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EDWARDS-WALSH RESOLUTIONS OF
COMPLEXES AND ABELIAN GROUPS

KATSUYA YOKOI

‘We give a necessary and sufficient condition for the existence of an Edwards-Walsh
resolution of a complex. Our theorem is an extension of Dydak-Walsh’s theorem
to all simplicial complexes of dimension > n + 2. We also determine the structure
of an Abelian group with the Edwards-Walsh condition, (which was introduced by
Koyama and the author).

1. INTRODUCTION

We recall that the covering dimension dim X of a compactum X is the smallest
natural number n such that there exists an (n + 1)-fold covering by arbitrarily fine open
sets. The characterisation of dimension in terms of mappings to spheres led to the coho-
mological characterisation of dimension under the assumption of finite-dimensionality
of a space [8]. This characterisation was the point of departure for cohomological
dimension theory. We give below the definition of cohomological dimension. The co-
homological dimension c-dimg X of a compactum X with coefficients in an Abelian
group G is the largest integer n such that there exists a closed subset A of X with
H™(X,A;G) # 0, where H*( ;G) means the Cech cohomology with coefficients in G.
Clearly, dim X < n implies that c-dimg X < n for all G. Alexandroff formulated the
theory in his paper [1].

Recent progress in cohomological dimension theory follows from Edwards’ theorem
(6] (details can be found in [13]). The theorem is based on an excellent idea, which is
the so-called Edwards- Walsh modification. An equivalent reformulation below caused
the advances: associating to each simplicial complex L, a combinatorial resolution
w: EWg (L,n) - |L| {see Definition 2.1 below) specified that c-dimg X < n if and
only if for every simplicial complex L and map f: X — L, there exists an approximate
lift f: X - EWg (L,n) of f; see [5]. Recent analysis of the theory led to a need for
those resolutions for general groups. Dydak-Walsh [5, Theorem 3.1} stated a necessary
and sufficient condition for the existence of an Edwards-Walsh resolution of an (n +1)-
dimensional simplicial complex. They {5, Theorem 4.1] also analysed the modification
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and investigated a general property of an Abelian group G that admits such a resolution
of a complex.

Because of a difficulty, Koyama and the author [11] introduced a property of an
Abelian group G that induces the existence of an Edwards-Walsh resolution of a sim-
plicial complex: an Abelian group G has property (EW) provided that there exists a
homomorphism a: Z — G such that

(EW;) a®id: Z®G - G® G is an isomorphism, and
(EW3) «*: Hom(G,G) — Hom (Z,G) is an isomorphism.

In Section 2, we give a necessary and sufficient condition for the existence of such a
resolution for all simplicial complexes of dimension > n+2, that is, (EW ) is the neces-
sary and sufficient condition. The groups Z, Z/p and Z;) satisfy such a condition. As
we have previously stated, property (EW) seems very strong to construct a resolution.
However, the condition group-theoretically give us an interesting future. In Section 3,
we see that the condition characterises the group of integers and the Bockstein groups
except quasi-cyclic ones.

Throughout this paper, Z is the additive group of all integers and Q is the additive
group of all rational numbers. Zp) is the ring of integers localised at a subset P of
P = {all prime numbers}. We denote by Z/p, Z/p>® and 2,, the cyclic group of order
p, the quasi-cyclic group of type p> and the group of p-adic integers, respectively.

For a brief historical view of cohomological dimension theory, we refer the reader
to [2, 4, 9, 10].

2. EDWARDS-WALSH RESOLUTIONS OF COMPLEXES

An important tool for characterising compacta X with finite cohomological di-
mension with respect to G' is an Edwards-Walsh resolution w: EWg (L,n) — |L| of
a simplicial complex L. For G = Z, these resolutions were formulated in [13]. The
relation of Edwards-Walsh resolutions to cohomological dimension theory and their
existence for certain other groups were discussed in [3] and [5].

DEFINITION 2.1: Let G be an Abelian group and L a simplicial complex. An
Edwards- Walsh resolution of L in the dimension n is a pair (EWG (L,n), w) consisting
of a CW-complex EW¢ (L,n) and a combinatorial map w: EWg (L,n) — |L| (that
is, w~I(JL'}) is a subcomplex for each subcomplex L’ of L) such that

(i) w }(JL™|) =|L™]| and w| () is the identity map of |L(™)]| onto itself,

(ii) for every simplex o of L with dimo > n, the preimage w~!(o) is an
Eilenberg-MacLane complex of type (@ G,n), where the sum here is
finite, and
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(iii) for every simplex ¢ of L with dimo > n, the inclusion w™!(80) —
w~!(0) induces an epimorphism H"(w~!(¢); G) - H"(w~(d0); G).
Dydak-Walsh established a property of G that characterises those groups for which
such resolutions exist for all {n + 1)-dimensional simplicial complexes.

THEOREM. [5, Theorem 3.1] Let G be an Abelian group and n > 1. An Edwards-
Walsh resolution w: EWg (L,n) — |L| exists for all simplicial complexes L with
dimL < n+ 1 if and only if there exists an integer m > 1 and a homomorphism
a: Z — G™ such that any homomorphism : Z — G factors as § = ﬁ o o for some
B:G™ = G.

We extend the theorem above to all simplicial complexes of dimension > n + 2.
Before stating our theorem, we recall a proposition in [11].

PROPOSITION 2.2. Let o be an (n+ 2)-simplex and (K(G,n),S™) a pair
of an Eilenberg-MacLane complex of type (G,n) and an n-dimensional sphere S™ in
K(G,n). Let E be the CW-complex obtained by replacing each (n + 1)-face 7 of 8o
by (K(G,n),S") along 0t = S™. Then we have

H,(E)~ (G/Ima)dG&--- &G
2
n+

and an exact sequence
Z23Go 96 -5 (G/Ima)®Gd-- &G — 0,
N s’ _,2._/
n+3 n+4

where a = m,(S™ — K(G,n)) and A, and q are given by
Aa(]) = (a(])a _a(j)a B | —a(J))

and
Q((go,gh _ ,!]n+2)) = ([90],91 +90,-.-39n42 +90)~

PROOF: We write o as the union 79U U---UTy42, where each 7; isan (n +1)-
face of o. Then by the construction,

E = K(Go,n)UK(G1,n)U- -UK(Gpy2,n)

and
K(Gi,n) N K(Gj,n) = 7; N 1; for each pair 4,5 € {0,1,... ,n+ 2},
where G; = G. We note by use of Mayer-Vietoris exact sequences that
H,(K(G1,n)U---UK(Gn42,n)) & Hy(K(G1,m)) @ - - ® Hy (K (Gny2, )
=G @ -DGpy2-
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Next, let us take the following Mayer-Vietoris sequence of the couple { K(Go,n), K(G1,n)
U---UK(Gny2,n)}:

Ho(K(Go,n) N (K(G1,m) U+ - UK (Gusa, n))
- Hn(K(GOan)) &b Hn(K(Glan) U---u K(Gﬂ+2an))
— Hn(FE) 3 H, (K(Go,n)ﬂ (K(G’I,n) u.---u K(Gn+2,n))) — .

Since 919 = K(Go,n) N (K(G1,n) U---U K(Gny2,n)), the sequence above can be
reduced to the exact one:

Z23Go® @ Cpya — Ha(E) = 0.
The homomorphism ¢: Go®G1 DD Gpy2 = (Go/Ima) ®G,1 @ - - ®Gpy2 given by

q(90, 91, - - -» gn+2) = ([90], 91 + 9o, - - - 1 Gn+2 + g0)

clearly induces a homomorphism ¢: (G&®---® G)/ImA4, = (G/Ima)dG&--- 6 G,
where [g], g € G, is the equivalence class of g in G/Ima. Then we have easily that g
is an isomorphism. g

PROPOSITION 2.3. Let a: Z — G be a homomorphism from the group of inte-
gers to an Abelian group G. Then the homomorphism a*: Hom (G, G) — Hom (Z, G)
induced by « is a monomorphism if and only if Hom (G/Ime,G) = 0.

THEOREM 2.4. Let a: Z — G be a homomorphism from the group of integers
to an Abelian group G. Then the following are equivalent:

(1) there exists an Edwards-Walsh resolution w: EWg (L,n) — |L| of each
simplicial complex L with dim L > n + 2 such that
(iv) the inclusion-induced homomorphism 7, (w=1(97)) — 7, (w™(7))
is a for each (n + 1)-simplex  of L, and
(v) the inclusion-induced homomorphism 7, (w=1(80)) — 7, (w™1(0))
maps the subgroup G/Ima to zero for any (n+ 2)-simplex o
of L (where if n = 1, we consider the Abelianisation of the
fundamental groups),
(2) the homomorphism o*: Hom (G,G) — Hom (Z,G) induced by « is an
isomorphism.

REMARK 2.5. The subgroup G/Ima in condition (v) above depends upon the enu-
meration of (n + 1)-faces of each (n + 2)-simplex, since we calculate the group by
Proposition 2.2. We also note that (v) is natural for constructing our desired resolu-
tion.
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PrOOF: We first establish the necessity of the group condition. Suppose that there
exists an Edwards-Walsh resolution w: EWg (0,n) — o of an (n + 2)-simplex o with
(iv) and (v). By (iii) of Definition 2.1 and (iv), &* is an epimorphism. To show that
o* is a monomorphism, it suffices to prove Hom (G/Ima, G) = 0 by Proposition 2.3.

Let v € Hom (G, G) with y(Ima) = 0.

Let 7g,. .., Thy2 beall (n + 1)-faces of 0 and w™(7x) = K(Gg,n), where G =G.
We can suppose, if necessary by changing the enumeration of 7;, that the subgroup
Go/Ima maps to zero in 7, (w™!(0)) by condition (v) and Proposition 2.2.

Choose a continuous map f,: (K(Go,n),87) — (K(G,n),*) which represents
the homotopy class v with v(Im«) = 0 [14, p.244, Theorem 7.2].

Extend the composite Tow|w_1(a(,,)) : w™(e™) - K(G,n)to the map F: w~1(do)

— K(G,n), where T: 6™ — K(G,n) is the constant map to *, defined by
F|k(Gy,n) is the constant map to * for k=1,...,n+ 2,

and
FlkGom) = fr-

Let F: w=!(c) = K(G,n) be an extension of F by (iii) of Definition 2.1. We note
by (v) and the Hurewicz theorem that for each g € G, . (([g],0,...,0)) = 0 on the
n-dimensional homology groups, where i: w™(80) < w™1(0).

Go®G1® - ®Gny2

g

Hn(w™'(80)) = Go/Ima®G1® - ® Gnys —— G

“

H,(w=(0))

Therefore, for g € Gg = G, we have

0= F, 0i.(((g],0,...,0)) = F.(([g],0,-..,0))

=F,oq((g9,-9,---,—9)) by Proposition 2.2
=(f5).(9) +0
=(9).

This means that + is trivial. Therefore Hom (G/Ima, G) = 0.
Conversely, we suppose that a* is an isomorphism. The construction is similar
to that in previous works [5, 3, 11], that is, our task is only to state the Fact below
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without condition (EW ) in the Introduction. However, we again give a detailed proof
for completeness.

We first consider the case n > 1 and dimL < oco. Proceed by induction on
m =dimL. If m < n, we define EWg (L,n) = |L| and w = idr,.

Suppose that m = n + 1. Attaching via the identity map the mapping cylinder
M (o) of the map 9o — K(G,n) induced by o on the subcomplex 8o of |L(")| for
each (n + 1)-simplex o of L, we have the CW-complex EW¢g (L("*1),n). The map
w is chosen so that w(M(o)\ 80) C 0\ 90 and w is an extension of the identity map
id|(n))- Conditions (i) and (ii) of Definition 2.1 and (iv) are trivial. Condition (iii)
of 2.1 follows from the surjectiveness of a* and the universal coefficient theorem for
cohomology.

We next consider the case m = n + 2. Suppose inductively that we have con-
structed the Edwards-Walsh resolution w: EWg (L("*1,n) — |L("*+1)| with condition
iv). Then we have the homology group H,(w™'(80)) ~ (G/Ima) G & ---® G by
;roposition 2.2. ( ) n+2

Since w~1(80o) is simply connected, and Hy (w‘l(aa)) is trivial for k <n -1,

tn(w=1(00)) ~ (G/ Ima) @ @5 G)

by the Hurewicz isomorphism theorem. Construct an Eilenberg-MacLane space of type
n+2
( & G, n) from w~1(80) by attaching (n + 1)-cells to kill the subgroup G/Ima, and
1

next attaching cells of dimension > n + 2 to kill higher dimensional homotopy groups.
Moreover, extend the map w such that the interior of each cell used to construct the
Eilenberg-MacLane space is mapped into ¢ \ 8o. We use the same notation w for the
extension.

Conditions (i) and (ii) of Definition 2.1 have been built in. For checking condition
(iii) of 2.1, we show that for every (n + 2)-simplex ¢ € L, each map f: w™1(80) —
K(G,n) extends over w~'(o). By the construction,

w—-l(o_)(n+1) - w—l(aa)(n+l) U UBn+11
B;

where f; represents an element of G/ Ima in m, (w='(d0)) . So, we have £.([8;]) =0 in
ma (K (G,n)) by Proposition 2.3. Hence f can be extended over w=1(c)"*"). Therefore
we have an extension of f over w™1(o) by the triviality of the higher homotopy groups
of K(G,n). Condition (v) is satisfied by the construction.

Finally we consider the case m > n + 3. Suppose that we have constructed the
Edwards-Walsh resolution w: EWg (L™, n) — |L™~Y| with conditions (iv) and
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(v). Furthermore we assume that for n +1 € dim7 = k € m — 1, w™(7) is an
kCn41

Eilenberg-MacLane space of type ( &d G, n) , where .C, = (r!/s!(r — s)!). Then we
1
can state the following:

FacT. Hp(w™'(80)) * G®--- &G for any m-simplex o of L.
S —
mcn+1
PROOF: For our purpose we show the statement for any face 7 X ¢ with dimr >
n+3.
Let dim7 = n + 3. We write d7 as the union 7o U7 U :--U 7,43, where each 7;
is an (n + 2)-face of 7. Then we have the following Mayer-Vietoris exact sequence:

(*) H, (w_l(a'ro)) — H, (w"l(’ro)) ® H, (w“l('rl U---u Tn+3))
— H, (w'l(a'r)) — 0.

By Hom(G/Ima,G) = 0 and algebraic calculations based on Proposition 2.2, the
sequence can be easily reduced to the exact sequence:

G/lmagGo --06)“H Go---06)0CGo---0C
————

- — N ]

v

n+2 n+2 n+3Cn+1
— H,(w™(07)) — 0,

where homomorphisms ¢ and j are defined by

i(([go]’gla ce ;gn+2)) = (911 <. ’gn+2)

and
j(([QO],gh s »gn+2)) = (glv vy Gnt2, 07 sy 0)
Thus the exact sequence means that the statement is true for dimr =n + 3.

For dim7 = n+ k < m (k> 3), we can easily show the following by double
induction starting from the case above, using Mayer-Vietoris exact sequences: Let

T0,T1,---,Tns+k be all (n + k — 1)-faces of 7. Then for i < n + 2,
n+k—1Cn+1 ntk—1—(i-1)Cn+1-(i—1)
Hn(w—l(7’1U"'UT,'))% @ G- @ G,
1 1

and for n+3<j<n+k,

n+k=-1Cn+1 k—2Co

How ' (nu--um))~ @ Ge-o G
1 1
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Furthermore, we state that the inclusion w=(87m) - w™ (11 U---U 7Ty 4%) induces the
next homomorphism on the n-dimensional homology groups up to automorphisms:

(gla B agn+k_1C,-,+1) — (gl, fee :.9,.+k_lcn+1, 0) sy 0)
Then we have, by the Mayer-Vietoris exact sequence (*) in case of dimr = m,

n+k—1Cn+1 k-2Co

H,(w™1(07)) = @ G -0 @ G

n+kCnt1

z@G.
1

This completes the proof of the fact. 0

Let us return to the construction. Recall that m > n+3. We have m, (w™1(d0)) =~
G® - &G for every m-simplex o of L by the Fact and the Hurewicz isomorphism
[y ——

mcn+1
theorem. Hence construct an Edwards-Walsh resolution of L by attaching cells of

dimension greater than n + 1 to w™1(8dc) for dimo = m, and extending the map w
such that the interior of new cell is mapped into ¢ \ do. The extending map satisfies
the property:

w(EWG (L(m), n)\ EWge (L(m‘l), n)) C ‘L(m)I\IL(m—l)"
Here we note that
(%) w—l(aa)(ﬂﬂ) - w-—l(a)(n+1)

for any m-simplex o of L. Then conditions (i) and (ii) of Definition 2.1 for L = L(™)
are easily seen to be true. Condition (iii) of 2.1 follows from (x) and properties of
K(G,n). Conditions (iv) and (v) are our inductive assumption.

If dim L = oo, by applying the previous construction inductively, we can have our
desired Edwards-Walsh resolution.

In case n = 1, it suffices to apply an argument of the Abelianisation (for details,
see [5], [11,Theorem 2.3]). 0

REMARK. In works [5, 11], condition (EW,), which appeared in the Introduction, was
essentially used to show the Fact above.

The groups Z, Z/p and Z(, satisfy such a condition, that is, there are such
resolutions with respect to the groups. (These are well-known, [13, 5] and [2, 3].)

ExampPLE. If G = Z/p® Z(q) or 2,,, where p # g, then Edwards-Walsh resolutions
w: EW¢ (L,n) — |L| exist for all n and all simplicial complexes.
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3. PROPERTY (EW) AND ABELIAN GROUPS

THEOREM 3.1. Let G be an Abelian group with property (EW). Then the
group is precisely either a cyclic group or a localisation of the integer group at some
prime numbers.

REMARK. We note that if G is either a cyclic group or a localisation of the integer
group at some prime numbers, then G has property (EW).

The following fact essentially comes from our previous paper [11]. We give a proof
for completeness.

PROPOSITION 3.2. Let G be an Abelian group with property (EW). Then
we have the following properties.
(i) The group G/Ima is a torsion group.
(ii) If Imc is an infinite cyclic group, G is torsion-free.
(iii) If Ima is a finite cyclic group, G = Ima.

Proor: (i) If G/Im has an element of infinite order, so does G. However, this
is a contradiction by the triviality of (G/Ima)®G, which follows by the surjectiveness
of (EW ).

(ii) Suppose that the group G has an element of order p. Then the group has
a direct summand Z/p* for some 1 < k < oo by [12, Corollary 3]. Since (Ima) N
Gp = {0} by the assumption of (ii), G/Ima also contains Z/p* as a direct summand.
Therefore Hom (G/Ima,G) has a copy of the non-trivial group Hom (Z/p*,Z/p*).
This is a contradiction by the injectiveness of (EW ). It follows that G is torsion free.

(iii) We note by (EW ;) that o induces an isomorphism G Z@ G~ G®G.

The hypothesis of (iii) means that Ima = Z/q for some positive integer g. Then
we have

G=ZQRG= (Ima)®G = G/qG.

Namely, G = G,. Furthermore the group G is the direct sum of finite cyclic groups by
(7, Theorem 61.3). If Ima # G, then so is G/Ima.

Suppose (G/Ima), is non-trivial. Then G and G/Im e contain pF and p' cyclic
groups as direct summands, respectively. But this is a contradiction by Hom (G/ Ima, G)
= 0. Therefore Ima = G.

LEMMA 3.3. The group G is divisible by a prime number p from P = {p:
(G/Ima), # 0}.

PROOF: Let p € P. Then G/Ima has a direct summand Z/p* for some 1 <k <
oo by [12, Corollary 3]. It follows from the surjectiveness of (EW, ) that Z/p*®G = 0.
Thus G = pG. If k = 0o, use that G is torsion free by Proposition 3.2 (iii) and (ii). [
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PROOF OF THEOREM 3.1: If G/Ima = 0, the group G is a cyclic group.

Let G/Ima#0. Put P= P\ P, where P is the set of all primes. Then we define
a function f: Zpy = G by f(n/m) = na(l)/m. Here, we note that for each product
g of numbers from P and g € G, there exists a unique element z € G such that gz = g
by Lemma 3.3 and Proposition 3.2 (iii) and (ii). We easily see that the function is an
isomorphism. 0
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