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ON BOUNDS FOR THE LIPSCHITZ CONSTANT OF

THE REMAINDER IN POLYNOMIAL APPROXIMATION

Davip ELLiOTT

Suppose f 1is a function possessing a kth order derivative,

the derivative being Lipschitz continuous of order a, 0 < a £ 1,
on [-1,1]. Let pn be a polynomial of degree < n
approximating to f on [-1,1] such that if r = - ?, then

-k-a

| ]rnl | < . Define
M (B) =  sup [r (z)) - r (x)|/|z x|
n  f-7.71 * 2 n "1 271" 7
x 5% el-1,
where 0 < B < 1. Upper bounds are obtained for MZ(B) when

k > 1 thexeby generalizing results previously given for functions

which are only Lipschitz continuous on [-1,1].

1. Introduction

The recent interest in quadrature rules for the evaluation of
Cauchy principal value integrals over finite intervals has required a
knowledge of the behaviour of the remainder when a function is
approximated by a polynomial. A useful result was a lemma given in 1957
by Kalandiya [2]. More recently, Ioakimidis [ J] has given what he calls

an "improvement" of Kalandiya's lemma. We shall now summarise these
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results.
Suppose that a given function [ is Lipschitz continuous of order
o, where 0 < a <1, on the interval [-1,1]. That is, for every pair

of points xrxze[-Ll] we have

(1.1) |f(xy) - Flz )| s L]z, - = |¢

’

1
where L[ and o are independent of z, and xZ. We write f e Lip o.
The Lipschitz constant is the smallest number L for which (1.1) is

satisfied and if we know this we sometimes write f ¢ LipLa. For each
positive integer #n, let pn be a polynomial of degree < 7 which
approximates to f on [-1,7] in some way, and denote by rn the
remaindexr in this approximation so that

(1.2) rn=f—pn.

Obviously for f € Lip a, rn ¢ Lip a. Furthermore, we know that

rn € Lip vy for all vy < a. We shall be interested in obtaining bounds

for the quantity MZ(B), say, defined by

lrn(xg) -7 (x)]

(1.3) A%(B) = sup 3
z %, €-1,11 |z, - x1|

where B is a number whose value may be limited by o (see Theorem 1.1,
below), Thus Mh(a) is the Lipschitz constant for the function r,

considered as an element of the space Lip 8.
The uniform norm for any continuous function g defined on [-1,1]

will be denoted and defined in the usual way by

(1.4) [lg]] = max |g(z)| .

-1lsxs
It is well known, see for example Meinardus [3, Theorem 43], that if p,
is the polynomial of best uniform approximation of degree < 7 to

f € Lip «, then ,Irnll s % The results of Kalandiya and Ioakimidis
o«

can be given together in the following theorem. (Throughout, AZ’AZ’A3""

will denote positive constants independent of n).
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THEOREM 1.1. Swppose f € Lip o and 2, is a polynomial of degree

< n such that

(1.5) ||rn||w5 Aln_u .
Then
(2)  for every polynomial of degree < n satisfying (1.5) and for
0 <B < o/2,
~at2B |
(1.6) Mh(B) 5 Agn 3

(ii) there exists a polynomial of degree < n satisfying (1.5)
and such that for 0 < B < a,
~-a+f
371 .
Theorem 1.1 (i) was first stated and proved by Kalandiya({?] . Theorem

(1.7) Mn(s) < A

1.1 (ii) was stated and proved recently by Ioakimidis [7]. The latter
proof makes use of a result due to SteXkin [4] which we shall state as
Theorem 1.2. As a result of it, Iocakimidis' proof is considerably
simpler than that of Kalandiya's and indeed can be used to give a simpler
proof of Kalandiya's lemma.

For any continuous function f defined on [-1,1], its modulus
of continuity is denoted and defined by

(1.8) Wlf; §) = max |£lzy) - Flz)]
|- | <8

xl,xze[-l,lj

Two simple properties of w which follow immediately from this definition

and which we shall use subsequently are
2||f||m and
s 1711

the latter result following from the mean value theorem where we assume

Im(f; s8)
ots; )

iA

(1.9)

IAn

that f' exists and is continuous on [-1,1]
THEOREM 1.2. (Ste&kin [4]). Suppose P, is a polynomial of degree

< n. Then
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(n/2) (1-z°)"% wlp, ;s m/n), || < 1,
(1. 10) |p;z(x)| <
(n2/2)w(pn,' n/n), |x| < 1.

If we choose pn = Zh, the Chebyshev polynomial of the first kind, then

-%
w(T 3 n/n) = 2. Since |1; (x)| = n(l—xz) ° for |x| <1 and since

II; ()| < n2 for |x| 5 1, it follows that the coefficients of w on

the right hand side of (1.10) cannot be improved.
Returning to Theorem 1.1 (i) we observe that the exponent of =n
in (1.6) cannot be improved either, in that there exists f ¢ Lip a and

a polynomial satisfying (1.5) such that M%(B) > A n—a+28. To see this

4

it

suppose we choose f = 0 and pn(x) an? Ih(x). Then (1.5) is

1
cos(n/n) then, from (1.3),

satisfied. If we choose x, = 1, &

1 2

lrn(zg) - Pn(xl)l
|B

Mh(B)

v

|2y - 2,

AT (2,) - T (x,)]
IB

nle, -z
2 1

1-8

27 TA

_ 1
n®(sin(n/2n) )2
1+8

2 AI -o+28
—25 - "
m

>
= E]

which is the desired result.
In this paper we wish to extend the result of Theorem 1.1 to the
case when, for some integer k > I, the kth order derivative of f is in

Lip @. We then modify the bound for ||rn]| as given in (1.5) but again
oo
we require bounds for the Lipschitz constant Mn(B). The results are

given in Theorem 2.1.

https://doi.org/10.1017/50004972700002859 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700002859

Polynomial Approximations 53

2. Functions whose derivatives are Lipschitz continuous.

Without any further ado we shall now state and prove the principal

result of this paper.

THEOREM 2.1. Suppose that for some k > 1, f(k) e Lip o and let
p, be a peclynomial of degree < mn such that

-k-a
(2.1) ||rnl|w5A5n .
Then
()  for every polynomial of degree < n satisfying (2.1) and for
0<Bgx1
-k-at+28
(2.2) Mh(e) < A6n ;

(11) there exists a polynomial of degree < n satisfying (2.1) and
such that for 0 < B < 1,

- k-a+8
(2.3) M (8) < An .

Proof. wWe observe, see Meinardus [3, Theorem 45] that if p, is

the polynomial of best uniform approximation to f on{ -1, then it
satisfies (2.1).
(i) First, we shall show that for every polynomial satisfying (2.1},
“k-o+2
13
(2.4) Hrtll, < Agn .
Let q; 1 denote the polynomial, of degree < (n-1), of best uniform

approximation to f' on [-7,1]. Since the (k-I)st derivative of f'

is in Lip o we have [3, Theorem 45] that

-(k-1)-a -k-a+l
r _ * -
(2.5) [1F" - a2 Il s Agn-1) s A ,
for n2>2. Forany xzel-1,117,
r - ! - % * - !
Irn(x)l | (" () q}_,(x)) + (g}, (z) pn(x))l
-k-ot1

(2.6) s A + I(sn-pn)’(x)l,
say, where sn is any polynomial of degree < #n such that sé = q; 1

By Theorem 1.2, for any x ¢ [-1,1],
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(s, 0, )" (z)| < (n%/2)u(s b 5 w/n)

A

(n2/2)w((sn-f)+(f—pn); n/n)

1A

(n2/2){w(sn—f; n/n)+w(rn; m/n)}

IA

(n?/2)U0n/m)| |- ||+ 2llz |13 .
on using (1.9). From (2.1) and (2.5) we find

l(sn-pn)'(x)l s {4, + (’n/Z)Alo}n_k-MZ .

Substituting this back into (2.6) then, since x is arbitrary, we

establish (2.4) where A8 = A5 + (1+n/2)A10.

We can now complete the proof of (i). If x ,x

1

g are any two

points of [-1,1] such that lxz—x > 1/n2 then

1
|z (x,) - 7 (z)]
n_2 n "1 < 24 n-k—a+28 .

5

(2.7) 8
lxz - xll

On the other hand if ]xZ -x_ | = 1/n2 then, for 0 < B < 1, we have

;1

Irn(xz) - rn(xl)l

1-
s Jay - a2 |78 e ]]

B 1l
IxZ - xll

-k-o+28
(2.8) s Ag s

by (2.4). 1Inequality (2.2) now follows immediately from (2.7) and (2.8)

where A6 = max {2A5,A8}

(ii) To prove (2.3) we shall use an imbedding argument similar to
that given by Ioakimidis in []] for the proof of Theorem 1.1 (ii). First

we shall show the existence of a polynomial pn which not only satisfies

(2.1) but also
n—k—a+1
11

To do this, choose ¢ > 1 and write X = ¢t. On the interval

(2.9) Hr};”co < A

-1 <t <1, define a function F(t), say, such that (i) F(k)(t)eLip a
and (ii) F(t) = f(et) on -1/c <t < 1/e. In the intervals [-1,-1/c]
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and [I1/¢, 1] we need to continue the definition of f so that F

possesses a continuous kth order derivative which, on -1 < ¢t £ 1, is in

Lip o. One way of doing this is to define F(k) as
ey L cicts-tse,
F(k)(t) = f(k)(ct) s =1/e <t < 1l/e,
(k)

5 s 1fe st g1,

and then to recover F by integration choosing constants of integration

appropriately on [-1,-1/¢] anda [1/e, 1]. Let P; denote the

polynomial of best uniform approximation of degree <#»n to F on

1 (k)

1A

t < 1. Then, since F € Lip a, ||F ~ P;|| 2 A, n . For
o«

-1

A

& < 1, choose

pn(x) = pn(et) = P;(t) , =1/e <t £ 1/c.
Then certainly (2.1) is satisfied for this polynomial. Now, for
-1 sx <1,

4
t

O |~

r'(x) = (F(t) - P*(t))
n n

(2.10)

d
dp#
1f dr n
=2 {(z; - Q;_I(t)) + (Q;—l(t) - EE—)} s

where Q; l(t) is the polynomial of best uniform approximation of degree

< (n-1) to dF/dt on -1 < t £ 1. BAgain, for n 2 2 and any
t € [-1,1] we know that

daF -k-a+1
(2.11) dz Qn_l(t) < A13n

If we define Sn(t) to be a polynomial of degree < n such that

dSn/dt = Qrf-z (t) then from (2.10) and (2.11) we have

~k-a+]

d
(2.12) elr) ()| s A + IE(Sn(t) - PA(t))].

For points in [-1/e¢, 1/¢] we have, by Theorem 1.2,
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%(Sn(t) - PA(t))| < 2(1-22)% w(S, -P*%; _:11 )
s —ne  Sis p I 4 wireps _TL)}
.2(c2—1)%l n n n’ n
< "2(0721_0_1);5 {;LTL n-lla;tsz %— Q;;_I(t) ‘ +
+ 2A12n-k_a }
(2.13) s ;{c—z_;g (nd, . + 2A12)n‘k‘°‘” ,

on using (2.11). Combining (2.13) with (2.12) gives (2.9) where

4. = Alg(cz-l)-;é+ A, {(n/2) (%1% + 71y

11

We can now complete the proof of (ii). If x_,x

2% are any two

points of [ -7,7] such that ng— 1] > 1/n then

lrn(xz) -r (z)]
IB

n—k—a+B

(2.14) < 24, .

ey - @

On the other hand if ]x2 -2, £ 1/n then, from (2.9),

;1
[r'n(xz) - rn(xl)l

1-8
(2.15) ley =, 177" el ]

A

lxg - xlle

~k-a+B
sS4 ’

provided that 8 < I. From (2.14) and (2.15), (2.3) follows where we

choose A7 = max{ZAS, A11} . This completes the proof of the theorem.
-k-a

As a final comment we note, by choosing f = 0, pn = Asn Zh

=1, &, = cos(n/n), that the exponent of n in

and taking points x 2

1
(2.2) cannot be improved.
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