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Abstract Let A be a closed, point-separating sub-algebra of C0(X), where X is a locally compact
Hausdorff space. Assume that X is the maximal ideal space of A. If f ∈ A, the set f(X)∪{0} is denoted
by σ(f). After characterizing the points of the Choquet boundary as strong boundary points, we use this
equivalence to provide a natural extension of the theorem in [10], which, in turn, was inspired by the
main result in [6], by proving the ‘Main Theorem’: if Φ : A → A is a surjective map with the property
that σ(fg) = σ(Φ(f)Φ(g)) for every pair of functions f, g ∈ A, then there is an onto homeomorphism
Λ : X → X and a signum function ε(x) on X such that

Φ(f)(Λ(x)) = ε(x)f(x)

for all x ∈ X and f ∈ A.
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1. Introduction

If X is a locally compact Hausdorff space, we let C0(X) denote the classical Banach
algebra of continuous complex-valued functions on X vanishing at infinity and equipped
with the supnorm ‖f‖∞ := sup{|f(x)| : x ∈ X}. Our main concern here is with sub-
algebras A of C0(X), which are closed in the supnorm topology defined above and which
are point separating in the sense that, given x, y ∈ X with x �= y, there is an f ∈ A with
f(x) �= f(y). Such objects A we also designate as function algebras as in [10], the only
difference being that the algebras considered here do not contain constants.

If X∞ = X ∪ {∞} is the one-point compactification of X, let

A′ = {f + λ : f ∈ A, λ ∈ C}.

One verifies easily that A′ is a (supnorm) closed, point-separating subalgebra of C(X∞)
containing constants. In the next section, we make use of facts known about A′ (for
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example, that A is a closed ideal of A′) to derive characterizations of members of ∂A(X),
the so-called Choquet boundary of A, which we now proceed to define.

If we denote by Ext(B) the non-empty set of extreme points of the weak*-compact
unit ball B of the dual A∗ of A, then it is known that

Ext(B) ⊆ {αex : |α| = 1, x ∈ X},

where ex is the point evaluation at x,

ex(f) = f(x), f ∈ A

(see [4, p. 441]). If we let e be the map x � ex from X to B, we can define

∂A(X) = e−1(Ext(B))

(see [1,5,8]). ∂A(X) is the usual Shilov boundary of A.
We define peaking functions and generalized peak points for the function algebra A

as in [10]. Let us note in passing that, in [1], an x0 ∈ X is called a ‘strong boundary
point’ if, given any neighbourhood U of x0, there exists f1 ∈ A with ‖f1‖∞ = 1 and
Mf1 := {x : |f1(x)| = 1} ⊂ U (so that |f1| < 1 off U .) This conforms to our usage
of the term ‘generalized peak point’ in [10]: one simply observes that if x0 ∈ Mf1 and
f1(x0) = eiθ0 , and we define g1 = e−iθ0f1 ∈ A, then the function f = g1eg1/e defines a
peaking set P (f) := {f = 1} ⊂ U , x0 ∈ P (f), and |f | < 1 off P (f) (f ∈ A, since g1 ∈ A,
eg1 ∈ A′, and A is an ideal in A′).

We extend and complete the results in [1] by proving in § 2 that x ∈ ∂A(X) if and only
if x is a generalized peak point (or, equivalently, a strong boundary point). The proof
will be based on the following analogue, for A, of a theorem of Bishop well known in the
context of uniform algebras (see (1.5) in [10] and the references given there).

Theorem 1.1. Let K be a peak set in X of a function h ∈ A (or A′). Suppose that
g ∈ A and g �≡ 0 on K. Then there exists an f ∈ A with f |K = g|K and such that
|f(x)| < ‖f‖∞ for all x ∈ X \ K.

The proof is omitted as it is the same, with obvious modifications, as that given in [3].
We will only emphasize here that the function f in the above theorem is defined by
f = g

∑∞
n=1 2−nhkn , for suitably large positive integers kn, and thus f ∈ A even if

h ∈ A′.
Using all these results and some facts recorded in § 2, we finally prove in § 3 of the

paper our main theorem.

Main Theorem. Let σ(f) := f(X) ∪ {0} for f ∈ A. Assume that X is the maximal
ideal space of A. If Φ : A → A is a surjective map with the property that

σ(fg) = σ(Φ(f)Φ(g))

for every pair of functions f, g ∈ A, then there exists a homeomorphism Λ of X onto X

and a signum function ε(x) on X (i.e. ε(x) = ±1 for all x ∈ X) such that

Φ(f)(Λ(x)) = ε(x)f(x) ∀f ∈ A, x ∈ X.
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This is the natural extension of the theorem proved in [10], which, in turn, was a gener-
alization of Theorem 5 in [6].

All unexplained notations and terminology will be found in [10].

2. Characterizing the Choquet boundary and some miscellaneous facts

We now prove the following theorem (probably known but we could not find a reference).

Theorem 2.1. For the function algebra A ⊆ C0(X), the following statements are
equivalent.

(a) x ∈ ∂A(X).

(b) x is a strong boundary point.

Proof. (a) ⇒ (b) Suppose that x ∈ ∂A(X). From the definition of ∂A(X), ex ∈ B and
‖ex‖ = 1, with the latter norm being the norm on the dual A∗.

We first claim that x ∈ ∂A′(X∞). To see this, let µ be a Borel probability measure
representing x on A′, i.e.

f(x) + λ =
∫

X∞

(f + λ) dµ, f ∈ A, λ ∈ C. (∗)

By a standard result in convexity theory (see [8, p. 38]), we have to show that µ = δx,
the unit point mass at x. From (∗), it is evident that

f(x) =
∫

X∞

f dµ ∀f ∈ A.

Writing µ = µ | X + µ(∞)δ∞, this means that

f(x) =
∫

X

f dµ + µ(∞)f(∞) =
∫

X

f dµ, f ∈ A,

and thus

1 = ‖ex‖
= sup{|f(x)| : f ∈ A, ‖f‖∞ � 1}

= sup
{∣∣∣∣

∫
X

f dµ

∣∣∣∣ : f ∈ A, ‖f‖∞ � 1
}

� µ(X)

� 1,

showing that µ(∞) = 0. Hence µ is concentrated on X and, being a representing
measure for x on A and because x ∈ ∂A(X), µ = δx by [9, Proposition 3.7]. Since
x ∈ ∂A′(X∞), x is a generalized peak point for A′, as A′ is an algebra containing con-
stants (see [8, p. 37]). If U is a neighbourhood of x in X, there exists a function g ∈ A′
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such that the set E := {y : g(y) = 1} ⊂ U , x ∈ E and |g| < 1 off E. Let λ = g(∞).
Notice that |λ| < 1 and g − λ ∈ A. Let f = (g − λ)/(1 − λ̄g). It is easy to see that
f ∈ A and |f | < 1 off E and f is equal to (1 − λ)/(1 − λ̄) on E with absolute value 1,
and therefore x is a generalized peak point for A. Alternatively, we can construct such
functions by a simple application of Theorem 1.1.

(b)⇒ (a) Let x ∈ X be a strong boundary point and let U be a neighbourhood of x.
Then there exists an f ∈ A such that ‖f‖∞ = 1 = f(x) and |f | < 1 off U . According
to [9, Proposition 3.7], we have to prove that if µ is any complex regular Borel measure
on X∞ such that ‖µ‖∞ � 1 and µ represents x on A, then µ = δx, the unit point mass
at x. Let |µ| denote the total variation measure of µ. Now, for any positive integer n, we
have

1 = |fn(x)| =
∣∣∣∣
∫

X∞

fn dµ

∣∣∣∣ � |µ|(U) +
∫

X∞\U

|fn| d|µ|.

By letting n → ∞, we obtain |µ|(U) = 1, and so |µ|(X∞ \ U) = 0. Since U is arbitrary,
we obtain that |µ| = δx. But then µ = γδx with |γ| = 1. As f(x) = γf(x) ∀f ∈ A and
‖ex‖ = 1, there exists f ∈ A with f(x) �= 0, and hence γ = 1, proving µ = δx. This
concludes the proof of Theorem 2.1. �

2.1.

We now record a few observations that will be needed in the proof of the Main Theorem
in the next section.

(1) A peaking set meets ∂A(X).

This follows from the fact that ∂A(X) is a boundary for A.

(2) Any family of peaking sets with non-empty intersection contains a point of ∂A(X).

This has the same proof as that of Proposition 1.6. in [10] with the state space
there being replaced by the weak*-compact unit ball B of A∗, the dual space of A.

(3) Given x ∈ X, there exists a Borel probability measure µ supported on the Shilov
boundary S = ∂A(X) and representing x,

f(x) =
∫

S

f dµ, f ∈ A.

This fact, which is easy to prove for algebras containing constants, has a somewhat
non-trivial proof (see [11, p. 106]).

(4) The function algebra A is strongly separating, i.e. {|f | : f ∈ A} separates points
of X.

This is, of course, well known and easy to prove for algebras with constants, but
in the present context follows from [9, Proposition 3.4 (vi)] and shows that the
assumption of strong separation made in the main result of [1, Theorem 5, p. 82]
is redundant—point separation by A suffices.
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(5) If X is the maximal ideal space of A, as stated above in the Main Theorem, then
X∞ is the maximal ideal space of A′ and if, for f ∈ A, σA(f) (respectively, σA′(f))
denotes the spectrum of f as an element of A (respectively, A′), then

σA(f) = σA′(f) = range of f on X∞ = f(X) ∪ {0}.

This follows from standard Banach algebra theory expounded, for instance, in [2,
Lemma B.4.2, p. 307]. This explains the reason for the notation σ(f), and the
assumption concerning X, in the abstract.

3. Proof of the Main Theorem

In the present section, we will prove the main theorem stated in the abstract. We let f , g,
h, k denote functions from A and let c stand for a generic constant. We shall sometimes
write ‖f‖ instead of ‖f‖∞. As in [10], the proof is most conveniently presented through
a series of remarks. We should point out that the proofs of several of these remarks are
almost identical to the corresponding ones in [10], though our algebra A does not contain
the constants and are therefore omitted. Nevertheless, for ease of reading, we include full
statements of these remarks and refer to the appropriate places in [10] where their proofs
may be found. And, of course, we point out the differences, from [10], in the proofs of
the other remarks caused by the absence of scalars.

Remark 3.1. We have

σ(f2) = σ(Φ(f)2) ∀f ∈ A, (3.1)

from which it immediately follows that σ(|f |) = σ(|Φ(f)|) and

‖f‖∞ = ‖Φ(f)‖∞. (3.2)

Note that, unlike [10], we cannot make the reduction σ(f) = σ(Φ(f)) ∀f ∈ A.

Remark 3.2. If f, g ∈ A, then |f | � |g| on ∂A(X) if and only if

for every c � 0 and every h, |gh| � c implies |fh| � c. (3.3)

The proof is omitted since it is very similar to Remark 2 of [10], despite the absence
of constants in A.

From Remark 3.2, we can deduce the following:

if σ(fh) = σ(gh) for every h, then |f | = |g| on ∂A(X). (3.4)

As σ(fh) = σ(gh) ∀h ∈ A, we see that, for any constant c � 0 and any h ∈ A, |gh| � c

implies |fh| � c. So Remark 3.2 gives |f | � |g| on ∂A(X). Since the hypothesis is
symmetric in f , g, we also obtain |g| � |f | on ∂A(X). Combining, we have (3.4).

As a consequence, we have the following.
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Remark 3.3. We have

|f | � |g| on ∂A(X) ⇔ |Φ(f)| � |Φ(g)| on ∂A(X) ∀f, g ∈ A. (3.5)

We omit the proof, since it is the same as that of Remark 3 of [10].

Remark 3.4. For any fixed x ∈ ∂A(X),

E :=
⋂

f∈Fx

M(f) = {x}. (3.6)

where M(f) := {t ∈ X : |f(t)| = ‖f‖ = 1}, Fx denotes the family of all functions f ∈ A

such that x ∈ M(f) and we refer to the latter set as the M -set for f .

Proof. Assume that E contains a point y other than x. From Theorem 2.1, it follows
that every point of ∂A(X) is a generalized peak point for A, which means that, given any
neighbourhood V of x, there exists a peaking function h in A such that h(x) = 1 = ‖h‖
and |h| < 1 outside V , which means that P (h) ⊂ V . So, if we choose a neighbourhood V

of x that does not contain y, since P (h) ⊂ V , y �∈ E, a contradiction. �

We now have the following important result.

Remark 3.5. If x ∈ ∂A(X), then
⋂

f∈Fx

M(Φ(f)) contains one and only one generalized peak point. (3.7)

Proof. The proof is similar to that of Remark 5 of [10]. However, since the result is
so crucial for what follows, we reproduce the proof with due care.

We notice that M(Φ(f)) is compact. Secondly, if f1, f2, . . . , fn belong to Fx, then
g = f1f2 · · · fn belongs to Fx. Since |g| � |fi|, we obtain, in view of (3.5),

|Φ(g)| � |Φ(fi)| on ∂A(X) for each 1 � i � n.

Since ‖g‖ = 1, we have that ‖Φ(g)‖ = 1 by Remark 3.1 and |Φ(g)(ξ)| = 1 for some ξ in
∂A(X). Then |Φ(fi)(ξ)| = 1 because ‖fi‖ = ‖Φ(fi)‖ = 1 for 1 � i � n, so

⋂
1�i�n

M(Φ(fi)) �= ∅.

This proves that the family of sets {M(Φ(f)) : f ∈ Fx} has finite intersection property
and since each of them is compact, it must be that

E′ =
⋂

f∈Fx

M(Φ(f)) �= ∅.

If p ∈ E′, we can, by the device explained in § 1, replace each M(Φ(f)) by the associated
peaking set contained in it and containing p. Now we can use observation (2) of § 2.1 to
see that E′ must intersect ∂A(X).
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Thirdly, if y ∈ E′ ∩ ∂A(X), let k ∈ Fy. By the surjectivity of Φ, k = Φ(h) for some
function h ∈ A (recall that σ(k2) = σ(h2)). We claim that |h(x)| = 1. To show this,
choose any neighbourhood V of x and a function g such that |g(x)| = 1 and |g| < 1
outside V . So g ∈ Fx, and hence |Φ(g)(y)| = 1. Consider Φ(g)Φ(h) = λ ∈ A. Since Φ(g),
Φ(h) attain their maximum modulus 1 at y, we see that |λ(y)| = 1 = ‖λ‖. Again, Φ being
surjective, there exists a function µ ∈ A such that Φ(µ) = λ. Since |λ| � |Φ(g)| ∧ |Φ(h)|
on ∂A(X), by (3.5), it follows that |µ| � |g|∧ |h| on ∂A(X). But there exists a ξ in ∂A(X)
such that |µ(ξ)| = 1, and so |g(ξ)| = |h(ξ)| = 1, which implies that ξ ∈ V . Since V is an
arbitrary neighbourhood of x and h is continuous, we get

|h(x)| = 1.

Lastly, if there is a generalized peak point z other than y in E′, we can choose k in such
a way that |k(y)| = 1, |k(z)| < 1. Φ being surjective, we obtain h′ such that Φ(h′) = k.
So, by the previous paragraph, we see that h′ belongs to Fx, and so |Φ(h′)| = 1 on E′

and, consequently, |k(z)| = 1, which is a contradiction. This proves Remark 3.5. �

Let the unique point y obtained in Remark 3.5 be denoted by τ(x), since it depends
on x and nothing else. We sum up what we established above as follows.

Remark 3.6. If x ∈ ∂A(X) and f ∈ Fx, then τ(x) ∈ ∂A(X) and Φ(f) belongs to
Fτ(x). Conversely, if k ∈ Fτ(x) and Φ(h) = k, then h ∈ Fx.

We now have the following.

Remark 3.7. Φ is injective and homogeneous, i.e. Φ(cf) = cΦ(f) for any f ∈ A
and c ∈ C.

We omit the proof, since it is similar to that of Remark 7 of [10].

Remark 3.8. We have

|f(x)| = |Φ(f)(τ(x))| ∀f ∈ A ∀x ∈ ∂A(X). (3.8)

We omit the proof as it is similar to that of Remark 8 of [10].

Remark 3.9. τ is a homeomorphism of ∂A(X) onto itself.

Proof. We observe first that τ is injective. If τ(x) = τ(y), then |Φ(f)(τ(x))| =
|Φ(f)(τ(y))|, and this implies that |f(x)| = |f(y)| for all f ∈ A by Remark 3.8. By
observation (4) of § 2.1, we see that x = y. Next we show that τ is continuous. Choose
any x ∈ ∂A(X), a neighbourhood V of τ(x) and a peaking function h such that

h(τ(x)) = 1, |h(y)| � 1
2 ∀y, X \ V.

With Φ being surjective, there exists a g such that Φ(g) = h. Since |g| ≡ |Φ(g(τ))| by
Remark 3.8, if we let W = {ξ : |g(ξ)| > 1

2}, then τ(W ) ⊂ V because, if ξ ∈ W , then

|g(ξ)| = |Φ(g)(τ(ξ))| = |h(τ(ξ))| > 1
2 .
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Since |g(x)| = |Φ(g)(τ(x))| = |h(τ(x))| = 1, W is a neighbourhood of x. Thus we have
proved that τ is injective and continuous.

Now, since Φ is a bijection, we see that Φ−1 has the same properties as Φ. Thus there
would exist an injective continuous map ψ : ∂A(X) → ∂A(X) such that

|g(x)| ≡ |h(ψ(x))| ∀x ∈ ∂A(X) ∀g ∈ A.

Let g = Φ(h). Then |Φ(h)(x)| = |h(ψ(x))|. Let x = τ(y). Then |h(y)| = |Φ(h)(τ(y))| =
|h(ψ(τ(y)))| by Remark 3.8. Since functions of type |h| separate points of ∂A(X), we
get ψ(τ(y)) ≡ y and, by a similar argument, we also obtain τ(ψ(y)) ≡ y. Thus we have
proved that τ is a self-homeomorphism of ∂A(X). �

The next two remarks provide the most significant point of departure from the proof
given in [10].

Remark 3.10. We define a function ε(x) on ∂A(X) as follows. For a given x ∈
∂A(X), choose any peaking function h such that h(x) = 1. Notice that h2 is also a
peaking function and, since σ(h2) = σ(Φ(h)2), Φ(h)2 is a peaking function and, since
|Φ(h)(τ(x))| = h(x) = 1, we see that Φ(h)(τ(x)) = ±. We define

ε(x) = Φ(h)(τ(x)).

This is independent of the h that is used for its definition: if h1, h2 are two peak-
ing functions with h1(x) = h2(x) = 1, then |Φ(h1)(τ(x))Φ(h2)(τ(x))| = 1 and, since
σ(h1h2) = σ(Φ(h1)Φ(h2)), then Φ(h1)Φ(h2) is a peaking function because h1h2 is and
therefore Φ(h1)(τ(x)) = Φ(h2)(τ(x)).

Remark 3.11. We have

f(x) = ε(x)Φ(f)(τ(x)) for all x in ∂A(X) and for all f in A. (3.9)

Choose any point x in ∂A(X). Let V be any open neighbourhood of x. Since x is in ∂A(X),
there exists a peaking function h such that h(x) = 1 and the peaking set P (h) = E is
contained in V . Now, by Bishop’s Theorem 1.1, we can modify h so that it has the same
properties as before, but, in addition,

|f(z)h(z)| < max
E

|f | for all z outside E. (3.10)

Thus there exists a ξ in E such that |f(ξ)| = maxE |f | = ‖fh‖∞. Since σ(fh) =
σ(Φ(f)Φ(h)), we have ‖fh‖ = ‖Φ(f)Φ(h)‖, and so there exists a point z such that
f(ξ)h(ξ) = Φ(f)(z)Φ(h)(z). We may assume that z ∈ ∂A(X) because the set of points
where Φ(f)Φ(h) assumes the value f(ξ)h(ξ) is a peaking set and we note that every
peaking set meets ∂A(X).

Since τ is surjective, z = τ(η) for some η in ∂A(X). Now, by (3.8), we notice that

|Φ(f)(τ(η))Φ(h)(τ(η))| = |f(η)h(η)|.
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Now η must be in E because otherwise |f(η)h(η)| < |f(ξ)| by (3.10). Thus we have
found ξ, η in E such that f(ξ) = Φ(f)(τ(η))Φ(h)(τ(η)). Since ξ, η lie in V and V is
an arbitrary open neighbourhood of x, we get, by continuity of τ , f and Φ(f), that
f(x) = Φ(f)(τ(x))Φ(h)(τ(x)), and so, by Remark 3.10, f(x) = ε(x)Φ(f)(τ(x)). This
completes the proof of (3.9).

Remark 3.12. Φ is a linear isometry of A onto itself and, furthermore, Φ2 : A → A
is multiplicative.

Proof. We have already seen that Φ is a bijection and homogeneous. Let f, g ∈ A.
By (3.9), for any x in ∂A(X),

f(x) = ε(x)Φ(f)(τ(x)), g(x) = ε(x)Φ(g)(τ(x))

and

f(x)g(x) = ε(x)Φ(fg)(τ(x)), f(x) + g(x) = ε(x)Φ(f + g)(τ(x)).

Thus

Φ(fg)2(τ(x)) = Φ(f)2(τ(x))Φ(g)2(τ(x)), Φ(f + g)(τ(x)) = Φ(f)(τ(x)) + Φ(g)(τ(x)).

Since τ is surjective, we get

Φ(f)2(x)Φ(g)2(x) = Φ(fg)2(x), Φ(f + g)(x) = Φ(f)(x) + Φ(g)(x)

on all of ∂A(X) and then, by the maximum principle, on all of X. This completes the
proof of Remark 3.12. �

Finally, we have the following.

Remark 3.13. There exists a self-homeomorphism Λ of X onto itself and a function
γ(x) on X such that γ(x) ≡ ±1 and

Φ(f)(Λ(x)) = γ(x)f(x) on all of X.

Corollary 3.14. Λ(x) = τ(x), γ(x) = ε(x) for all x in ∂A(X). This is immediate
from (3.9).

Proof of Remark 3.13. We claim that if M is a regular maximal ideal of A, then
N := Φ−1(M) is also a regular maximal ideal in A. Let f ∈ A, g ∈ N . This means that
Φ(f) ∈ A, Φ(g) ∈ M , and so Φ2(f)Φ2(g) ∈ M . But Φ2(fg) = Φ2(f)Φ2(g) ∈ M and, since
M is a maximal ideal and hence a prime ideal, Φ(fg) ∈ M , and so fg ∈ N . Thus we see
that N is an ideal, closed of codimension 1 in A, and hence a regular maximal ideal. �

Notice that there exists a natural one-to-one correspondence between regular maximal
ideals of A and multiplicative linear functionals on A of norm less than or equal to 1,
i.e. the points of X by our assumption concerning the maximal ideal space of A. If
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the maximal ideal M is represented by x ∈ X, then the map ex : A → C defined by
ex(f) = f(x) ∀f ∈ A satisfies

ker(ex) = M.

Since N is a maximal ideal and is based on M , we denote its representative in X by θ(x).
We now observe that the maps Φ∗(ex) = ex ◦ Φ, eθ(x) : A → C have the same kernel,
namely N , and hence they differ from each other by a multiplicative constant γ(x). So
we obtain

ex ◦ Φ = γ(x)eθ(x),

i.e.
f(θ(x))γ(x) = Φ(f)(x) ∀x ∈ X, f ∈ A. (3.11)

Since Φ2 is multiplicative, we have

Φ2(f2) = Φ2(f)Φ2(f), (f2(θ)γ)2 = (f(θ)γ)4,

and consequently, γ2 = γ4. γ = ±1, since γ is never zero. Hence we have

|Φ(f)(x)| = |f(θ(x))| ∀x ∈ X, f ∈ A. (3.12)

We claim that θ is continuous on X. Choose any x in X and a net {xα} converging
to x. Let ξ be any limit point of the net {θ(xα)} in X ′ := X ∪{∞}. Since X ′ is compact,
such limit points do exist. From (3.12), we conclude that |Φ(f)(x)| = |f(ξ)| ∀f ∈ A.
Since the family {|f |, f ∈ A} separates points of X ′, we see that ξ is the only possible
limit point and ξ = ∞ is not possible since we can choose f so that Φ(f)(x) �= 0 but
f(∞) = 0. Therefore, θ is continuous. Since Ψ = Φ−1 has the same properties as Φ, there
exists a continuous function ν(x) from X to X and a function δ(x) = ±1 on X such that

Ψ(f)(x) = δ(x)f(ν(x)) ∀x ∈ X, f ∈ A. (3.13)

Substituting Φ(f) in place f in the above, we obtain

f(x) = δ(x)Φ(f)(ν(x)) = δ(x)γ(ν(x))f(θ(ν(x))) ∀x ∈ X, f ∈ A,

and so |f(x)| ≡ |f(θ(ν(x)))|. This gives us that θ(ν(x)) ≡ x and γ(ν(x)) ≡ δ(x). Similarly,
substituting Ψ(f) in place of f in (3.11), we obtain ν(θ(x)) ≡ x, proving that θ is a
homeomorphism of X onto itself. Now, if we let θ−1 = Λ, we get, from (3.11),

Φ(f)(Λ(x)) = γ(Λ(x))f(x) ∀x ∈ X, f ∈ A.

This completes the proof of the Main Theorem announced in the abstract.

4. Conclusion

One could ask whether it is necessary to assume in our Main Theorem that X is the
maximal ideal space of A. Indeed, it is necessary. Take, for example, A to be the alge-
bra of functions of two complex variables z1, z2 that are continuous on the closed ball
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B := {(z1, z2) : |z1|2 + |z2|2 � 1} and holomorphic in its interior. In this case, the maxi-
mal ideal space is the entire closed ball. Let X denote the union of the unit sphere and
the point P = (0, 1

2 ) and T := (z1, z2) � (z1, iz2). Let Φ(f) = f ◦ T . This verifies all
the hypotheses of the Main Theorem because, for any function f ∈ A, f(B) = f(X),
otherwise there would exist a value α of f that is assumed in the interior of B but not on
X, and, in such a case, the solution set of f(z) = α would be a compact complex analytic
set and so must be finite (see [7, Corollary 1, p. 55]), a contradiction. But there does not
exist any self-homeomorphism Λ of X onto itself such that Φ(f) = f ◦ Λ because, if it
did, Λ(0, 1

2 ) = T (0, 1
2 ). That is a contradiction because T (0, 1

2 ) = (0, 1
2 i) does not belong

to X.
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