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Abstract

An optimal control problem governed by a class of delay semilinear differential equations
is studied. The existence of an optimal control is proven, and the maximum principle and
approximating schemes are found. As applications, three examples are discussed.

1. Introduction

Let H, V and F be three Hilbert spaces with V c H C V algebraically and
topologically, where V is the dual space of V. Let A, B\ and B2 be the three operators
defined by A : V —> H and Bu B2: F —>• H respectively. Let T and a be two given
positive numbers. For any function fit), we denote by fa the function defined by
MO = f(t-a).

Now we introduce the control set U to be L2([0, T], F) and for any u e U, we
consider the semilinear differential equation:

+ B2ua(O for t e [0, r ]
y(s) = yo(s) eH K)

in H, where y,(0 = JjjCO and B is going to be defined later, a denotes the length of
the time delay. The state at time t of the delay equation (1) is given by the function
segment y,. Therefore, y(s) = yo(s) for j e [—a, 0] is a condition for the early
state y0.

We define the cost functional by

J(u,y)= f g(t,y(t))dt+ f h(u(O)dt + <po(y(T)) (2)
J0 Jo
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[2] The maximum principle for a type of hereditary semilinear differential equation 195

for B2 7̂  0. If B2 = 0 then we define the cost functional by

J(u,y)= [ g(t,y(t))dt+ [ hiuWdt+foMT)), (3)
Jo Jo

where y is a solution of (1) corresponding to the control u, and g,h,(f>oaie functions
denned by g : [0, T] x / / - » / ? , h : F -+ R~, fo : H ->• R, respectively.

We consider the following optimization problem:

Minimize J(u,y) on all u e U (4)

This paper contains five sections as follows. In Section 2, the assumptions are
formulated and the existence theorem for the state equation (1) will be given. In
Section 3, we will establish the existence of an optimal control for the optimization
problem (4). We will discuss an approximating control process and therefore obtain
the maximum principle for the optimum control problem of (1) combined with (4) in
Section 4. Finally, in Section 5, as applications, three examples have been studied:
optimal control problems governed by parabolic equations, semilinear hyperbolic
equations and Navier-Stokes equations respectively. For those three examples, we
have been able to improve on previous results. The optimal control problem governed
by the same kind of semilinear equations without delays has been discussed in [8].
Delay optimal control problems have been studied in a series of papers: Banks and
Jacobs [1], Barbu [3], Barbu and Precupanu [4], Colonius [5] and Fattorini [7].

2. Some assumptions and existence of the state equation

The following hypotheses will be in effect throughout the rest of the paper:
HI: The operator A is selfadjoint, continuous and positive:

(Ay, y)H > 0 for any y e D(A)

and 0 € D(A), where (•, •)// denotes the scalar product in H and D(A) is the domain
of the operator A. Moreover the semigroup 5(0 = exp(—tA) generated by —A is
compact for t > 0.

HI implies that the spectrum a c [0, oo) and S(t) is an analytic semigroup. Under
this hypothesis, the fractional power A" is bounded for a < 0. For a > 0, we
denote by Ha the space D(Aa), this space equipped with its natural inner product
(y. z)« = (Aay, Aaz)H. The inner product corresponds to the norm \\y\\ = \\ Aay\\H.
For a < 0, Ha is the closure of H under the norm || • ||a; for details see [2] or [8].

The nonlinear term /3(-, •) is defined in Hi x Hi and satisfies the following hy-
pothesis (L(X, Y) denotes the space of all bounded linear operators from the Banach
space X into the Banach space Y endowed with its uniform operator norm):
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H2: There exists 6,0 < 6 < \, such that the map £(•, / ) : Hi -> //_e is con-
tinuous and locally bounded for any / e Hi. Furthermore fi has Frechet derivatives
for each of the variables DxB(y, z) and D2B(y, z), which are continuous and locally
bounded (as an element of L{Hi x Hi, //_9)-valued function).

The control u(t) takes a value in F. The linear operators Bx and B2 satisfy:
H3: B, e L(F, H) for i = 1,2.
We will assume that control w belongs to L2([—o, T]\ F) (if B2 = 0, then u e

L2([0, 71], F)). As usual, we define a solution of the delay problem (1) in an interval
0 < / < T as a //i-valued function j(f) which is continuous in the norm of Hi and
satisfies:

yO) = SO)yQ(O)-^AesO-r)A-eB(y(r),ya(r))dr
+ /„' SO ~ r){BMr) + b2ua(r))dr for t 6 [0, T).

LEMMA I. If HI to H3 hold and if y0 e C((-a, 0], / / i ) , then for any «(•) e £/,
(1) /IOJ fl« ««i^«e solution y in the space C([O, T); Hi) n L2([0, T]; D(A)) and
y, e L2([0, T]; H).

PROOF. First we prove this lemma holds for T < a. In this case, (5) can be written
as:

yi(O = S(t)yo(O) - f AeS(t - r)A-ef}(yi(r), yo(r - o))dr
Jo

+ f S(t- r)(BMr) + B2(ua(r))dr.
Jo

Now with hypotheses / /) , H2 and N(y) = fi(y, yo(r—o)), all hypotheses of Theorem 1
of [10] are satisfied. Hence there exists a unique solution yx of (5) such that y\ e
C ([0, T]; / / . ) n L2 ([0, T]; D(A)) and y, € L2 ([0, T]; / /)). For T > o, by the
above result, there exists a unique solution y\(t) in [0, a]. We extend yt0) into the
interval [—a, 0] by defining j i (0 = yo(t) for / e [—o, 0]. Then using the same
argument as above, with y0 and the interval [—a, 0] replaced by )>i and the interval
[—a, CT] respectively, we imply that the corresponding equation to (5),

y2(t) = SO ~ a)>i (?) ~ I A"S{t - r)A~°/3(y2(r), y, (r - a))dr
Ja

+ f SO- r)(fl,«(r) + b2ua(r))dr, (6)

has a unique solution ^2(0 6 C([a, 3a]; //i) D A2([CT, 3cr]; £)(A)) and >>, 6
L2([a, 3a]; / / ) . Moreover, by the definition of yt, we have
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,(<7)

= S(t - a) \s(a)yo(O) - f S(cr - r)A'e^(y,(r), yo(r - a))dr

+ J S(a- r)(B,ii(r) - B2ua(r))dr

= S(t)yo(O)- f AeS{t-r)A-eP(yx{r),y0{r-o))dr
Jo

S(t- r)(fl,w(r) + B2ua{r))dr. (7)f
JoJo

In (6), substitute the right hand side of (7) for S(t — a)y{ (a); we obtain

v2(0 = S(r)yb(O) - / ABS(t - r)A-9P(y2(r), yo(r - a))dr
Jo

that is, y2 is the unique solution of (5) in [0, 3a].
Using the same argument as the proof of the existence of y2, step by step, we can

finally conclude this lemma for any T > 0.

3. The existence of an optimal control

Let W be a convex closed subset of F. We denote by M([—a, T\, W) the space of
all strongly measurable functions «(•) such that u(t) e W a.e. in [—a, T] and u € U.
In order to state and prove the existence theorem for the optimal control problem (4),
we need make some assumptions for the functions g,h,<po:

H4: The function h : U -* R is convex, lower semicontinuous (Ls.c.) and there
exist CUC2 e R such that

h(u) > d\u\2
w - C2 WueM([-a,T];W).

H5: The function g : [0, T] x H -> R+ is measurable in t, and for every r > 0
there exists an Lr > 0 independent of t such that g(t, 0) e L°°(0, T) and

\g(t, y) - g{t, z)\ + M y ) - 0o(z)| < Lr |v - z\2

for all f e[0 , T], |y|2 + |z|2 < r.
A sequence {«„(•)} C M([—a, T]\ W) of some controls is called a minimizing

sequence if
n, yn) ->• inf / ( « , j ) = /*.

ueM
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Here yn is the solution of (1) corresponding to un for each n. We have the following
existence theorem:

THEOREM 2. Assume that the assumptions HI to H5 hold, W is convex and there exists
a minimizing sequence {«„(•)} C M([—a, T\, W) such that the corresponding {yn(t)}
is uniformly bounded in the norm of C([0,T], Hi). Then there exists an optimal
control M(-) as the weak L2-limit of a subsequence of[un(-)}.

REMARK. Furthermore, if we assume that £ satisfies
H6: \(0(y,S),y)\ < C||y||2w, for any y e H{,
(here £ e Hi and C depends on £), then the seqence [yn] is uniformly bounded in

the norm of C([0, T], Hi). In fact, taking duality pairing with yn on both sides of (1)
with u replaced by un (denote the corresponding y by yn), then in the interval [0, CT],
we get

1 ' " l | 4 i " {l3( ya)' yn) = ( B l " " + BlUr"" yn)li-

Then by using HI, H3, H6 and Gronwall's inequality, we can easily imply that {yn} is
uniformly bounded in the norm of C([0, CT]; HI). Hence the remark follows step by
step.

PROOF OF THE THEOREM. First the existence of {yn} has been proven by Lemma 1.
The uniformly bounded assumptions of {>>„} and H5 imply that J* < oo. Now in the
interval [0, CT], by the definition of solutions, we have

yn(t) = S(t)yo(O) - f AeS(t - r)A~6'P(yH(r), yo(r - o))dr
Jo

I S(t - r)(BlUn(r) + B2una(r))dr.I
Jo

Using the same arguments as in the proof of Theorem 4.11 of [8], we conclude that
there exist two subsequences {yn} and {«„} such that

un —> u weakly in L2([—CT, T]; W)

yn -» y in C([0,a],H).

Similarly, in the interval [CT, 2CT], we have

y*{0 = S(t)yn(a) ~ f AeS{t - r)A~°p(yn(r), yna(r))dr
Ja

S(t - r)(B{un(r) + B2un(r - a))dr
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or

' [ e+±S(t - r)A~eP{yn(r),yna(.r))dr

(t - r)A-e[f3(yn(r), yna{r) - P(yn(r), yna(r))]dr

- r)(BlUn(r) + B2una(r))dr. (8)I
Jo

We apply Proposition 4.1(11) of [8] with a = 0 + \ for the first integral. For the
second integral, we use H2 and the fact: yn(r — a) —>• y{r — a) in C([o, 2a]; H),
in addition to the uniformly bounded property of {yn}. For the third integral, we
use Proposition 4.1(1) of [8] for p = 2 and a = \. Finally, for A^S(t)yn, we
use Lemma 2.1 of [8] (or see [11]), A*yn(t) is convergent to an element z(t) in
Lp{[o, 2CT]; H) for any p < oo and we may assume (again choosing a subsequence)
that it is convergent almost everywhere. Moreover, by the assumption that [A*yn(t)}
is bounded, so is z() . Taking limits in (8) and defining y = A^z(t), we obtain

/
Jo

- fAiy = Al>S(t - a)y(o) - f Ae+L>S(t - r)A~°P(yn(r), yAr))dr
(9)

B2ua{r))dr.

So Aiy(t) is continuous and y is the solution corresponding to u € [a, 2a], that is
y(t) = y(t) for all t e [a, 2a]. Hence, when we left multiply both sides (9) by A~K
we get

yn(t) = S(t - a)y{a) - f AeS(t - r)A~6P(yn(r), ya{r))dr
Jo

S(t- r)(Bxun(r) + B2una(r))dr.

In Proposition 4.1 of [8] with a = 9 and a = 0 respectively and selecting still another
subsequence, we deduce that {yn} is convergent in C([a, 2a], H), that is, we obtain

yn -> j> in C([0, 2a], H).

Then we use similar arguments iteratively in the interval [ia, (/ + \)a], for i =
2, 3 , . . . , step by step; we conclude that there exist subsequences un, yn such that

un -> u weakly in L2([-a, T]\ W),

yn - • yn in C([0, T]; H).

Therefore, by using standard arguments, we can readily imply that the theorem holds.
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4. The approximating control problem and the maximum principle

Let (y, M) e C([0, T]\ / / . ) x M([-a, T]; W) be any optimal pair for (4). For
every e > 0, we consider the following approximating optimal control problem:

Minimize J((y,u), (10)

where Je(y, u) is defined by

U(u)+l-\u-u\\dt+<t>l{y(J)).Jf(y,u) = J

on ally 6 C([0, T]; / / . ) ,« e M([-CT, 7]; W) subject to (1) and where g( : [0, T ] - •
H and ^ : H —> R are defined as

g\t,y{t))=S g(t,Pny-€Anr)pn(r)dr, (11)

4>o(y) = [ 4>o{Pny - eAnz)pn(r)dr. (12)
JR"

Here n — [e~'], pn is a mollifier in /?" and Pn : H ->• Xn are given by PnM = J^" M,e,
if M = £ ~ M,C, Anr = J^" r,e, and {e,}~ is an orthonormal basis in H.

Using standard arguments, we easily prove the existence results for (10). Moreover,
we have the following lemma.

LEMMA 3. Let {y(, u(} be a solution to the optimality problem (10). Then

ue -+ u strongly in L2([0, T]\ W),

yt-> y strongly in L2([0, T]; V) D C([0, T]; H).

PROOF. By the assumption H4, we have that {u(} is bounded in L2([—o, T]; W).
Therefore there exists u* € L2([-a, T]; W) such that

ue -> u* weakly in L2([-CT, T]; W).

Then by the same arguments as in the proof of Theorem 2, we readily obtain that

y( -> v* in C([0, T]; H).

Since the functional u —> f_ah(u(t))dt is weakly lower semicontinuous on
L2([0, T]; W), we have

lim inf Jf(y(, ut) > Je(y\ u*) > J(y\ «*). (13)
e > 0
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On the other hand, since u( -*• u*, again as the proof of Theorem 2, we have

% -* y in C([0, T]; H),

and by H5 and Proposition 2.15 of [2],

g\t,yt{t))-+g<f,Kty) Vre[0,r].

Then by the Lebesgue dominated convergence theorem, we obtain

lim/" g'«,yt(t))dt= I g(t,y(t))dt.
«-° Jo Jo

Similarly

whence

lim sup/ e ( j e , u() < J(y,u)

and by (13), we get:

lim I \uf -u\2dt = 0.

Hence y* = y and u* = u, that is, the proof is complete.

Now we consider the linear backward problem:

(p(), = Apf + I

+ Dg

,, yfa)*t

PAT)

(s) = 0,

h •+

=

•>2P(yAt +

* ) , v
- D2g((t, yf

—D(f>Q(yeC

Vs € [T,

<r),yA0) PeO
'te[T- a, T]

r), Vf 6 [T

T + a],

+ °)

- o, T],

(14)

(15)

(16)

(17)

where D^(y(, yfa)* and D2P(y((' + <*)> >«)* are the dual operators of Dxp{y€, yea)
and D2fi(yAt + e), ye), respectively.

First we state the following Lemma, which can be found in, say, [8].

LEMMA 4. Let y (•) € L2([x, T]\ H) and A be a given linear bounded operator from
Ha to H-0. Then the system

z,(t) + (A + L(t))z(t) = y(t) forx<t<T,
z(r) = z0

possesses a unique solution z() in r < t < T. This solution has the following
properties:
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(i) z ( ) is an Ha-valued continuous function in x < t < T and satisfies

Hz(OII« < C, ((t - r)-°||zo||w + \\Y\\L*aT.nH)) M t € (r, 7]; (19)

(ii) z ( ) e C 2 ( [ r , 7 ] ; / / ) W

l|z(OII#/ < C2 (llzolli, + ||y||i2([l,r];W)) /or r e (r, 7]. (20)

Moreover, z() € L2([0, 7]; //„) and

];*)) / O r ? ^ (t , T].

From this lemma, we easily conclude that (15)—(16) has a unique solution ~pe €
- a, T]; H) n L2([7 - a, 7]; //„).

We now consider the backward problem (14) with initial value

pAT-a) = p((T-a). (21)

In the interval [T - 2a, T - a], if we let

y(t) = D2p(ye(t+*), yt(O)*Pt(t + a) + D2g*(t, yf),

then y(t) e L2{[T -2a, T - a]; //) and L(t) = D^(y((t), y(a(t)) again satisfies
the hypotheses of Lemma 4. Hence, in [T — 2<r, 7 — or], (14) and (21) has a unique
solution in C([7 - 2CT, 7 - cr]; H) D L2([7 - 2a, 7 - or]; Ha). Therefore, step by
step and using the same argument, we finally conclude that the system (14)—(17) has
a unique solution in C([0, 7]; H) D L2([0, 7]; / / a ) .

Simlarly using Lemma 4, we can obtain the following estimates:

WPMWH < C for f e (0, 7] (22)

and
IIP«llz.'ao.7-];/i.)<C> (23)

where C is a constant independent of e. Then multiplying (14) and (15) by p'( and
using (22) and (23), we obtain

Ttp\ - c - ( 2 4 )

l
On the other hand, since (ye, ue) is an optimal control for (10), we have

+k r(y(,u() WX>0, vzL2([-a,T];W). (25)
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Here y"+Xv is the solution of (1) corresponding to ue + Xv. Then (25) yields

I
J0

(D2g
e(t, * ) , zf)dt + [ [(*'(««), v) + (ut - u, v)]dt + (W0(y(T)), zt)

J
> 0 Vve L2([-cr, T]; W), (26)

where zf e C([0, T]\ H) D L2([0, T]; Ha) is the solution to the linear equation

B2va, t e [0, T]

zt =0, 5 € [-a, 0] (27)

This delay problem can be solved in C([0, T]; H) n L2([0, T]; //„) by the same
methods.

If we multiply (14) and (15) by ze, integrate and then use (27), we can obtain

/ Dh(ut, v)dt + f (ut - u, v)dt + I (pt, Bxv)dt + I (p(, B2v,o)dt > 0,
J0 J—a Jo J-a

for all v e L([0, T]; W), where Dh(ue, v) is the derivative of h at MC in the direction
v. This yields

B*pt(t) = Dh(u(t)) + uf{t)-u(t), te[0,T], (28)

where B* is the operator defined by B*p€{t) = B*p€(t) + B^p€{t + a). Equations
(14)—(17), (28) together represent the Euler-Lagrange optimality condition for (10).

Now we will prove that there exists a subsequence {p(n} such that

pu -> p in C([0, T]; H) D L2([0, T]\ Ha). (29)

In the interval [T — a, T] we have

pe = -S(t - T)D<t>e
0{yf{J)) + / AeS(t - r)A-0D2P(ye, y(a)*pAr)dr

JT-o

+ 1 S(t-r)D2g'{t,yAt))dr.
JT-O

By Proposition 2.15, Ch. 2 and Lemma 1.4, Ch. 5 of [2], we have that

- D ^ ( y ( 7 ) ) ^ p(T) e 3<A,(j(r)) weakly in //,
£>2gf (/, * ) - > £ e D2^(r, y(0) weakly star in L°°([0, T]; / / ) . k '

Then, of course, ^^^(/.ye) -> ? weakly in L2. Moreover, we have that
\\D2f5(y(, y(a)*p((r)\\<_ is uniformly bounded. Therefore, by the same arguments
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as in the proof of Theorem 2, we conclude that for some subsequence, denoted again
by [pe], we have

pe -> p in C([T - a, T]; H) n L2([T - a, T]; //„). (31)

In the interval [7" — 2cr, 7 — a], we have

f A
JT-2o

AeS(t - r)A-eD,0(*. yta)pt(r)dr

+ / S(t- r)[D2g\r, yt) + D2p(ye(r + a), yt(r))]pt(r + a)dr.
JT-la

Then by (31) and the facts Dxp and D2/3 are continuous and bounded, the same
argument implies that for some subsequence of {pe} and some function in C([T —
2a, T - a]; H) n L2([T -2a,T - a]; //«), again denoted by [p(} and p, we have

pe -*• p in C([T - 2a, T - a]; H) n L2([T - 2a, T - a] ; //„).

By the same arguments, we can then prove the above convergence holds in the interval
[T — 3CT, T — 2a]. Iteratively, we can finally conclude (29). Moreover, by (24), we
have that (pe), -> p weakly in L2([0, T]\ H).

Letting e —> 0 in the system (14) to (17), we conclude that there is a /? 6
C([0, T]; / / ) n L2([0, T]; //„) such that p satisfies the following equations:

- p,{f) + Ap(t) + DfiQif), %{f)Yp{t) + D2p(y(t + a), y{t)Tp(t + a)

€D2g(t,y(O), t€[0,T-a], (32)

- /?,(» + ApiO + Drfiyit), ya(t))*p(t) e D2g(t, y(t)),

te[T-a, T], (33)

p(T) e -DfoMT)), (34)

p(s)=0, se[T,T + a]. (35)

Moreover, since the map Dh : W -> W is closed, taking e -* 0 in (28) we obtain

B*p(t) e Dh(u(t)), a.e. in [0, T]. (36)

Therefore, we have proved the following weak form of the maximum principle for (10).

THEOREM 5. Let (y, u) be any optimal pair for (10). Then there exists a function
p e W"-2([0, T]; H) n L2([0, T]; Ha) satisfying (33M36).
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5. Some examples

1: Optimal control of delay semilinear parabolic equations
Let Q be an open set of Rn and G = [0, T] x Q. Here, we shall study (1) and (4)

in the special case where A = - A , V = -//,}(fi), H = L2(Q), V = H'^Q.) and
, ya) = P(ya) is locally Lipschitz continuous and satisfies the hypothesis

H2':

In other words, we consider the case where the state equation is given by

>>, - Ay + 0(vJ = Bxu in G,
y(s, x) = Y0(s, x)(zs, x) e [-a, T] x Q, (37)
y(t,x) = 0 on £ = (0, T) x 3fi

for y0 e L2([-a, 0];

THEOREM 6. 77ie optimal control problem (4) vw'r/i f/ze ^rafe system (37) /zas a?
one solution (y, u) e Wl-2([0, T]; H) n L2([0, T\, //o'(f2) n //2) x L2([0, 7]; W).
Moreover, for every such optimal pair, there is a function p e L2([0, 7]; //o'(fi)) D
iy12([0, T]; //) and/x e L\G) such that

te[0,T-a], (38)

Pt(t) + Ap(t) e £»2 (̂̂ , KO), r e [0, T - a] , (39)

p(T) e -D^ , (y ( r ) ) , in $2, (40)

B*p(r) e Dh(u(t)), fi(t) e d^y(t))p(t + a), a.e. in [0, T], (41)

p(s) = 0, se[T,T + a]. (42)

//ere 3^ is the subgradient of f$ in the sense of Clarke.

PROOF. First we shall prove that for every y0 e L 2 ( [ -CT,0] ; / / 0
1 (^ ) ) ,M e L2([0,T];W),

(37) has a unique solution in V^12([0, T]\ H) n L2([0, 7]; //o'(fi) D / / 2 ) . Indeed, in
the interval [0, or], (37) can be written as the following:

y , - A = Bu - P(yoo), in[0,T]xQ,

v(0, x) = yo(O, x), for all x 6 fi,

y(f,;t) = O, (f,^) G (0,a) x 3S2.

By [4], we obtain that there exists a unique solution v € W'2([0, a]; V D //2(f2)).
Then by using a step by step argument as before, we can easily conclude that (37)
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has a unique solution y in W't2([0, T]; V D //2(£2)). The existence of an optimal pair
(y, u) can be proved by standard methods. Here we omit this proof.

To prove the necessity of optimality system, we consider the approximation problem
(10) with the state equation

y, - Ay + F(ya) = Bu, in G,
y(s,x) = yo(s,x), s € [-a, 0], (43)

y = 0, ( f , j t ) € i ; .

For this smooth problem, we conclude that there exists a function pe e L2([0, T];
//„' (£2)) D C([0, 7] ; / /) with /?; e L2([0, T]; Ll(Q)) (see Theorem 1.9, Ch. IV of [2])
such that

t,yt), (t,x) 6 [0, T-a] x Q, (44)

(pe), + Ap( = D2g
e(t, yt), (t, x) e [T-a, T] x J2, (45)

pe(r) = -a^(y€(r)), inn, (46)
pe(j) = 0, (r, x) e [T, T+a]xQ. (47)

Moreover, p( = 0 on S and

For (45)-(46), using the estimates of parabolic equation, we obtain

Then by assumptions H4 and H5, we conclude that

\\Pe\\w<-H[T-<T.T];Hi) < C.

Moreover, by using the assumption H2' and the step by step argument, we have that

\\pt\\w'.*aT-o,Tv.H*)<C and W(yt{f))pt(f + o)\ < C.

Hence, we conclude that

Pen(0 -»• Pit), weakly in H, (48)

Pu -* P' weakly star in L°°([0, T); H) and strongly in L2([0, T\, H), (49)

Bpu(yt.)p*.(t + <r)^H in Ll(G). (50)

Therefore, we can take the limit and conclude Theorem 4.
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2: Optimal control of nonlinear delay hyperbolic equation
We study (4) in the case when the state equation is nonlinear hyperbolic and where

V = //o'(fi), V = //" '(fi), H = L2(S2), A = - A and D(A) = AD H2(Q), that is,
we study the state equation

y,, - Ay + P(ya) = Bu, in G,
y(s, x) = yo(s, x) and y,(s, x) = yol(s, x), (s, x) e [-a, 0] x Q,

y = 0, on S.
(51)

Here y0 e L2([-a, 0]; V), B e L2(W, H). Equation (51) can be written

y, = i in G,
z,-Ay + P(ya) = Bu, in G,

y(s,x) = yo(s,x) and z{s,x) = zo(s,x), (s,x) e [—a, 0] x Q,
y = 0, on £ .

Now let X denote the product space V x H endowed with the scalar product

{(y, 2), (yu zi)> = (Aiy, AJy,) + (z, z,).

Let

A = ( °A "I1 ) and D(A) = £>(-A) x V;

then A is self adjoint, continuous and positive for all (y, z) in X. So (52) can be
written as

y, + Ay + p{%) = Bu,
y(s) = y,(j) = (yo(s),yo,(s)), SG[ -CT,0 ] , (53)

y = 0, on E,

on X, Where J = (y, z), ^ = (0, /3) and B« = (0, Bu). We can easily check that (4)
with (53) satisfies all hypotheses H1-H5. Moreover, since (5 does not depend on the
first variable y, other than Theorem 3 in Section 3, we have the following result:

THEOREM 7. The optimal control problem (4), having (51) as the state equation with
p locally Lipschitz continuous and satisfying hypothesis H2', has at least one solution
(y, u) withyeC'QO, T]; H)(lC([0, Tl; VnH2),y,eCl([0, T]\ / /)nC([0, T]; V),
y,,, AyzL°°([0, T]\ H),andu€L2([0, T]; W). Furthermore, for every such optimal
pair, there exist p € Wl2([0, T]; H) and \x e L\G) such that

Pll-Ap + fxe Dig(t, 50, t € [0, T-a], (54)

pn - Ap e D2g(t, y), te[0,T-a], (55)

p(T) = 0, p,(T)e-D(t>0O(T)) and p = 0 onT,, (56)

B*p +Dh(u) = 0 and n(t) e dp(y(t))p(t + a), a.e. t g [0, T]. (57)

https://doi.org/10.1017/S0334270000010353 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010353


208 Feiyue He [15]

PROOF. Forw e L2([0, T]; W), the existence ofa solution of(53) can be easily proved
by using the existence results for wave equations (see Ch. 2 of [12]). Moreover, by
using standard arguments, we can conclude the existence of an optimal pair (y, u).

We now prove the existence of p, by using the approximation method. Similarly
as in (14)—(17), we consider the e-approximating delay problem:

(p€)« - Ape + D2F(yt)pt(f+o) = D2g'(t, yt), t e [0, T-a], (58)
(pe),, - Ape = D2g

((t, yt), t G [T-a, T], (59)

(PMT) = -D<p(
0(y((T)) and p((T) = 0, (60)

p t ( s ) = p t l ( s ) = 0 , se[T,T + a]. (61)

pe = 0, on E,

where
( * ) „ - A ; y e + &()>„) = Bu(, in G,

y = 0, on S, (62)
and ^,(5) = jor(s), s e [-CT, 0].

First we note, as before, that ue -*• u strongly in L2([0, T]; W). Then we con-
sider (62) in the interval [0, a ] . Multiplying the first equation of (62) by (ye), and
integrating over [0, t], we get

\ \ ( ) \ \ + \\v()\l - \\\y,(t)\\

< / \BuAs)-^(y(AsW2\yel\
2
2ds.

Jo

By Gronwall's lemma, we obtain

\ytl(t)\l + IVMOI* <C, Ve > 0, t 6 [0, *]. (63)

Next we multiply (62) by A(y(), and integrate over [0, T] to get

|V(jf),l2 + lA^/)!2, < C. (64)

Finally, multiply the same equation by (y()„ and integrate over [0, f ]; we obtain

= C. (65)

Hence the Arzela-Ascoli criterion gives

y( -> p strongly in C([0,CT], V) and weakly in C([0, CT],//2(S2))

(^)< ->• Jf strongly in C([0,a];H), (66)

(.y<r)<r —*• y,,weakly inL2([0, cr] x £2).
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Now considering y( in the interval [a, 2a] and using the same argument as above and
the fact that (67) holds in [0, a ] , we conclude (67) also holds in the interval [a, 2a].
If we continue doing that, we can finally conclude that

ye -+ y strongly in C([0, T], V) and weakly in C([0, T], H2(Q))

(*)i - * y, strongly in C([0, T]; H), (67)

(y*)u -*• 9,i weakly in L2{G).

Similarly we multiply (58) by (pf), and integrate over [t, T] to get

\VpAt)\\ + \ptt(t)\l < \Dct>(
0(yAT))\l + J \D2g'(t,y)\2

2\P(t{t)\\dt.

This yields

\pAt)\\ + \{pM0\\ <C, Vr e [7- - a, T] and e > 0. (68)

By hypotheses H4 and H5, we have

l < C.

Finally since {£>&()>,)} is bounded and ye -> y in C([0, T]; V), using (57) and
(68) in the interval [T — 2a, T — a], we obtain that (68) also holds in the interval
[T - 2a, T - a]. Step by step, we conclude that (68) holds for all t e [0, T]. Hence
we have that

p( ->• p strongly in C([0, T]\ H) and weakly in L°°([0, T]\ V).

Moreover,

p€ - • p weakly in W u ([0 , 7] ; H),

which completes the proof.

3: Optimal control of Navier-Stokes equation
Let Q c R", n = 2, 3, be an arbitrary bounded open set with a C2 boundary dQ.

Let (u>, />) satisfy the Navier- Stokes equation:

w, + (w • V)w = —Vp + rjAw in G,
div w = 0, in G,

w(t,x) = v(r)£(0 + vAO&W, on E,
= vo(s), s 6 [-a, 0],

with Jaa gi(x)vdS = 0 for i — 1,2, and w(0, x) = wo(x) for x € £2. Where >j is a
constant, u ( ) : [-a, T] ->• /? and | , ( ) : 3S2 ̂  /?", i = 1, 2.
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Our task is to find v, or rather, its time derivative u = v, such that the cost functional

f \w(T,x)-wd(x)\dx+2r1 f f |V(w(t,x) - w"(t,x))\2dxdt
Jn Jo Jn

+ X (v,(t) - vf)2 dt (70)
Jo

attains its minimum value.
In practical terms, w : [0, T] x £2 -> R" is a smooth desired velocity field,

vd : [—o, T] —> R is a nominal forcing speed and A. > 0 is some given number. The
second term in the cost functional (70) represents the cost of forcing.

This problem in the non-delay case has been considered by Fattorini and Sritharan.
We now reformulate this problem. Consider the space

/ / = {u : Q -+ R", u € L2(f2), V • u = 0}

and
V = H x //O'(S2).

Using the method which has been used in [11], we reduce this problem to a distributed
control problem by taking y = z + W\U + w2ua, where W\ and w2 are the Leray-Hopf
cut functions corresponding to g\ and g2 respectively (for detail see [11] or [8]). Then
taking the projection on H, we get the system:

z, + rjAz + B(z, z) + viOBiiz) + va{t)B2(z)
= fuvit) + fnv

2(0 + fixva{t)
+ filV,(t) + f32Val(t),

z(0, x) = zo(x) and v(s) = vd(s), for s G [-a, 0],
(71)

where z0 is determined by w0, v(t) and Leray-Hopf cut functions. A is Stokes operator
which is selfadjoint and (since Q c R" is bounded) positive defined. The operator
B{-, •) and fi,() are standard in Navier-Stokes theory ([6], [9], [11]). Note that
fu € H for i, j = 1, 2, 3. It can be shown that D{A) = H2(Q) n V, D(A±) = V
and the linear operator fi, € L(D(A*), H) for i = 1, 2.

Let us now set

vBi(z)-(fn+vafi3)v-fl2v
2

and
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Then (71) can be written as

y, = Ay + Pi(y, ya) + p\(ya) = B,u + B2ua, in G

y(0) = ( Z° ) for x e & and v(s) = v"(s) for x e [-a, 0]. ( 7 2 )

THEOREM 8. Let u G L2{[-o, T]; R) and «(0) 6 H. Then there exists a unique
solution y e L2([0, T]; D(A)) n C([0, 7]; D(i4i)) ro (69j. Moreover, //"M(O) G

y, € L2([0,T];H).

(73)

PROOF. (72) is equivalent to the following problem:

y, + Ay + px{y, ya) = Bxu + B2ua - &(>>„), in G

y(fl) = ( u{® j for x G Q and v(s) = vd(s) for x G [-a, 0].

In the interval [0, a] , taking N(v) = P\{y, vd) and using Theorem 3.3 of [8], we
see that there exists a solution v, e L2([0, a]; D(Ai)) n C([0, a] ; / /) to (73) in
[0, a]. Moreover, if £ e D(/\5), theny, G L2([0,a]; D(i4))nC([0,a]; £>(AJ)) and
yu G L2([0, a] ; H) (Theorem 3.3 of [8] can be also found in [9]). Then, using the
same arguments on (73) in the interval [(i — 1)CT, ia] iteratively for i = 2, 3 , . . . , and
finally in the interval [T — a, T], we complete the proof of this theorem.

Using the above Theorem, we can easily conclude the following theorem

THEOREM 9. Let (y, u) be an optimal pair o/(70) with the state equation (71). Then
there exists a function p e Wl2([0, T]\ H) n L2([0, T]\ Ha) satisfying the following
equations:

- p,(t) + Ap{t) + (M(y, %), p{t)) + {N(y(t +a), y)1 p(t)) e D2g(t, y(t)),

te[0,T-o], (74)

- Pl(0 + Ap(t) + (M(y, %), p{t)) G D2g(t, y(t)),

tz[T-a, T], (75)

p(T) G -D<po(y(T)) and p(s) =0, se[T,T + a], (76)

B*p(t) € Dh(u(t)),

where M and N are defined as follows Vz = (zt, z2):

-(/„+«„h-i)z2-2fnuz2
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and

(N(y, ya), z) = (D2^ (y(t + a), y) + Dfc(y), z)

_ ( -fi2z2 - 2f22uaz2 \

v o ;•
respectively. Moreover, h(u(t)), g(t, y) and <po(y(T)) are defined as in [8].
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