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ABSTRACT. Polynyas and leads are key elements of the wintertime Arctic sea-ice cover. They play a

crucial role in surface heat loss, potential ice formation and consequently in the seasonal sea-ice budget.

While polynyas are generally sufficiently large to be observed with passive microwave satellite sensors,

the monitoring of narrow leads requires the use of data at a higher spatial resolution. We apply and

evaluate different lead segmentation techniques based on sea-ice surface temperatures as measured by

the Moderate Resolution Imaging Spectroradiometer (MODIS). Daily lead composite maps indicate the

presence of cloud artifacts that arise from ambiguities in the segmentation process and shortcomings in

the MODIS cloud mask. A fuzzy cloud artifact filter is hence implemented to mitigate these effects and

the associated potential misclassification of leads. The filter is adjusted with reference data from thermal

infrared image sequences, and applied to daily MODIS data from January to April 2008. The daily lead

product can be used to deduct the structure and dynamics of wintertime sea-ice leads and to assess

seasonal divergence patterns of the Arctic Ocean.
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1. INTRODUCTION

Sea ice covers a substantial part of the Arctic Ocean
throughout the year and yet does not entirely separate the
ocean from the atmosphere. One of its key features is the
presence of leads: recurring and elongated areas of open
water within the closed pack ice. Leads are characterized by
a very strong exchange of heat and moisture between the
relatively warm ocean and the cold winter atmosphere (e.g.
Maykut, 1982; Perovich and others, 2011). As a result, new
ice is forming within leads and thereby contributes to the
seasonal sea-ice mass balance. Leads have moreover been
recognized as a source of global methane emissions, which
makes them a potential driver for greenhouse gases (Kort and
others, 2012). Sea-ice leads and associated thin-ice areas are
valuable diagnostic parameters for quantification of sea-ice
drift patterns (Kwok and others, 2013) and long-term sea-ice
variability. Hence, especially in light of the observed trends
in Arctic sea-ice extent (Cavalieri and Parkinson, 2012;
Stroeve and others, 2012), and with respect to the projected
future changes in the Arctic climate system, the structure
and dynamics of leads represent essential parameters for
global change monitoring (e.g. Holland and others, 2006;
Koenigk and others, 2013). Sea-ice models generally have
too coarse a resolution to simulate leads explicitly. Instead,
subgrid lead fraction in global and regional sea-ice/ocean
models is parameterized (e.g. Timmermann and others,
2009). Since the presence of leads has a strong effect on the
atmospheric boundary layer and ocean processes, verifica-
tion datasets for lead parameterizations are needed.

Monitoring of leads has been performed in previous
studies using airborne and satellite sensors. Image cross-
correlation techniques were applied to synthetic aperture
radar (SAR) data and evaluated by Fily and Rothrock (1990)
to identify lead opening and closing areas. Key and others
(1993) investigated the occurrence of leads by means of
thermal infrared (IR) and visible satellite imagery from the
Advanced Very High Resolution Radiometer (AVHRR) and
Landsat. They focus on the retrieval of lead width for some
image frames. In a similar manner, binary lead maps for

specific Arctic regions are produced from AVHRR data by
Lindsay and Rothrock (1995) using the concept of potential
open water per pixel and a fixed threshold that is evaluated
by comparison with visible data. A cloud mask is applied
manually, which limits the spatial and temporal extent of the
study. A region-growing approach for the detection of leads
from airborne imagery during a field campaign is presented
by Tschudi and others (2002). Their processing depends on
manual selection of seed points within leads. More recent
studies address the potential of shape-constrained segmen-
tation of ice floes (Tarabalka and others, 2012) and the
detection of leads from airborne visible imagery (Onana and
others, 2013) for single case studies.

A pan-Arctic lead proxy is provided by Röhrs and
Kaleschke (2012). They use passive microwave data to
derive Arctic-wide lead concentration. The retrieval of a
lead concentration in principle provides sub-pixel-scale
resolution, but the microwave radiometer resolution is still
too coarse to identify >50% of the lead area that is visible in
500m resolution optical imagery (Röhrs and Kaleschke,
2012). So far, no product exists that yields pan-Arctic lead
maps at a resolution higher than 5 km2 on a daily basis.
However, such a dataset would be highly valuable for the
verification, assessment and parameterization of global
climate models, ice drift patterns, atmosphere–ice–ocean
processes and microwave satellite data (Röhrs and
Kaleschke, 2012; Bröhan and Kaleschke, 2014).

Therefore, this work aims at investigating the occurrence
of sea-ice leads in the Arctic Ocean from thermal IR satellite
data with 1 km2 spatial resolution. We use thermal IR data
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) for the retrieval of pan-Arctic lead maps for
January–April 2008. The choice of year is arbitrary, but we
aim to provide a method that is also applicable to longer
time series. Here we focus on the identification of leads and
the implementation of a novel filter technique to avoid cloud
artifacts in the daily maps. This approach advances the
potential to retrieve daily lead maps operationally from
satellite data at a resolution of 1 km2.
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We first provide an overview of the data used and the
methods applied to segment leads out of thermal IR imagery.
We then describe insufficiencies in the maps obtained due to
cloud effects, and propose a new technique, namely a fuzzy
cloud artifact filter, to filter out the resulting misclassified
leads. In Section 3.3 we tune the filter using manually
selected case studies and determine the obtained filter
performance. Subsequently, we show monthly aggregates of
the resulting daily lead maps for January–April 2008. Finally,
we discuss the remaining shortcomings of, and the future
potential for improvements to, the suggested technique.

2. DATA AND METHODS

2.1. Satellite data

MODIS satellite data are used in this study. MODIS is an
instrument on board the two polar orbiting satellites Terra
and Aqua, which are part of NASA’s Earth Observing System
(EOS). Terra MODIS and Aqua MODIS view the entire
Earth’s surface every 1–2 days, acquiring data in 36 discrete
spectral bands from the optical to the thermal IR wavelength
region. The swath width of MODIS is 2330 km. Continuous
measurements are combined to so-called ‘tiles’ after every
5min of acquisition, resulting in an array with 2030 (‘along-
swath’)�1354 (‘across-swath’) gridpoints. Two MODIS
products are used in this study:

1. The MODIS MOD29/MYD29 product (Riggs and others,
2006; Hall and Riggs, 2007) provides ice surface
temperatures with an accuracy of �1.6K and a geometric
resolution of 1 km2 at nadir. MOD29/MYD29 ice surface
temperatures are obtained from the US National Snow
and Ice Data Center (n5eil01u.ecs.nsidc.org/SAN/). The
MODIS cloud mask (MOD35) is integrated in the
product; however, the cloud-mask algorithm has dif-
ficulties in identifying sea smoke and thin low clouds
(Ackerman and others, 2006), especially during the polar
night, which eventually results in high ice surface
temperatures that are not attributed to real surface
features. We downloaded all available swaths from the
MOD29/MYD29 dataset that cover the region north of
658N. This preselection was carried out using the
metadata available for each MODIS swath.

2. The MODIS MOD02 data contain calibrated at-aperture
radiances for all 36 bands. MOD02 data were acquired
from the Level 1 and Atmosphere Archive and Distri-
bution System (LAADS) at the NASA Goddard Space
Flight Center (http://ladsweb.nascom.nasa.gov/). The
array acquired in channel 2 (841–876nm) is extracted
from the MOD02 dataset. Channel 2 provides a reso-
lution of 250m�250m and hence serves as a useful
reference for validation of segmentation techniques that
are applied to the thermal IR data.

2.2. Lead segmentation

Leads (thin ice and open water) are represented by negative
brightness anomalies (Fig. 1a) and exhibit a positive surface
temperature anomaly (�Ts) compared with the regional
surface temperature distribution (Fig. 1b) during winter
when the surface temperatures of thick ice are well below
the freezing point of sea water. However, �Ts values are not
representative for any surface classes if no global (scene-
independent) tie point for normalization is used. This would
motivate the use of the potential open-water parameter

(Lindsay and Rothrock, 1995; Drüe and Heinemann, 2004),
which essentially represents a physically based normal-
ization of �Ts with the freezing temperature of open water.
However, here we aim to segment leads swath-wise with a
binary approach, for the reasons itemized in Section 3. In
this regard, a cross-scene normalization is not required.
Moreover, the assumption of a tie point at –1.88C suffers
essentially from the �1.68C accuracy of MODIS surface
temperatures (Hall and Riggs, 2007). Hence, we present
different segmentation techniques to separate leads from sea
ice based on �Ts maps. �Ts per pixel is calculated as the
deviation from the median in a box of 51� 51 gridpoints.
This box size is sufficient to exceed the scale of leads, while
keeping the effect of regional surface temperature gradients
due to differences in atmospheric conditions small. Swath-
scale temperature gradients are removed with this approach
(Fig. 1c). Provided that the surface temperature anomaly
over thick ice follows a normal distribution with a mean of
zero, leads introduce an amplification of the right-hand tail
in the �Ts histogram (Fig. 1d). The onset of this effect is thus
detected and defined as a threshold for binary lead
segmentation.

In a first approach, we determine the threshold at the
mean surface temperature anomaly + 2 standard deviations
(T2std; Fig. 1e). Additionally, we tested a set of non-
parameterized global threshold techniques: iterative sel-
ection (Titerative; Ridler and Calvard, 1978), Otsu’s threshold
(TOtsu; Otsu, 1979), minimum error threshold (Tmin_error;
Kittler and Illingworth, 1986) and maximum entropy thresh-
old (Tmax_entropy; Parker, 2011). All these methods aim at an
optimal separation of two brightness classes within a given
histogram of gray values using different metrics and rules of
iteration to evaluate their separation. We further use an
adaptive threshold (minimaxAT) approach, which is carried
out by an iterative gradient descent with exact line search
techniques (Saha and Ray, 2009). Additionally, an active
contours model (ChanVese; Chan and Vese, 2001) is applied
that implements techniques of curve evolution to detect
objects whose boundaries are not necessarily defined by
gradient. Finally, we test the performance of a region-
growing procedure (regionGrow; Gonzalez and others,
2004) since this represents an established method in image
segmentation where a decision is provided as to whether
pixel neighbors of manually selected seed points should be
added to the seed region. For a detailed description of the
methods the reader is referred to the literature provided. We
tested all these methods to evaluate potential advantages of
any technique for lead recognition. It is necessary to
consider that region-growing techniques require the manual
selection of seed points and that active-contour models are
computationally intense, which makes them both question-
able candidates for operational use.

The binary segmentation for an image subset is given in
Figure 2 (1–8). The presence of leads with different widths is
indicated in the near-IR (NIR) MOD02 image (Fig. 2a). The
binary results show that significant leads are easily
recognized by all of the applied techniques; however, they
differ in their ability to detect narrow leads and leads with
thin ice where the regional temperature anomaly within the
1 km� 1 km box is less significant.

2.3. Segmentation validation

Segmentation performance metrics are calculated using the
normalized brightness values derived fromMOD02 data. We
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Fig. 1. MODIS swath data from 9 April 2008, 01.35UTC, central Beaufort Sea: (a) NIR normalized brightness (MOD02, 250m� 250m),
2500� 2000 gridpoints; (b) ice surface temperature product (MOD29, 1 km� 1 km), 625� 500 gridpoints; (c) local ice surface temperature
anomalies based on the median temperature of the 51� 51 surrounding box; (d) histogram of surface temperature anomalies with mean
(blue), STD (orange) and STD*2 (red) indicated and black lines representing non-parameterized thresholds (1: TOtsu; 2: Titerative; 3: Tmin_error;
4: Tmax_entropy); and (e) segmentation result with �Ts threshold = T2std.

Fig. 2. MODIS swath data from 9 April 2008, 01.35UTC, central Beaufort Sea (subset): (a) NIR normalized brightness (MOD02,
250m� 250m), 450� 350 gridpoints; (b) segmentation results based on �Ts (1 km� 1 km) (1: Titerative; 2: T2std; 3: TOtsu; 4: Tmin_error; 5:
Tmax_entropy; 6: TminimaxAT; 7: TChanVese; 8: TregionGrow).
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use manually selected cloud-free images from the MOD02
NIR channel as a reference for validation of the surface-
temperature-based segmentation. Provided that leads are
characterized by a negative brightness anomaly, we assume
that pixels with a normalized brightness exceeding the 75th
percentile of the respective swath cannot be leads, while
pixels with a normalized brightness undershooting the 15th
percentile cannot be thick sea ice. With this, the fraction of
lead objects as identified from the thermal IR data covering
areas where the normalized channel 2 brightness is larger
than the 75th percentile are regarded as misclassified leads,
while the fraction of detected sea ice covering brightness
values below the 15th percentile are regarded as unclassified
leads. The probability of lead detection (PLD) and probability
of background (sea-ice) detection (PBD) are used as statistical
performance indices for the applied segmentation methods:
PLD denotes the fraction of correctly identified leads (Lc)
relative to the total fraction of leads (Lc plus falsely classified
background Bf; Eqn (1)), while PBD gives the rate of correctly
identified background Bc over the total background (Bc plus
falsely classified objects Lf; Eqn (2)).

PLD ¼ Lc
Lc þ Bf

ð1Þ

PBD ¼ Bc

Bc þ Lf
ð2Þ

Both metrics are shown in Figure 3 and give insight into the
individual performances of the different techniques. It is
shown that the three non-parameterized global threshold
techniques provide similar performance values (PLD). The
background (sea-ice) segmentation, hence PBD, appears to
be substantially lower when T2std is used, which is
manifested by the lower mean and larger standard deviation.
Tmin_error and Tmax_entropy are both characterized by lower

performance compared with the first three techniques. The
adaptive threshold and shape-based segmentation tech-
niques (minimaxAT, ChanVese, regionGrow) are less reliable
for operational use with multiple swaths, which we conclude
from their low average PLD values (Fig. 3). Finally, we choose
Titerative for the subsequent processing steps, since it shows
the highest performance of the methods tested.

2.4. Daily lead composites

For each tile, MODIS ice surface temperature data (MOD29/
MYD29) are first interpolated to a pan-Arctic grid with a
resolution of 1 km2. Subsequently, �Ts is calculated and
lead segmentation is performed using the iterative threshold
technique (Titerative). Thereby a binary lead map is derived
with remaining cloud pixels being flagged separately. Daily
composites are produced by filling the pan-Arctic map with
consecutive binary lead maps, applying the rule that clouds
(NaN flag) are replaced by sea ice (false) and, if applicable,
sea ice is replaced by a lead (true) (Fig. 4). The daily
composite is also saved as a stack, providing the number of
leads found per pixel and day, for later use as a persistence
indicator (see Section 3.1).

As leads are derived in binary (no information on
concentration), it is necessary to bear in mind that a seg-
mented pixel reveals significant lead activity within its area
rather than representing this lead with its full width. As
stated above, the binary approach has the advantage that no
cross-image tie point is necessary. The composite in Figure 4
shows the presence of extended linear features in different
regions: fast ice and flaw polynyas in the Laptev Sea, as well
as broad areas that indicate the presence of significant and
extended small-scale lead activity. It is apparent that the area
of the remaining cloud pixels is becoming very small, if the
compositing rules described above are applied. However, an
analysis of subsequent segmentation maps reveals that some
segmented objects are very short-lived or are moving fast
within a short time. This behavior indicates that the seg-
mentation is subject to artifacts that arise from unidentified
clouds and that need to be removed in subsequent
processing steps.

2.5. Cloud artifacts

The MODIS cloud mask has deficiencies in identifying low
and thin clouds over sea ice as well as sea smoke, especially
when no reflected sunlight is available (Ackerman and
others, 2006; Riggs and others, 2006). This eventually
causes high surface temperatures that are in fact not
attributed to surface features. A useful validation of the
cloud mask over large spatial scales is not possible since no
valuable reference data exist. The processing of daily lead
composites as described above hence produces cloud
artifacts in the obtained binary lead maps due to erroneously
high surface temperatures.

An example of this is given in Figure 4.With regard to their
structure and translation speed (from image sequences), the
classified objects are easily identified as cloud artifacts by an
experienced observer. However, as shown in Figure 4a, the
anomaly is recognized as a lead by the segmentation
algorithm. Since cloud patterns can be identified by their
drift speed, a filter was implemented using optical flow and
maximum cross-correlation techniques. However, the dis-
continuity in the 6 hourly composites is too pronounced to
derive flow fields and thereby identify artifacts. Instead, the
transient character of lead objects, in combination with the

Fig. 3. Lead and background segmentation performances as
expressed by probability of lead detection (PLD, blue) and
probability of background detection (PBD, gray) for different
segmentation techniques. Mean values and standard deviations as
inferred from five arbitrarily chosen MODIS tiles, where NIR
normalized brightness anomalies (MOD02) were compared with
the binary segmentation results from the regional surface tempera-
ture anomalies (MOD29).
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vague and imprecise character of the cloud mask quality,
motivated the use of fuzzy logic techniques to implement a
filter for cloud artifacts. As stated by Zadeh (1965), the use of
imprecise information is beneficial in knowledge-based
systems as the advantage of reduced system complexity
can be utilized. Here, a Mamdani-based fuzzy interference
model was created as a filter for separating true leads from
cloud artifacts. This implementation is hereafter referred to as
the Fuzzy Cloud Artifact Filter (FCAF). It is first necessary to
define suitable indicators that allow us to distinguish
between leads and artifacts. In principle, independent data
from different sensors would be most beneficial in that sense;
however, for this study no additional data were available with
a comparable resolution. Hence, we derive different object
and pixel properties from the same dataset using temporal
and spatial concepts as described below.

3. FCAF

3.1. FCAF design

Three main object features were determined – two for
temporal and one for spatial object properties – which can
be used as an input to the fuzzy interference system and
allow differentiation between leads and cloud artifacts:

1. The pixel persistence (PP) is defined as the number of true
values (leads) within the daily pixel stack. PP is nor-
malized over the stack size at each gridpoint. The stack
size is different at every gridpoint and consists of as many
layers of the cloud-free swath data as were available per
day. This normalization also avoids a potential bias due to
higher swath frequency at higher latitudes. The use of PP

is motivated by the fact that fast-moving clouds will have
a low PP; its deficiency lies in the fact that leads with short
duration or strong drift will be discarded.

2. The object persistence (OP) accounts for the fact that drift
might cause a low PP at one gridpoint. The OP of any
pixel is derived by assigning the maximum PP value of
the same binary object within a box of 10� 10 pixels to
each pixel. OP thereby mitigates the loss of short-lived
leads. The limited search radius for OP values avoids
overestimation of OP in overlapping and large objects.

3. Object solidity (OS) represents a morphological object
feature specifying the ratio between the area of the
surrounding rectangular box of an object and the object
area itself. Its use is based on the concept that leads are
characterized as predominantly linear features and
hence provide high degrees of eccentricity. Here the
circular OS (circle area instead of box area) is calculated
to make solidity independent of the object orientation
within the matrix. The inverse is used to associate high
values with high degrees of eccentricity. OS is calculated
for each 6 hourly map to avoid too much object
overlapping, and is then integrated to an accumulated
daily OS map. OS is useful to avoid discarding small and
short-lived leads that show pronounced eccentricity.

Subsequently, different fuzzy sets are defined for each input
variable (PP, OP, OS), with each set representing a different
system configuration. Linguistic terms like ‘low’, ‘average’ or
‘high’ can be associated with each degree of membership
and are used to formulate logical rules that connect each grid
element with its current state to the system response. A subset

Fig. 4. (a) Binary lead (red)/sea-ice (black) map. Daily composite from binary swaths for 16 March 2008 with remaining cloud pixels shown
in white. (b) Accumulator map indicating number of lead hits per pixel and day. Subsets of (a) and (b) give examples of the presence of
cloud artifacts.
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of a feature set describing a pixel’s state would look like

P x, yð Þ ¼ high solidity 0:1ð Þ, high persistence 0:45ð Þ,½
medium object persistence 0:3ð Þ�

ð3Þ

with the system state (P) at positions x and y described by
three features and their degree of fulfillment. The nonlinear
system response is calculated from single rule outputs and
respective weights. A vector of input values creates a
specific system response, i.e. a membership value for the
lead class. The regional variability of the three state variables
for 16 March 2008 is shown in Figure 5. A pronounced
regional variability is found in all these variables.

3.2. FCAF membership functions and rules

A membership function describes the degree of membership
of a given pixel value to predefined categorical states. For
example, PP is assigned three membership functions (MF):
low, medium and high. Thereby, PP is exclusively low
(degree of membership to the MF low is 1) for PP values
<0.15. The degree of membership to the MF low is
consequently decreasing with increasing PP value, while
the following MF (medium and, with further increasing PP,

high) are iteratively gaining power (Fig. 5a, lower panel).
The OP and OS memberships are assigned two Gaussian
functions for memberships to low and high (Fig. 5b and c,
lower panels). In the same manner, the system response is
prescribed in the form of the degree of membership to an MF
islead (yes) and islead (no).

The relative daily PP is considered the strongest criterion
for a lead detection. A pixel with a PP value equal to 1 (lead is
present in all available stack data) is always assigned a lead
(rule 1). With decreasing PP, the fuzziness of the segmenta-
tion increases and hence the secondary object features OP
and OS apply in additional rules (see Table 1). For example, a
PP with a high degree of membership to MF medium causes
the FCAF to recognize a lead only if OP or OS show
pronounced degrees of membership to high MFs (rules 2 and
3). Rule 4 permits smaller leads with low PP to pass the filter
only when high OP and OS values are found. Rules 5 and 6
represent explicit formulations of the criteria used to discard
a lead. It is necessary to bear in mind that implicit filtering
also takes place when rules 1–4 cause a low system response.
This response (islead), which represents the decision whether
the segmented object represents a true lead or not, is returned
as the degree of membership to two Gaussian functions (yes
or no) in similar manner to the OS input.

3.3. FCAF validation and tuning

If all the rule weights are initialized with 1, the system
creates an output that is hardly verified in terms of quality.
An objective rule weight optimization was addressed by the
following steps. First, sub-scenes from different case studies
are chosen that contain two classes: leads and cloud
artifacts. The decision whether one of the two classes really
applies is made based on background knowledge of the
surface features, as well as on detailed analysis of the
temporal evolution of the object in question based on image
sequences. Next, two maps are created, one containing a

Fig. 5. (a) Pixel persistence (PP), (b) object persistence (OP) and (c) object solidity (OS) values for 16 March 2008, each with its associated
membership functions (lower panels).

Table 1. FCAF rules and weight for minimum total FCAF error (see
Section 3.3)

Rule No. PP OP OS islead

1 high yes
2 medium high yes
3 medium high yes
4 high high yes
5 low no
6 not high low low no
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subset of pixels that are confidently determined as artifacts
and another showing exclusively real leads (Fig. 6, red areas
on left). These two areas in total represent the reference area
for one case study.

Subsequently, the fuzzy system is run at 500 iterations,
with weights assigned randomly at each iteration step. The
respective output is then compared with the manual
selection, with two error indicators combined to the total
FCAF error (Fig. 6). The set of rule weights can now be chosen
according to different performance targets: either artifact,
lead or the total FCAF error (average of lead and artifact error)
can be minimized. The first comes at the cost of true leads
being discarded while the filter is more restrictive. The
second option allows the maximum fraction of lead pixels to
pass the filter, while also more artifacts are taken over in the
filtered result. The total FCAF error minimization aims to
keep the total error as small as possible.

The obtained error values are given in Table 2. Rule
weights can be defined such that artifact and lead errors can
be minimized. If the focus is on artifact removal, the total
FCAF error is 38%. If a correct lead identification is
prioritized (only 2% of true leads are falsely discarded in
the validation subsets), the total FCAF error is 42%.

If the total FCAF error is to be kept small, 5% of leads are
erroneously filtered out and 51% of artifacts are missed,
which amounts to a total FCAF error of 28%, or a
performance of 72%. Hence, here we use this FCAF rule
weight set for any further processing, keeping these perform-
ance values in mind.

The result of the FCAF application for a daily composite is
given in Figure 7. Depending on the choice of weight sets,
the fraction of filtered objects ranges from 93% (artifact error
minimization; Fig. 7a) to 59% (lead error minimization;
Fig. 7c). Minimizing the combined error causes 77% of
potential lead pixels to be removed (Fig. 7b). The main
difference between the outputs of the three different filter
configurations is found in the presence of small and thin
objects. The most prominent lead structures and the location
of flaw polynyas are preserved even when the artifact error is
minimized (Fig. 7a). It is clear that a large fraction of the
segmented objects is filtered out by the use of the FCAF. On
average 82% of the segmented pixels are removed by the
FCAF for 1 January to 30 April 2008.

4. DISCUSSION AND OUTLOOK

The FCAF parameterization is subject to a trade-off in
acceptable errors (Table 2). However, the difference
between the artifact and lead error minimization maps
(Fig. 7a and c) could be utilized to derive a confidence flag.
Lead identification with differing confidence levels moti-
vates the preparation of an aggregated product, i.e. 3 day,
weekly or monthly lead maps where areas with significant
lead activity emerge in a more distinct manner than areas
with unclear segmentation.

Small leads with a minor effect on the 1 km� 1 km surface
temperature anomaly will be missed by our segmentation
approach. An empirical lead width distribution would be
beneficial to quantify the effect of this scale gap and to
estimate the smallest lead fraction required within a gridcell
of thermal IR imagery for the presented approach to work.

We present lead frequencies per gridpoint and month in
Figure 8. In the samemanner, weekly maps can be processed.
A monthly aggregate as shown here already gives a good
indication of the seasonal evolution of divergence patterns,
with the Beaufort Sea showing the most significant lead
activity in the study period. Particularly in January, large and
pronounced leads are present in this region, while extended
leads occur with increasing frequency in the central Arctic
and north Greenland in March and April. The presence of
flaw polynyas is well reproduced by the monthly maps. This
indicates the potential use of these maps for retrieval of the
monthly fast-ice extent. Daily maps were also compared
with the results of the technique described by Röhrs and
Kaleschke (2012), which yielded a high congruency for large

Fig. 6. Weight optimization scheme. Manually selected ground truth maps are compared to fuzzy outputs during 500 iterations with
randomly changing rule weights.

Table 2. Weight set and associated FCAF errors. Numbers indicate
areal fraction of erroneous filtering. Bold numbers indicate the
minimum error values that could be obtained for each of the three
weight sets

Rule weight set Lead error Artifact error Total FCAF error

Min. artifact error 0.71 0.04 0.38
Min. lead error 0.02 0.82 0.42
Min. total FCAF error 0.05 0.51 0.28

Willmes and Heinemann: Sea-ice lead detection from thermal infrared imagery 35

https://doi.org/10.3189/2015AoG69A615 Published online by Cambridge University Press

https://doi.org/10.3189/2015AoG69A615


and extended leads in the daily maps. We intend to use our
method with further elaborations to provide daily lead maps
for the entire MODIS period, providing sea-ice surface
temperature data from 2000 onwards. We see great potential
in combining the described segmentation product from
MODIS data within an enhanced FCAF system with the
microwave lead product of Röhrs and Kaleschke (2012) and
with active microwave data (e.g. Early and Long, 2001) to
allow more independent data to determine the artifact filter
response. Additionally, high-resolution SAR data for case

studies will be useful to achieve improved FCAF tuning when
new parameters are introduced.

5. CONCLUSIONS

A non-parameterized global threshold method was validated
and applied to derive binary lead maps from regional surface
temperature anomalies derived from the MODIS ice surface
temperature product. Swath-based binary maps were subse-
quently combined into daily pan-Arctic composites for

Fig. 8. Monthly lead frequencies (lead days per month) for (a) January, (b) February, (c) March and (d) April 2008 derived from daily FCAF
outputs.

Fig. 7. FCAF results for 16 March 2008 showing weight set applied for (a) minimum artifact error, (b) minimum total FCAF error and
(c) minimum lead error.
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January–April 2008. Results reveal the presence of cloud
artifacts in the lead identification, which is caused by ambi-
guities in the MODIS cloud mask. To mitigate these artifacts
we implemented a fuzzy filter system that employs temporal
and spatial object characteristics to distinguish between
physical leads and artifacts. The filter was tuned to keep the
combined error (lead and artifact misclassification) at a
minimum, which results in 5% of missed leads and 51% of
non-recognized artifacts. The results obtained lend them-
selves to monitoring of seasonal sea-ice divergence patterns.
For follow-on studies, we recommend the use of satellite-
derived microwave data in the discrimination process to
significantly improve the filter performance. We aim to use
this technique to compute daily wintertime pan-Arctic lead
maps for the entire MODIS data archive (2000 onwards).
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