Earth. Variational data assimila-
tion allows for retrodicting past states of the Earth’s man-
tle as optimal flow histories relative to the current state.
Poorly known mantle flow parameters, such as rheology
and composition, can be then tested against observations
extracting information from the geologic records (Bunge
et al., this volume).

Chapter 21 presents geomagnetic data assimilation,
which aims to optimally combine geomagnetic observa-
tions and numerical geodynamo models to better esti-
mate the dynamic state of the Earth’s outer core and to
predict geomagnetic secular variation. It provides a com-
prehensive overview of recent advances in the field, as
well as some of the immediate challenges of geomagnetic
data assimilation, possible solutions, and pathways to
move forward (Kuang et al., this volume). Chapter 22
introduces main characteristics of geomagnetic data and
magnetic field models and explores the role of model
and observation covariances and localisation in typical
assimilation setups, focusing on the use of three-dimen-
sional dynamo simulations as the background model
(Sanchez, this volume).

Conclusion

Inverse problems and data assimilation in Earth sciences
provide many benefits to science and society. Mathematical
and numerical models and methods involved in solving
inverse problems and in assimilating data assist in utilisation
of Earth observations and add value to the observations, for
example, providing insight into physical/chemical processes
and their observed manifestations. At the same time,
observed and measured data help to constrain and sophisti-
catemodels and hence providemore reliablemodel estimates
and forecasts. Society benefits from the knowledge obtained
by using scientific products such as weather, air quality,
space weather, and other forecasts. Applications of inverse
problems and data assimilation in Earth sciences are broad,
and this book covers only a part of them, including applica-
tions in atmospheric, cryospheric, geochronological, geode-
tical, geomagnetic, hydrological, seismological, and
volcanological sciences. It presents the basics of modern
theory and how theoretical methods works to decipher the
puzzles of nature.
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