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A Geometric Extension of Schwarz’s
Lemma and Applications

Galatia Cleanthous

Abstract. Let f be a holomorphic function of the unit disc D, preserving the origin. According
to Schwarz’s Lemma, |f'(0)| < 1, provided that f(ID) c D. We prove that this bound still holds,
assuming only that f(ID) does not contain any closed rectilinear segment [0, e'¢], ¢ € [0,27], i.e.,
does not contain any entire radius of the closed unit disc. Furthermore, we apply this result to the
hyperbolic density and give a covering theorem.

1 Introduction and Statement of Results

Let f:D — D be a holomorphic self-map of the unit disc D = {z € C : |z| < 1} with
f(0) = 0. The classical Scwharz Lemma asserts that

(L) f'(0)] <1.

Numerous geometric variations and extensions of Schwarz’s Lemma have been
proved; see, for example, [2-6,8,14] and [11, Chapter 4].

Here we will prove a geometric extension of Schwarz’s Lemma, inspired by a recent
theorem of Solynin [14, Theorem 4].

Let A4 be the rectilinear segment [0, e’?], ¢ € [0, 27]. Our purpose is to prove that
the bound (1.1) still holds under the assumption A4 \ f(ID) # &, for every ¢ € [0, 27].
This hypothesis is, of course, weaker than f(D) c D and geometrically means that
the image f(ID) does not contain any of the closed radii [0, ¢’?], ¢ € [0,27], of the
unit disc.

Theorem 1.1 Let f:ID — C be a holomorphic function with f(0) = 0. Assume that
Ag N f(D) # @, for all ¢ € [0,27]. Then

(1.2) f'(0)] <1.
Further, equality holds in (1.2) if and only if f has the form f(z) = cz, where ¢ € C and
|| = L

The main vehicles for the proof are polarization with respect to circles and the
hyperbolic density (see Section 2).
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As Solynin did in [14], we will present two equivalent formulations of Theorem 1.1
(cf. [14, Corollaries 1 and 2]). The first one involves the density of the hyperbolic met-
ric, which is presented in Section 2.

Corollary 1.2 Let Q be a hyperbolic domain in C. Suppose that there exists a point
zo € Q for which A(zg, Q) < k, for some k > 0. Then Q either contains a closed segment
with one endpoint at zy and length 2/k, or it coincides with the disk of radius 2/k and
center zg.

This is proved by applying Theorem 1.1 to the function f(z) = % (G(z)—z0), where
G:D - Q is a universal covering map of Q with G(0) = zo.

Furthermore, Theorem 1.1 can be adapted to a covering theorem for radial seg-
ments.

Corollary 1.3 Let f:ID — C be holomorphic with £(0) = 0. If|f (0)| > 1, then either
f(D) =D, or f(ID) contains a closed segment with one endpoint at the origin and length
L

Covering properties of holomorphic functions are a classical subject in geometric
function theory. We refer to [7, §510-11] and references therein for more information.

The article is organized as follows. In Section 2 we present the basic tools of our
proofs: the hyperbolic density and polarization with respect to circles. In Section 3
we prove Theorem 1.1. Throughout this article we will denote by D(zg, r) the disc of
radius r > 0 centred at zy € C, by rD the disc D(0, r), and by C, its boundary.

2 Preliminaries
2.1 Hyperbolic Density

Let Q) be a hyperbolic domain in the extended complex plane Co; that is, the comple-
ment Co \ Q of () contains at least three points. Then the hyperbolic density A( -, Q)
(the density of the Hyperbolic or Poincaré metric for Q) is defined as follows. Let
h:D — Q be a holomorphic universal covering map (see e.g., [1, p. 41], [10, p. 680]).

Then

(2.1 A(h(2), Q)N (2)| = ﬁ, for every z € D.
-z

For example if Q = D, then (2.1) gives

(2.2) Mz, D) = ﬁ, for every z € D.

The Principle of the Hyperbolic metric (see [10, p. 682], [12, p. 49]) implies that if
D, Q are hyperbolic domains and f: D — Q is a holomorphic function, then

(2.3) AM(f(2),Q)|f'(z)| < Mz, D), foreveryzeD,

with equality if and only if f is a covering map (this result can be found also in [1, p.
43] as the general version of the Schwarz-Pick lemma).
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The inequality (2.3) easily implies that for hyperbolic domains D c Q,
(2.4) Mz, Q) <AMz,D), foreveryzeD.

Equality occurs if and only if D = Q.
For more information about the hyperbolic density, we refer the reader to [1] and
[10, Chapter 9].

2.2 Polarization with Respect to Circles

Let r > 0 and C, be the circle with radius r and center at the origin. Let also z € C,
z # 0. The symmetric point of z with respect to the circle C,, is the point z = g We
also set 0 = o0, 50 = 0.

The polarization of a set ) c C with respect to the circle C, is defined as

Pc, () = ((QuQ)nrD) u((Qn Q) n(C D)),
where Q = {Z: z € Q}, is the reflection of the set Q with respect to C,.

Remark 2.1 By describing the polarization of Q) with respect to C, we have that a
point z belongs to Pc, Q if at least one of the followings holds:

(i) zeQand|z|<r,

(i) ZeQand|z| <,

(iii) z,Z€ Q.

The next result follows by a theorem of Solynin [13], which gives the behaviour of
hyperbolic density under polarization with respect to circles. Let Q be a hyperbolic
domain containing the origin and C, the circle as above. Then

(2.5) (0, P, Q) < A(0, Q).

Equality holds in (2.5) if and only if Q = P¢, Q or Q = P¢, Q.

We mention here that the hyperbolic density A(z, Pc,Q) of Pc,Q is defined for
every connected component of Pc, Q.

For more information about polarization, we refer the reader to [7,13] and the
references therein.

3 Proof of Theorem 1.1

We consider the family F of holomorphic functions f:ID - C, with f(0) = 0 and
Ag N f(D) # @, for all ¢ € [0, 27].
By applying Montel’'s normality criterion, we see that J is a normal family (cf. [14]).

Lemma 3.1 The family J is compact.

Proof As J is a normal family we only have to prove that the limit of every locally
uniformly convergent subsequence belongs to F. Let { f, } ,»1 ¢ F be a sequence that
converges locally uniformly to a function f. The function f is holomorphic in D with
£(0) =lim,_, f4(0) = 0. It remains to show that for all ¢ € [0,27], Ag \ f(D) # @.
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Suppose that there exists ¢ € [0,27] such that Ag \ f(ID) = @. But f, € F forall
n €N, so for all n € N there exists w, € Ay \ f,(ID). Since Ay is compact, there exists
a subsequence w,,, converging to a point wg € Ag. Also, Ay c f(ID); so there exists
zo € D such that f(zy) = wo.

Since zy is a root of the nonconstant holomorphic function f(z) — wy, there exists
r > 0 such that f(z) # wy for all z € D(z¢,7) ~ {20}, where D(zg,r) c D. Let

m = min{|f(z) - wo| : |z — 20| = 1}.
As f,, converges to f uniformly in D(zo, r), there exists k; € N such that
fu(2) = F(2)| < % forallk > k; and forall z € D(zo, 7).
Also, as w,,, — w, there exists k, € N such that
[Wa, — wo| < %, for all k > k,.

Let ko = max{kj, k, }. Then for all z with |z — z¢| = r and for all k > ko,

m m
|(f‘ﬂk(z) _Wnk) - (f(Z) _W0)| < |fﬂk(z) —f(Z)| + |W0 _Wnk| < ? + ?
< |f(Z) - W0| .
Therefore, by Rouche’s theorem, for k sufficiently large, the function f,, (z) — w,, has
zero in D(zy, 1), a contradiction. [ |

We are now ready to proceed with the proof of our main result.

Proof of Theorem 1.1 Since JF is a normal and compact family, there exists F € &F
such that

[F'(0)] = sup|f(0)].
feTF

As the function h(z) = z belongs to the family F, we deduce that
(3.1) |F'(0)] > 1.

Let Q = F(D) and let G: D — Q be the universal covering map of Q, with G(0) = 0
and G'(0) > 0 (see e.g, [1, p. 41]). The function G belongs to the family F, because
G(D) = Q. The general analytic function G maps Q into D, and hence by [9, Theo-
rem 2.20], F is subordinate to G. By the theorem of subordination [9, Theorem 2.21],
|F'(0)| < |G'(0)], and since F is the maximal function for the family F, we have the
equality |F'(0)| = G'(0). By (2.3) and (2.2)

1(0, Q)|F'(0)] = 1(0,Q2)G'(0) = A(0,D) = 2.

Hence, by the equality case of relation (2.3), F is a holomorphic covering of D to

Q with F(0) = 0 and
2

(3.2) [F'(0)| = 0.0)

Let M =D~ Qand
a=inf{|z]:ze M}, p=sup{|z|:z¢€ M}.
Since F(0) = 0, we have « > 0.
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We consider the following cases.

Casel: a = . Then for all z € M, |z| = a and hence M ¢ C,. We claim that M = C,,.
Suppose that there exists zg = ae’® ¢ M. Then zo € Q and as Ag, ~ Q # @, there
exists 7 € [0,1] \ {a} such that z; = re’® ¢ Q and therefore z; € M. But if |z;| =
r < a, then inf,pr|z| < 7 < a; a contradiction. In the same way, if |z;| = r > a, then
sup, ., 2| > r > &, which also gives a contradiction. Hence, M = C,.

If « € (0,1), then there exists z € Q with |z| > a. This is absurd, because Q is
connected, C, N Q) = @ and 0 € Q. Therefore, a = 1.

As Q is connected, we conclude that O c ID. Hence, by Schwarz’s Lemma,
|F'(0)] < 1. By (3.1), |[F'(0)| = 1. So we have equality in Schwarz’s Lemma. Therefore,
F(z) = cz, where ¢ € Cwith || =1and Q = D.

Case 2: 0 < & < 8 < 1. We are going to show that this case cannot occur.

Wesety:\/oc_ﬁ.Notethatoc<y</3,ands00<y<1.

Let C, be the circle with center at the origin of radius y and let €2, be the connected
component containing 0 of the polarization of ) with respect to the circle C,.

Let F;:ID — Q; be the holomorphic universal covering of Q; with F;(0) = 0 and
F/(0) > 0. We show that F; € F.

Let ¢ € [0,27]. It suffices to prove that Ay \ Q; # @. Since F € F, there exists
z4 € Ag \ Q. Let Zy be the symmetric of the point z, with respect to the circle C,.

o Ifzy ¢ Q, then z4 ¢ Pc,0> Q0,50 Ap \ Q) # @.
* If zg € Q and z4 is in the exterior of the circle C,, then z,4 ¢ Pc, Q) 5 Qy, and as
before Ay \ Q; # @.
* If z4 € Q and z; is in the interior of the circle C), then zg ¢ Pc, Q 5 Q. It remains
to show that 0 < |Z| < 1. But & < |zg4| < B; hence
2 2
0<a:%g|é;|:yj:y—s“—ﬁ:ﬁsl.
B Zg]  lzgl T«
So in all cases, Ay \ Q; # @, which gives F; € J.
Since F;: D - Q; by (2.3) and (2.2), we get

, 3 2
(33) Fl(0) = o
But from (2.5),
(3.4) A(0,Q4) < A(0,Q).

So combining (3.2), (3.3), and (3.4) we have that F{(0) > |F’(0)|, and as F is a maximal
function for the family &, we have F;(0) = |F’(0)|. Therefore, we have equality in
(3.4), and hence by the equality case of (2.5), we have either QO = Q; or Q = Q,. The
latter case is rejected because (; contains co and F is holomorphic, hence Q = Q.

We now consider the set Q, = QuUyD. Since « < y, there exists zo € M with |zo| <y
and hence Q # Q,. Therefore, (2.4) gives

(3.5) 1(0,Q;) < 1(0,Q).

We will prove that Q, has the geometric property Ay \ Q, # @, for every ¢ €
[0,27]. We assume conversely that there exists a ¢ € [0,27] such that Ay \ Q, = @.
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This means that Q, contains the set By = {re’? : y < r < 1}. But since Q = Q is
polarized with respect to C) and By lies in the exterior of C,, we have that Pc By c Q
and so {re’? : y? <r <1} c Q. By the fact that Ay \ Q # @, there existsazg € Ay \ Q,
with modulus |zo| < y* < «. But this means that zo € M and |zy| < a, which is a

contradiction. So Ag \ Q, # & for every ¢ € [0, 27].

We consider the holomorphic universal covering F,:ID — Q, with F,(0) = 0 and
F;(0) > 0. Then F, € JF and therefore by (2.3), (2.2), (3.3), and the fact that F, is a
maximal function

2 ) L2
MZFZ(O)SFI(O)_i

A(0,0)’
which contradicts (3.5). So Case 2 cannot occur.
Therefore, for every f ¢ F,|f"(0)| < |[F (0)| = 1.
If |f'(0)| = 1for some f € F, then f is a holomorphic covering of (D). If we
consider again the set M and the cases « =  and o < f3 as above, we conclude that
f(z) = cz for a constant ¢ € C with |¢| = 1 and the proof is complete. [ |
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