SOME NON-CRITICAL IDEMPOTENTS IN THE CLOSURE OF THE CHARACTERS IN THE MAXIMAL IDEAL SPACE OF $M(D_2)$

JANE LAKE

(Received 3 April 1981; revised 29 September 1981)

Communicated by W. Moran

Abstract

This paper shows that the idempotent generalized characters associated with a Raikov System generated by a K_2 set in $\mathbf{D}_2 = \prod_{i=1}^{\infty} (\mathbf{Z}_2)_i$ is contained in the closure of the characters $\overline{\mathbf{D}}_2$ in $\Delta M(\mathbf{D}_2)$.

1980 Mathematics subject classification (Amer. Math. Soc.): 43 A 46.

1. Introduction

We will be working with the compact totally disconnected abelian group $\mathbf{D}_2 = \prod_{i=1}^{\infty} (\mathbf{Z}_2)_i$ which has dual group $\hat{\mathbf{D}}_2 = \bigoplus_{i=1}^{\infty} (\mathbf{Z}_2)_i$ where \mathbf{Z}_2 is the multiplicative group of order 2, $\mathbf{Z}_2 = \{1, -1; \cdot\}$. The dual group $\hat{\mathbf{D}}_2$ is canonically embedded in $\Delta M(\mathbf{D}_2)$, the maximal ideal space of $M(\mathbf{D}_2)$.

A compact perfect subset K of \mathbf{D}_2 is called a K_2 subset of \mathbf{D}_2 if for any continuous function $f: K \to \mathbf{Z}_2$ there is a character $\phi \in \mathbf{D}_2$ such that ϕ restricted to K is equal to f.

It will be shown that the idempotent associated with any Raikov System generated by a K_2 set is contained in the closure of the characters $\overline{\mathbf{D}}_2$ in $\Delta M(\mathbf{D}_2)$. Dunkl and Ramirez (1972) have shown that the idempotent associated with the Raikov System generated by a closed subgroup is in the closure of the characters.

As the maximal ideal space $\Delta M(\mathbf{D}_2)$ has the weak topology from the Fourier-Stieltjes transforms of the measures in $M(\mathbf{D}_2)$, an idempotent associated with a Raikov System is in the closure of the characters if and only if the Fourier-Stieltjes

[©] Copyright Australian Mathematical Society 1983

transforms of the measures satisfy the following condition:

For all measures μ concentrated on the Raikov System and for all measures ν which annihilate all the sets in the Raikov System

$$\|\hat{\mu}\|_{\infty} \leq \|(\mu + \nu)\|_{\infty}$$

where the sup norm is taken over \mathbf{D}_{2} .

We will prove that Raikov Systems generated by K_2 subsets of \mathbf{D}_2 satisfy this bound by constructing a series of positive definite functions such that, for each measure μ and ν as above, there is a positive definite function P_{ν} such that

$$\left|\int_{\mathbf{D}_2} P_{\gamma} d\mu - \hat{\mu}(1)\right| < \varepsilon \quad \text{and} \quad \left|\int_{\mathbf{D}_2} P_{\gamma} d\nu\right| < \varepsilon.$$

Acknowledgement

The following research was done while the author was working towards a Ph.D. at the University of New South Wales, supported by a Commonwealth Postgraduate Research Award. The author wishes to express her thanks to her supervisor Gavin Brown for his help and encouragement.

2. Raikov systems and idempotents

Let G be a locally abelian group and let A be a subset of G. We define the Raikov System of sets of G generated by A, \mathfrak{R}_A , to be the collection of all measurable subsets of some countable union of translates of sums of A.

That is to say

$$\mathfrak{R}_{A} = \begin{cases} 1. B \text{ is measurable;} \\ B \subseteq G : 2. \exists x_{i} \in G, m_{i} \in \mathbb{Z}^{+}, \text{ for } i \in \mathbb{Z}^{+}, \\ \text{ such that } B \subseteq \bigcup_{i=1}^{\infty} x_{i} + (m_{i})A \end{cases}$$

where for $m \in \mathbb{Z}^+$,

$$(m)A = A + A + \cdots + A = \left\{\sum_{i=1}^{m} x_i \colon x_i \in A, i = 1, \dots, m\right\}.$$

We notice that \Re_A is closed under translation, intersection, countable unions and addition of sets.

The Raikov System \mathfrak{R}_A is now used to define a direct sum splitting of M(G) into the *L*-algebra \mathfrak{R}_A of measures concentrated on the sets in the Raikov System, and the *L*-ideal \mathfrak{G}_A of measures which annihilate all the sets in the Raikov System.

That is to say,

$$\mathfrak{A}_{\mathcal{A}} = \{ \mu \in M(G) : \exists B \in \mathfrak{R}_{\mathcal{A}} \text{ such that } \mu \text{ is concentrated on } B \}, \text{ and} \\ \mathfrak{I}_{\mathcal{A}} = \{ \nu \in M(G) : |\nu| (B) = 0 \text{ for all } B \in \mathfrak{R}_{\mathcal{A}} \}.$$

The idempotent I_A associated with this Raikov system is the projection from M(G) onto \mathscr{Q}_A and hence is a homomorphism and an element of the maximal ideal space of M(G).

The group of characters on G, \hat{G} , is canonically embedded in $\Delta M(G)$ and the idempotent I_A is contained in the closure of the characters \vec{G} in $\Delta M(G)$ if and only if the projection

$$I_{\mathcal{A}}: M(G) \to \mathcal{C}_{\mathcal{A}}$$

is bounded in the Fourier-Stieltjes transform norm, that is to say, for any measure $\mu \in M(G)$

$$\|(I_A\mu)\|_{\infty} \leq \|\mu\|_{\infty}$$

where the sup norm is taken over \hat{G} . If we have two direct sum splittings of M(G) into an L-subalgebra and L-ideal associated with idempotents in the closure of the characters, then the direct sum splitting

$$\mathscr{Q}_1 \cap \mathscr{Q}_2 \oplus \mathscr{G}_1 + \mathscr{G}_2$$

is also a splitting of M(G) associated with an idempotent in the closure of the characters of G.

3. Properties of K_2 sets

Let $K \subseteq \mathbf{D}_2$ be a compact perfect K_2 subset of \mathbf{D}_2 . $\overline{\operatorname{Gp} K}$ is a closed subgroup of \mathbf{D}_2 and so $\mathbf{D}_2 = \overline{\operatorname{Gp} K} \oplus H$ where H is also a closed subgroup of \mathbf{D}_2 . $\overline{\operatorname{Gp} K}$ is isomorphic to \mathbf{D}_2 and the idempotent associated with the Raikov System generated by $\overline{\operatorname{Gp} K}$ is in the closure of the characters (Dunkl and Ramirez (1972)).

If we have a Raikov splitting of $M(\mathbf{D}_2)$ generated by a set $A \subseteq \overline{\operatorname{Gp} K}$ then the idempotent associated with this splitting is in the closure of the characters if and only if the condition

$$\|(I_A\mu)\|_{\infty} \leq \|\hat{\mu}\|_{\infty}$$

holds for all measures ν in $M(\overline{\operatorname{Gp} K})$. For convenience therefore we assume that $\overline{\operatorname{Gp} K} = \mathbf{D}_2$.

For any continuous function $\phi: K \to \mathbb{Z}_2$ there is a character $\chi \in \mathbb{D}_2$ such that $\chi|_K = \phi$. For each character χ in \mathbb{D}_2 we let $P_{\chi} = \{x \in K: \chi(x) = -1\}$. We say

Jane Lake

that a set of characters $\{\chi_1 \cdots \chi_n\}$ determines a partition of K if

1. $P_{\chi_i} \cap P_{\chi_j} = \phi \qquad \forall i \neq j, 1 \leq i, j \leq n;$

2.
$$K = \bigcup_{i=1}^{n} P_{\chi_i}.$$

Given two partitions $\mathfrak{P} = \{P_{\chi_1}, P_{\chi_2}, \dots, P_{\chi_n}\}$ and $\mathfrak{P}' = \{P_{\phi_1}, P_{\phi_2}, \dots, P_{\phi_m}\}$ of K determined by the characters $\{\chi_1, \chi_2, \dots, \chi_n\}$ and $\{\phi_1, \dots, \phi_m\}$ respectively we say \mathfrak{P} is an everywhere finer partition of K than \mathfrak{P}' if for each $1 \le i \le m$ there exists an $I_i \subseteq \{1, \dots, n\}$ with $\#I_i \ge 2$ such that

$$P_{\phi_i} = \bigcup_{j \in I_i} P_{\chi_j}.$$

Since $\overline{\operatorname{Gp} K} = \mathbf{D}_2$ this implies that

$$\phi_i = \prod_{j \in I_i} \chi_j.$$

As K is a K_2 subset of \mathbf{D}_2 , for any continuous function f from K into \mathbf{Z}_2 there is a partition (in fact, trivial) $\mathfrak{P} = \{P_{\mathbf{x}_1}, P_{\mathbf{x}_2}, \dots, P_{\mathbf{x}_m}\}$ such that

$$f = \prod_{j \in I} \chi_j \Big|_K \quad \text{for some } I \subseteq \{1, 2, \dots, m\}.$$

We say that the function f can be generated by the partition \mathcal{P} .

Given two partitions of $K, \mathfrak{P} = \{P_{\phi_1}, P_{\phi_2}, \ldots, P_{\phi_n}\}$ and $\mathfrak{P}' = \{P_{\chi_1}, P_{\chi_2}, \ldots, P_{\chi_m}\}$, there exists a partition \mathfrak{P}''' which is everywhere finer than \mathfrak{P} and \mathfrak{P}' since, for each $1 \le i \le m$ and $1 \le j \le n$, if we have that $P_{\chi_i} \cap P_{\phi_j} \ne \emptyset$ then there exists a character ω_{ij} such that

$$\omega_{ij} = \begin{cases} -1 & \text{on } P_{\chi_i} \cap P_{\phi_j} \\ 1 & \text{elsewhere on } K \end{cases}$$

and so the partition determined by the characters

$$\left\{\omega_{ij}: P_{\chi_i} \cap P_{\phi_j} \neq \emptyset, 1 \leq i \leq m, i \leq j \leq n\right\}$$

is finer than \mathfrak{P} and \mathfrak{P}' . Since K is totally disconnected there exists a partition \mathfrak{P}''' which is everywhere finer than $\{\omega_{ij}: P_{\chi_i} \cap P_{\phi_j} \neq \emptyset, 1 \le i \le m, 1 \le j \le n\}$ and so is everywhere finer than both \mathfrak{P} and \mathfrak{P}' .

We define a sequence of partitions of K, $\{\mathcal{P}_i\}_{i \in \mathbb{Z}^+}$ where

$$\mathcal{P}_i = \left\{ P_{\phi_1^i}, P_{\phi_2^i}, \dots, P_{\phi_{j(i)}^i} \right\}$$

determined by a set of characters $\{\phi_1^i, \phi_2^i, \dots, \phi_{j(i)}^i\}$, to be a "separating sequence of partitions of K" if

1. $\forall n \in \mathbb{Z}^+ \mathfrak{P}_{n+1}$ is an everywhere finer partition of K than \mathfrak{P}_n ;

2. for each continuous function $f: K \to \mathbf{Z}_2^+$ there is an $N \in \mathbf{Z}^+$ such that f can

297

be generated by the partition \mathcal{P}_N and hence f can be generated by each partition \mathcal{P}_n for $n \ge N$.

LEMMA 1. Let K be a K_2 subset of \mathbf{D}_2 . Then there is a separating sequence of partitions of K.

PROOF. The set of continuous functions from K into \mathbb{Z}_2 is countable: denote it by $\{f_i: i \in \mathbb{Z}^+\}$. We will define the sequence of partitions inductively. Let \mathcal{P}_1 be a partition of K which generates f_1 . Let \mathcal{P}_2 be a partition of K everywhere finer than \mathcal{P}_1 which also generates f_2 . Inductively, let \mathcal{P}_{n+1} be an everywhere finer partition than \mathcal{P}_n that generates f_{n+1} and hence also generates f_1, f_2, \ldots, f_n .

We can now characterize elements of K, (m)K and $\overline{\operatorname{Gp} K}$ using a separating sequence of partitions of K. Let $\{\mathcal{P}_n\}_{n \in \mathbb{Z}^+}$, where $\mathcal{P}_n = \{P_{\phi_n^n}, P_{\phi_{j(n)}^n}\}$, be a separating sequence of partitions of K. We define a sequence of characters $\{\phi_{k(m)}^m\}_{m \in \mathbb{Z}^+}$ where $1 \leq k(m) \leq j(m)$ to be a "chain" of characters from the separating sequence $\{\mathcal{P}_n\}_{n \in \mathbb{Z}^+}$ if

$$P_{\phi_{k(1)}^{1}} \supset P_{\phi_{k(2)}^{2}} \supset P_{\phi_{k(3)}^{3}} \supset \cdots \supset P_{\phi_{k(n)}^{n}} \supset P_{\phi_{k(n+1)}^{n+1}} \supset \cdots$$

Obviously if we have two chains $\{\phi_{k(i)}^i\}_{i\in\mathbb{Z}^+}$ and $\{\phi_{m(i)}^i\}_{i\in\mathbb{Z}^+}$ such that for some $N\in\mathbb{Z}^+$, $\phi_{k(N)}^N\neq\phi_{m(N)}^N$, then $\phi_{k(n)}^n\neq\phi_{m(n)}^n$ for all $n\geq N$. We also have the following lemma.

LEMMA 2. Given K a K_2 subset of \mathbf{D}_2 with $\overline{\operatorname{Gp} K} = \mathbf{D}_2$, and $\{\mathfrak{P}_i\}_{i \in \mathbf{Z}^+}$ a separating sequence of partitions of K, then K is equal to the set H where

 $H = \begin{cases} \exists \ chain \ \left\{\phi_{k(i)}^{i}\right\}_{i \in \mathbb{Z}^{+}} \ of \ characters \ from \ the \ separating \\ sequence \ such \ that \\ 1. \ \phi_{k(i)}^{i}(x) = -1 \quad \forall \ i \in \mathbb{Z}^{+}; \\ 2. \ \phi_{m}^{i}(x) = 1 \quad \forall \ m \neq k(i), \ 1 \leq m \leq j(i). \end{cases} \end{cases}$

PROOF. Obviously $K \subseteq H$. Let $\{\phi_{k(i)}\}_{i \in \mathbb{Z}^+}$ be a chain of characters from the separating sequence of K. By definition $P_{\phi_{k(i)}^i} \subseteq K$, and so we have $\bigcap_{i \in \mathbb{Z}^+} P_{\phi_{k(i)}^i}$ is non empty, as $\{\phi_{k(i)}^i\}_{i \in \mathbb{Z}^+}$ is a chain, and so $\bigcap_{i \in \mathbb{Z}^+} P_{\phi_{k(i)}^i} = \{x\}$ for some $x \in K$ as $\{\mathcal{P}_i\}_{i \in \mathbb{Z}^+}$ is a separating sequence of partitions of K. So we have

$$\phi_{k(i)}^{i}(x) = -1 \qquad \forall i \in \mathbf{Z}^{+}$$

and

$$\phi'_m(x) = 1, \quad m \neq k(i), \forall 1 \le m \le j(i).$$

Jane Lake

To show that K = H, we need to show that for each chain $\{\phi_{k(i)}^i\}_{i \in \mathbb{Z}^+}$ from the separating sequence there is a unique $x \in \mathbb{D}_2$ with

$$\phi_{k(i)}^{i}(x) = -1 \qquad \forall i \in \mathbb{Z}^{+}$$

and

$$\phi_m^i(x) = 1 \qquad \forall \ m \neq k(i), \ 1 \leq m \leq j(i).$$

Assume $x, y \in \mathbf{D}_2$ with

$$\phi_{k(i)}^{i}(x) = \phi_{k(i)}^{i}(y) = -1 \qquad \forall i \in \mathbb{Z}^{+}$$

and

$$\phi_m^i(x) = \phi_m^i(y) = 1 \qquad \forall \ m \neq k(i), \ 1 \leq m \leq j(i),$$

so if x and y are distinct there must exist a character $\chi \in \hat{\mathbf{D}}_2$ such that $\chi(x) \neq \chi(y)$, but $\overline{\operatorname{Gp} K} = \mathbf{D}_2$ so $\chi|_K$ is not identically equal to 1. As $\{\mathcal{P}_i\}_{i \in \mathbb{Z}^+}$ is a separating sequence of partitions of K there must be an $i \in \mathbb{Z}^+$ such that χ is generated by the functions $\{\phi_i^i, \phi_2^i, \dots, \phi_{i(i)}^i\}$ on K. Thus

$$\phi_m^i(x) \neq \phi_m^i(y)$$
 for some $1 \le m \le j(i)$

and so x = y.

As $\overline{\operatorname{Gp} K} = \mathbf{D}_2$, every character on \mathbf{D}_2 is uniquely determined by its restrictions to K, so given $\{\mathcal{P}_i\}_{i \in \mathbb{Z}^+}$, a separating sequence of partitions of K, we have that every element of \mathbf{D}_2 is uniquely determined by the values of the $\phi_k^i(x)$ where ϕ_k^i are the characters from the separating sequence $\{\mathcal{P}_i\}_{i \in \mathbb{Z}^+}$.

For $x \in \overline{\operatorname{Gp} K} = \mathbf{D}_2$ we define the length of x on the *n*th partition of K to be

$$l(n, x) = \sum_{i=1}^{u(n)} \frac{1}{2} (1 - \phi_i^n(x)) = \# \{\phi_i^n : \phi_i^n(x) = -1, 1 \le i \le j(n)\}.$$

We now have a lemma.

LEMMA 3. Let K be a K_2 subset of \mathbf{D}_2 with $\overline{\operatorname{Gp} K} = \mathbf{D}_2$ and let $\{\mathfrak{P}_n\}_{n \in \mathbf{Z}^+}$ be a separating sequence of partitions of K with associated length function l(n,.). Then:

1. For $x \in K$, $l(n, x) = 1 \forall n \in \mathbb{Z}^+$. 2. For $x \in (m)K \setminus \bigcup_{i=1}^{m-1} (i)K$, $\lim_{n \to \infty} l(n, x) = m$. 3. For $x \in \overline{\operatorname{Gp}} K$, $n \in \mathbb{Z}^+$ a) if l(n, x) = 0 then $l(m, x) = 0 \forall m \le n$, b) $l(n + 1, x) \ge l(n, x)$. 4. For $x \in \overline{\operatorname{Gp}} K \setminus \bigcup_{i=1}^{\infty} (i)K$, $\lim_{n \to \infty} l(n, x) = \infty$.

PROOF. 1. We can see from Lemma 2 that each $x \in K$ is uniquely associated with a chain of characters, say $\{\phi_{k(i)}^i\}_{i \in \mathbb{Z}^+}$, from the separating sequence with

$$\phi_{k(i)}^{i}(x) = -1 \qquad \forall i \in \mathbf{Z}^{+}$$

and

$$\phi_m^i(x) = 1 \qquad \forall \, 1 \leq m \leq j(i), \, m \neq k(i),$$

and so l(n, x) = 1.

2. $x = x_1 + x_2 + \cdots + x_m$, $x_i \in K$, all distinct. Each x_i is uniquely associated with a chain $\{\phi_{k(n,i)}^n\}_{n\in\mathbb{Z}^+}$ from the separating sequence with

$$\phi_{k(n,i)}^n(x_i) = -1 \qquad \forall \ n \in \mathbf{Z}^*$$

and

$$\phi_j^n(x_i) = 1, \quad 1 \le j \le j(n), \ j \ne k(n, i).$$

As the x_i are distinct there exists an $N \in \mathbb{Z}^+$ with

$$\phi_{k(N,i)}^N \neq \phi_{k(N,j)}^N \qquad \forall \ i \neq j, \ 1 \le i, j \le m$$

and so

$$\phi_{k(n,i)}^n \neq \phi_{k(n,j)}^n$$
 $\forall i \neq j, 1 \le i, j \le m \text{ and } n \ge N$

so l(n, x) = m for all $n \ge N$.

3. a) As $\overline{\operatorname{Gp} K} = \mathbf{D}_2$ and $\{\mathcal{P}_i\}_{i \in \mathbb{Z}^+}$ is a separating sequence of partitions of K, letting

$$H_n = \{x \in \mathbf{D}_2 : l(i, x) = 0, i = 1, \dots, n\}$$

we have that $\{H_n: n \in \mathbb{Z}^+\}$ forms a base of open neighbourhoods of zero in \mathbb{D}_2 . Let $x \in \overline{\operatorname{Gp} K} = \mathbf{D}_2$ be such that l(n, x) = 0. We can write

$$x = x_1 + x_2 + \cdots + x_r + h$$

where $h \in H_{n+1}$ and $x_i \in K$, i = 1, ..., r are distinct, so each x_i is uniquely associated with a chain $\{\phi_{k(m,i)}^m\}_{m \in \mathbb{Z}^+}$ where $\phi_{k(m,i)}^m(x_i) = -1$ and

$$\phi_j^m(x_i) = 1, \quad 1 \le j \le j(m), \ j \ne k(m, i).$$

Now $l(n, x) = l(n, x_1 + x_2 + \dots + x_r) = 0$ so we must be able to group the x_i in pairs x_i , x_j with $\phi_{k(n,i)}^n = \phi_{k(n,j)}^n$, and so

$$\phi_{k(m,i)}^m = \phi_{k(m,j)}^m \quad \text{for all } m \le n$$

Thus

$$l(m, x_1 + x_2 + \dots + x_r) = 0 \qquad \forall m \le n$$

so l(m, x) = 0 for all $m \le n$.

3. b) For $x \in \overline{\operatorname{Gp} K} = \mathbf{D}_2$ let l(n + 1, x) = m. Then we can write $x = x_1 + x_2$ $+\cdots+x_m+h$ where l(n+1, h)=0, so

$$l(i,h)=0, \quad 1\leq i\leq n+1,$$

299

and so

$$l(n, x) = l(n, x_1 + x_2 + \dots + x_m) \le m \le l(n + 1, x).$$

4. Let $x \in \overline{\operatorname{Gp} K}$ and suppose that $\lim_{n \to \infty} l(n, x) = m$, so for each $n \in \mathbb{Z}^+$ we can find an $h \in H_n$ and $x_1 \cdots x_m \in K$ so that

$$x = x_1 + x_2 + \cdots + x_m + h$$

As $\{H_n: n \in \mathbb{Z}^+\}$ forms a base of open neighbourhoods of zero we have that $x \in \overline{(m)K} = (m)K$.

4. Positive definite functions

We will now use the separating sequence of partitions of K, $\{\mathcal{P}_m\}_{m \in \mathbb{Z}^+}$, with generating characters $\{\phi_1^m, \phi_2^m, \dots, \phi_{j(m)}^m\}$, for $m \in \mathbb{Z}^+$, to construct a sequence of positive definite functions on \mathbb{D}_2 .

LEMMA. Let $r \in (0, 1)$ and $n \in \mathbb{Z}^+$. Then the function

$$F_r^n \colon \overline{\operatorname{Gp} K} \to \mathbf{R}$$
$$\colon x \sim r^{l(n,x)}$$

is a positive definite function on $\mathbf{D}_2 = \overline{\mathrm{Gp} \, K}$.

PROOF. Consider the *n*th partition of K, $\mathcal{P}_n = \{P_{\phi_1^n}, P_{\phi_2^n}, \dots, P_{\phi_{j(n)}^n}\}$, generated by the characters $\{\phi_1^n, \phi_2^n, \dots, \phi_{i(n)}^n\}$. The measure $\mu_{n,r}$ on \mathbf{D}_2

$$\mu_{n,r} = \frac{\int_{i=1}^{j(n)} \left(\left(\frac{1+r}{2} \right) \delta(1) + \left(\frac{1-r}{2} \right) \delta(\phi_i^n) \right)$$

is a positive measure for $r \in (0, 1)$ and has Fourier transform

$$\hat{\mu_{n,r}}(x) = r^{l(n,x)}$$

and so F_r^n : $\mathbf{D}_2 \to \mathbf{R}$: $x \longrightarrow r^{l(n,x)}$ is a positive definite function on $\mathbf{D}_2 = \overline{\operatorname{Gp} K}$.

We now have the main theorem of this section.

THEOREM 1. Let $K \subseteq \mathbf{D}_2$ be a K_2 subset of \mathbf{D}_2 such that $\overline{\operatorname{Gp} K} = \mathbf{D}_2$. Then, for each $m \in \mathbf{Z}^+$ and $\varepsilon, \delta > 0$ we can choose an $h \in \mathbf{Z}^+$ such that, for any open neighbourhood H of zero, there exists a positive definite function F with F(0) = 1

300

and

1.
$$F(x) > 1 - \varepsilon$$
 for $x \in \bigcup_{i=1}^{m} (i)K$,
2. $|F(x)| < \delta$ for $x \in \mathbf{D}_2 \setminus \left\{ \left(\bigcup_{j=1}^{m+h} (i)K \right) + H \right\}$

PROOF. Choose an $r \in (0, 1)$ such that $(1 - r^m) < \varepsilon$ and choose an $h \in \mathbb{Z}^+$ so that $r^{m+h} < \delta$. Now let H' be an open neighbourhood of zero of the form

$$H' = \left\{ x \in \mathbf{D}_2 \colon \phi_j^i(x) = 1 \forall 1 \le j \le j(i), 1 \le i \le I \right\} = H_j$$

for some $I \in \mathbb{Z}^+$. So we have

$$\left\{ \left(\bigcup_{i=1}^{m+h} (i)K \right) + H' \right\} = \left\{ x \in \mathbf{D}_2 : l(p, x) \le m + h \text{ for } 1 \le p \le I \right\}$$

$$= \{x \in \mathbf{D}_2 : l(I, x) \leq m+h\}.$$

Now observe that $F_r^I(x) = r^{I(I,x)}$; so, for $x \in \bigcup_{i=1}^m (i)K$,

$$|1-F_r^I(x)| \leq |1-r^m| < \varepsilon.$$

 $|1 - F_r(x)| \le |1 - r^m| \le \varepsilon.$ For $x \in \mathbf{D}_2 \setminus \{(\bigcup_{i=1}^{m+h}(i)K) + H'\}$ we have l(I, x) > m + h, so $F_r^I(x) \le \varepsilon$ $r^{m+h} < \delta$

5.

We now prove a general theorem about Raikov idempotent generalized characters in the closure of the characters of D_2 , given the existence of positive definite functions with certain properties. The main result is then a corollary of Theorem 1 and the following theorem.

THEOREM 2. Let $A \subseteq \mathbf{D}_2$ be a compact perfect subset of \mathbf{D}_2 such that, for every $m \in \mathbb{Z}^+$, $\varepsilon, \delta > 0$ and open neighbourhood H of zero, there exists an integer $h \in \mathbb{Z}^+$ independent of the neighbourhood H and a positive definite function F on \mathbb{D}_2 with

1.
$$F(0) = 0;$$

2. $|F(x) - 1| < \varepsilon \quad \forall x \in \bigcup_{i=1}^{m} (i)A;$
3. $|F(x)| < \delta \qquad \forall x \in \mathbf{D}_2 \setminus \left\{ \left(\bigcup_{i=1}^{m+h} (i)A \right) + H \right\}$

. .

[9]

Jane Lake

Then the idempotent generalized character I_A associated with the Raikov System generated by A on \mathbf{D}_2 is in the closure of the characters $\overline{\mathbf{D}_2}$ in $\Delta M(\mathbf{D}_2)$.

PROOF. $\Delta M(\mathbf{D}_2)$ has the weak topology induced from the Fourier-Stieltjes transforms of the measures in $M(\mathbf{D}_2)$, so the idempotent I_A is in $\overline{\mathbf{D}_2}$ if and only if

$$\|(I_{\mathcal{A}}\mu)^{\hat{}}\|_{\infty} \leq \|\hat{\mu}\|_{\infty} \qquad \forall \mu \in M(\mathbf{D}_{2})$$

where the sup norms are taken over $\hat{\mathbf{D}}_2$.

Let $\mu \in \mathscr{Q}_A$ and $\varepsilon > 0$. We can find an $l \in \mathbb{Z}^+$ so that

$$\mu = \sum_{i=1}^n \delta_{x_i} * \mu_i + \mu'$$

where $\mu_i \in M(\bigcup_{j=1}^l (j)A)$, $\|\hat{\mu}\| < \varepsilon$ and $x_i \in \mathbf{D}_2$. We will consider the measure $\sum_{i=1}^n \delta_{x_i} * \mu_i$ which is concentrated on

$$\bigcup_{j=1}^n \left(x_j + \bigcup_{i=1}^l (i)A\right).$$

We can assume (without loss of generality) that $S = \{x_1, x_2, ..., x_n\}$ is a finite subgroup of D_2 . We can find a subgroup S_0 of S such that

$$S + \operatorname{Gp} A = S_0 + \operatorname{Gp} A$$
 and $S_0 \cap \operatorname{Gp} A = \{0\}$

and can find an $m \in \mathbb{Z}^+$ so that

$$\bigcup_{x\in S}\left(x+\bigcup_{i=1}^{l}(i)A\right)\subset \bigcup_{y\in S_{0}}\left(y+\bigcup_{i=1}^{m}(i)A\right).$$

Now we have for each $q \in \mathbb{Z}^+$ and $x \neq y \in S_0$ that

$$\left\{x+\bigcup_{i=1}^{q}(i)A\right\}\cap\left\{y+\bigcup_{i=1}^{q}(i)A\right\}=\emptyset$$

so we can choose an open neighbourhood H(q) of zero such that for all $x, y \in S_0, x \neq y$,

$$\left\{\left(x+\bigcup_{i=1}^{q}(i)A\right)+H(q)\right\}\cap\left\{\left(y+\bigcup_{i=1}^{q}(i)A\right)+H(q)\right\}=\varnothing.$$

Now choose an $h \in \mathbb{Z}^+$ such that for every open neighbourhood H of zero there exists a positive definite function F on \mathbb{D}_2 with

1.
$$F(0) = 1;$$

2. $|F(x) - 1| < \varepsilon \quad \forall x \in \bigcup_{i=1}^{m} (i)A;$
3. $|F(x)| < \frac{\varepsilon}{|S_0|} \quad \forall x \in \mathbf{D}_2 \setminus \left\{ \left(\bigcup_{i=1}^{m+h} (i)A \right) + H \right\}$

[11]

Let H be an open neighbourhood of zero contained in H(m + h). Then we can find a positive definite function F satisfying

1.
$$F(0) = 1;$$

2. $|F(x) - 1| < \varepsilon \quad \forall x \in \bigcup_{i=1}^{m} (i)A;$
3. $|F(x)| < \frac{\varepsilon}{|S_0|} \quad \forall x \in \mathbf{D}_2 \setminus \left\{ \left(\bigcup_{i=1}^{m+h} (i)A \right) + H \right\}.$

Now the measure $|S_0| \cdot m_{S_0}$ where m_{S_0} is haar measure on S_0 has positive Fourier transform, so $\mathcal{F} = |S_0| \cdot m_{S_0} * F$ is a positive definite function on \mathbf{D}_2 , and

(1)
$$\mathfrak{F} = \sum_{x \in S_0} \delta_x * F.$$

 \mathcal{F} has the following properties:

1.
$$\mathfrak{F}(0) \leq 1 + \varepsilon$$
.
2. $|\mathfrak{F}(x) - 1| < 2\varepsilon$, $x \in \bigcup_{y \in S_0} \left(y + \bigcup_{i=1}^m (i)A \right)$.
3. $|\mathfrak{F}(x)| < \varepsilon$, $x \in \mathbf{D}_2 \setminus \left\{ \left(\bigcup_{y \in S_0} y + \bigcup_{i=1}^{m+h} (i)A \right) + H \right\}$.

Let v be a measure in I_A . Then

$$|\nu|\left(\bigcup_{y\in S_0}\left(y+\bigcup_{i=1}^{m+h}(i)A\right)\right)=0.$$

So we can choose an open neighbourhood H of zero contained in H(m + h) such that

$$|\nu|\left\{\left(\bigcup_{y\in S_0}\left(y+\bigcup_{i=1}^{m+h}(i)A\right)\right)+H\right\}<\varepsilon$$

and let \mathcal{F} be the associated positive definite function as in (1).

We then have, for $\gamma \in \hat{\mathbf{D}_2}$,

$$\begin{aligned} |\hat{\mu}(\gamma)| \leq \left| \left(\sum_{i=1}^{n} \delta x_{i} * \mu_{i} \right)^{*}(\gamma) \right| + \varepsilon \\ \leq \left| \int_{\mathbf{D}_{2}}^{\cdot} \gamma \mathcal{F} d \left(\sum_{i=1}^{n} \delta x_{i} * \mu_{i} \right) \right| + 2\varepsilon ||\mu|| + \varepsilon \\ \leq \left| \int_{\mathbf{D}_{2}}^{\cdot} \gamma \mathcal{F} d \left(\sum_{i=1}^{n} \delta x_{i} * \mu_{i} \right) + \int_{\mathbf{D}_{2}}^{\cdot} \gamma \mathcal{F} d\nu \right| + \varepsilon + 2\varepsilon ||\mu|| + \varepsilon (||\nu|| + 2) \\ \leq \left| \int_{\mathbf{D}_{2}}^{\cdot} \gamma \mathcal{F} d \left(\sum_{i=1}^{n} \delta x_{i} * \mu_{i} + \nu \right) \right| + \varepsilon + 2\varepsilon ||\mu|| + \varepsilon (||\nu|| + 2) \\ \leq \left\| \left(\sum_{i=1}^{n} \delta x_{i} * \mu_{i} + \nu \right)^{*} \right\|_{\infty}^{\cdot} \mathcal{F}(0) + \varepsilon + 2\varepsilon ||\mu|| + \varepsilon (||\nu|| + 2) \end{aligned}$$

(where the sup norm is taken over $\hat{\mathbf{D}_2}$)

$$\leq (1+\varepsilon) \| (\mu+\nu)^{\circ} \|_{\infty} + (1+\varepsilon)(\varepsilon) + \varepsilon + 2\varepsilon \| \mu \| + \varepsilon (\|\nu\|+2)$$

and so

$$\|\hat{\mu}\|_{\infty} \leq \|\mu + \nu\|_{\infty}$$

where the supremum norm is taken over \mathbf{D} .

From this we have the corollary.

COROLLARY 1. Let $K \subseteq \mathbf{D}_2$ be a compact perfect K_2 subset of \mathbf{D}_2 such that $\overline{\operatorname{Gp} K} = \mathbf{D}_2$. Then the idempotent associated with the Raikov System generated by K is contained in the closure of the characters $\overline{\mathbf{D}}_2$ in $\Delta M(\mathbf{D}_2)$.

COROLLARY 2. Let $K \subseteq \mathbf{D}_2$ be a compact perfect K_2 subset of \mathbf{D}_2 . Then the idempotent associated with the Raikov System generated by K is contained in the closure of the characters $\overline{\mathbf{D}_2}$ in $\Delta M(\mathbf{D}_2)$.

PROOF. $\mathbf{D}_2 = \overline{\operatorname{Gp} K} \oplus H$ for some closed subgroup H of \mathbf{D}_2 . We can give \mathbf{D}_2 a finer l.c.a. topology \mathcal{F} where

$$(\mathbf{D}_2)_{\mathfrak{F}} = \overline{\mathrm{Gp}\,K} \oplus H_d$$

where H_d is the group H with the discrete topology. The positive definite function F with

1.
$$F(x) = 1 \quad \forall x \in \overline{\operatorname{Gp} K}$$

2. $F(x) = 0$ elsewhere

is continuous on $(\mathbf{D}_2)_{\mathfrak{F}}$ and so there exist continuous positive definite functions on $(\mathbf{D}_2)_{\mathfrak{F}}$ as required in Theorem 2. Hence the idempotent $I_K \in \overline{((\mathbf{D}_2)_{\mathfrak{F}})}$ but $\overline{((\mathbf{D}_2)_{\mathfrak{F}})}$ $\subseteq \overline{\mathbf{D}_2}$ so $I_K \in \overline{\mathbf{D}_2}$.

References

- C. Dunkl and D. Ramirez, 'Bounded projections on Fourier-Stieltjes transforms,' Proc. Amer. Math. Soc. 31 (1972), 122-126.
- [2] I. Glicksberg and I. Wik, The range of Fourier-Stieltjes transforms of parts of measures (Lecture Notes in Mathematics 266, pp. 73-77, Springer-Verlag (1972)).
- [3] E. Hewitt and K. Kakutani, 'A class of multiplicative linear functionals on the measure algebra of a locally compact abelian group,' *Illinois J. Math.* 4 (1960), 553-574.

Department of Mathematics University of New South Wales Kensington, N.S.W. 2033 Australia