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ABSTRACT 

The method of matched asymptotic expansions is used to calculate the detailed structure of 

white dwarf- accretion disk boundary layers. Both optically thick and thin boundary layers are 

investigated for various values of the relevant parameters, as long as the layer's vertical extension 

remains very much smaller than the white dwarf's radius. Detailed, self consistent solutions for 

the boundary layer's and disk's structure are calculated and used to find the amount of energy 

radiated onto the accreting white dwarf (recently recognized to be an important factor in nova 

outburst modelling). 

INTRODUCTION 

The importance of the accretion disk inner boundary layer (BL) is well established. However, 

since the pioneering work of Lynden-Bell & Pringle (1974), progress in trying to understand the 

BL structure has been rather limited. For a recent review, see Shaviv (1987). In cataclysmic 

variables the problem is particularly important. For example, it is clear that various observational 

characteristics of dwarf novae (in particular the X-ray emission) have to do with the BL (Pringle, 

1977; Pringle & Savonije, 1979; Tylenda, 1981; Patterson & Raymond, 1985). Very recently it 

has been pointed out that the effect of BL heating on the pre-nova accreting white dwarf is of 

paramount importance in modelling the outburst (Shaviv & Starrfield, 1987). 

Regev (1983) and Regev & Hougerat (1988) introduced the method of matched asymptotic 

expansions as a practical tool for obtaining the BL structure self consistently, and demonstrated 

its viability for the study of optically thin and thick BL's in cataclysmic variables. In this work I 

would like to report on the results of an extensive parameter space study in which self consistent 

BL solutions have been found. The parameters include (in addtion to the white dwarf's mass and 

radius) the angular velocity - 0» at the star's surface, M - the mass accretion rate and, in certain 

cases, the pressure (or the temperature) at the BL inner edge. It has to be pointed out that our 

method fails whenever some of the basic assumptions break down or another viscosity prescription 

in the BL is used. This may result in different BL structures with transition regions (Papaloizou 

& Stanley, 1986). 
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OUTLINE OF THE METHOD 

I describe here only the essentials of the method. A full derivation is given in Regev (1983), 

hereafter R, for the optically thick case and in Regev & Hougerat (1988), hereafter RH, for optically 

thin BLs. Consider the r component (in cylindrical coordinates) of the momentum equation. In 

its non-dimensional form, assuming steady state and axial symmetry it is: 

2 du du ^ 2 o 1 dp 1 2 z
2 

t2u— + ev— - a 2
r = - e 2 - / - — + e2— 1 

or az p or rl r4 

see R eq. 7. The symbols here have their usual meaning. Note the role of the small parameter, 

e, defined to be VS/Q,K*R*- &K* = {GMtjR\yl2 is the Keplerian angular velocity at the star's 

radius, Rt, and is used to scale ft. vs is the sound velocity at a typical point. If e <C 1, one can 

expand all the functions in e, and the lowest order approximation should be satisfactory. Dropping 

terms of order t and smaller in equation 1 one gets: 

«2 = 4r (2) 

which means that the Keplerian angular velocity is the lowest order solution. However, one now 

faces the obvious difficulty of being unable to satisfy the inner boundary condition for fi which 

should be £1* and not 1 (Keplerian at r = R* in our units). Obviously, very near the boundary, 

in the BL, the above outer solution is invalid. The solution may be something of the type used in 

the so-called standard theory (Shakura & Sunyaev, 1973), but the price is the loss of consistency 

and the necessity to treat the BL somehow, separately. It is also quite disturbing that in such a 

treatment the disk structure does not depend at all on the inner boundary condition. 

The remedy is to use boundary layer methods, i.e. to use another expansion (the inner expan

sion) very near the inner boundary. In order to do this the coordinates (here the r-coordinate) 

have to be stretched, i.e. one defines a new coordinate r = l-\- 6R with (5(e) very small. Changing 

variables in eq. 1, r to R, one gets a possible meaningful equation in lowest order only for a certain 

choice of 8 as a function of t. This is called the significant limit and it determines essentially the 

BL width. For details, see R and RH, as well as Bender & Orszag (1978) or Van Dyke (1964). 

While the basis for understanding the method can be found in these last two references, our case is 

considerably more complicated as it involves several equations in two space variables. We eliminate 

the z-dependence by vertically averaging and using the assumption that the disk, as well as the BL 

is geometrically thin. We then proceed as explained in R (or RH) when the BL is optically thick 

and dominated by gas pressure and free-free opacity (optically thin and dominated by radiation 

pressure and electron scattering opacity). 

The decision which assumption to use is based on the following consideration. For each choice 

of the parameters (notably Q„, and M) we look for an inner solution and try to match it to 

the outer solution (letting e —• 0). If matching is impossible, something must be wrong with 

the assumptions. If we can match, we check our solution for consistency - i.e. if the BL is still 

geometrically thin and if its optical depth is according to the assumption. In doing this we use 

ratios of relevant timescales and optical depth formulae similar to the ones of Pringle & Savonije 

(1979) and King & Shaviv (1984). 

The outer solution we find is, of course, identical to the Shakura & Sunyaev (1973) solution. 

However we improve on it by trying to determine all integration constants from matching with 

the inner solution and not by new assumptions and approximations. Consider, in particular, the 
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angular momentum equation for the outer solution (eq. 17 in R). After integrating on z one gets 
the familiarly looking equation for the specific angular momentum transport caused by the gradient 
of visous stresses: 

,-, d , 9 ^ . a d ( ^ ,dil\ .„. 
M*™=-n *{"*'*-*)• (3) 

See eq. 22 in R. This equation is again in nondimensional units, a and fi are constants, v is the 
viscosity and S the surface density. Integrating, one needs a constant (call it C): 

M [ ( r 2 Q ) - C l = - - ! / S r 3 ^ . (4) 
fi dr 

Obviously, C has to do with the ability of the BL to take up angular momentum. See the discussion 
in Katz (1987) (p. 199) on this matter. The assumption of C = 1 (see e.g. Pringle, 1981) allows 
one to decouple the disk structure from the BL in the manner explained above. Our method, 
however allows one to determine C from the matching (if at all possible) and construct a consistent 
approximation by composing it from the outer and inner expansions. In this way we obtain the 
structure of the accretion disk all the way down to the star. In additon various integral quantities 
depend on C. For example the disk luminosity is Lfi = ^acc(§ — ^*) £md the BL luminosity is 
LBL = £acc [C — | ( 1 + ft*)] giving together the total luminosity Lf = Lacc (l — jft2,), where 
I a c c = GMtM/R*. 

RESULTS 

The optically thick BL differs from the optically thin one. Let us call them Case A and B 
respectively. We find that 6 = e2 in Case A, and 6 = e in Case B. It follows that the BL thickness 
(in the r direction) is ~ eH* in Case A and ~ H* in Case B, where Ht is the vertical extension 
of the BL. This supports the finding of Pringle & Savonije (1979) who based their argument on a 
somewhat different consideration. 

For all the values of the relevant parameters for which a Case A solution exists and is consistent, 
we find values of 0.7>C>1.0. In this case one has to solve a set of four coupled ODE's for the 
structure of the BL. The equations are given in R (eqs. 34-37). C is found from the matching 
provided the values of p (or T) and Q are given on the surface. We use a numerical code for 
the solution of this boundary value problem, which allows to determine C as an eigenvalue. A 
relaxation method using quasilinearization (Henyey method) is quite effective if a good initial 
guess is known. Figure la is a typical example of Case A. In addition to the obvious departure 
from the standard solution (dashed curve) one sees also the effect of the BL on the disk up to 
r ~ 1Rf. This result is for M, = 1M0, Rt = 9 x 108cm, ft, = 0.3QK*, M = 5.5 x l f r 9 M 0 / y r . 
The value of C for this model is found to be C = 0.71. 

In case B, as described in RH, we were able to find an analytical solution for the BL which 

can be matched to the outer solution if C = 1. Thus, the standard solution continues inward until 

it is smoothly matched with the BL solution. As expected, one gets in this case a much hotter BL 

(see figure lb). This result is for the same white dwarf parameters but for a significantly lower 

value of M: M = 3.5 x l ( ) - l o M 0 /yr . 
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log(X); X=r/Rstor-1 log(X); X=r/Rstar-1 

Figure 1: Log(T) (absolute temperature) as a function of position (distance from the white 

dwarf's edge) in the BL and the inner disk. The right panel (a) is Case A (optically thick) and the 

left one (b) is Case B (optically thin). The dashed curves are the standard (Shakura & Sunyaev) 

solutions for both cases. 
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Figure 2: The heating of the white dwarf (iheat) in units of i a c c = GM*M/R* as a function of 

M. The single curve on the left is in the case of an optically thin BL. The two curves on the right 

delineate the region for which optically thick BL solutions exist. 

Finally, I present the results for the amount of radiation falling onto the white dwarf from the 

BL and the accretion disk. The effect of this heating on the accreting star and its implications for 

the nova outburst have recently been studied by Shaviv & Starrfield (1987). They point out that 

this heating can significantly affect the evolution to a thermonuclear runaway. The inclusion of 

this energy makes it more difficult to produce a nova outburst; specifically when Lheat ~ 0.25Z/acc, 
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the outburst is significantly less violent, and little or no mass is ejected. 

Figure 2 depicts the amount of heating of the white dwarf for the same 1MQ star as before 

(with iZ» = 9 x 108cm and fi„ = 0.3fift-») as a function of M. We calculate I/heat by adding the 

energy radiated into the star (calculated numerically in Case A) to the fraction of the disk and 

BL radiation which after being emitted from the surface falls on the WD. In the optically thin 

case a unique solution of a = iheat/^acc equal to 0.248 is obtained. In the optically thick case an 

addtional free parameter ( the temperature or pressure at the BL-white dwarf boundary) is needed. 

All the possible values of such a parameter which give a consistent matched solution fall between 

the two curves on the right side of figure 2. The temperature is lower for the upper limit curve 

(since then the gradient of T into the star is bigger and hence more energy is radiated inward). 

I would like to thank Joe Patterson, Mike Shara and Giora Shaviv for discussions; Norman 

Baker for letting me use his computer code and the Astronomy Department at Columbia and the 

Space Telescope Science Institute (where a part of this work has been done) for their hospitality. 
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