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Abstract. Let hK denote the class number of the imaginary quadratic field K =
Q(

√
22m − kn), where m and n are positive integers, k is an odd integer with k > 1 and

22m < kn. In this paper we prove that if either 3 | n and 22m − kn ≡ 5(mod 8) or n = 3
and k = (22m+2 − 1)/3, then n

3 | hK . Otherwise, we have n | hK .
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1. Introduction. Let Z, N, Q be the sets of all integers, positive integers and
rational numbers, respectively. For any fixed positive integer D, there exists unique
positive integers d and s such that

D = ds2, d, s ∈ N, d is a square-free number. (1)

Let hK denote the class number of the imaginary quadratic field K = Q(
√−D). There

are many papers concerned with the divisibility of hK , for

−D = a2 − δkn, a, k, n ∈ N, gcd(a, k) = 1, k > 1, δ ∈ {1, 4}, a2 < 8kn (2)

(see [1, 3, 4, 7, 8, 9]). Recently, Kishi [7] proved that if a = 2m, k = 3, δ = 1 and
(k, n) �= (2, 3), where m is a positive integer, then n | hK . In this paper, we prove a more
general result than Kishi’s result, as follows.

THEOREM. If a = 2m and δ = 1, where m is a positive integer, then

hK ≡

⎧⎪⎪⎨
⎪⎪⎩

0
(

mod
n
3

)
, if either 3 | n and 22m − kn ≡ 5(mod 8)

or n = 3 and k = (22m+2 − 1)/3
0 (mod n), otherwise

. (3)

The proof of our theorem relies on a recent result concerning the existence of
primitive divisors of Lehmer numbers given by Bilu et al. [2] and Voutier [10].

2. Preliminaries. For any positive integer D with −D ≡ 0 or 1(mod 4), let H(−D)
denote the class number of binary quadratic primitive forms with discriminant −D.
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Let d be a square-free positive integer, and let h(−d) denotes the class number of the
imaginary quadratic field Q(

√−d).

LEMMA 1. (Section 16.13 in [6])

h(−d) =
{

H(−4d), if d ≡ 1(mod 4)
H(−d), if d ≡ 3(mod 4)

.

LEMMA 2. If d > 3 and d ≡ 3(mod 4), then

H(−d) =
{1

3
H(−4d), if d ≡ 3(mod 8)

H(−4d), if d ≡ 7(mod 8)
. (4)

Proof. Since d ≥ 7, by Theorems 11.4.3 and 12.10.1 in [6], we have

H(−d) =
√

d
π

K(−d), (5)

and

H(−4d) = 2
√

d
π

K(−4d), (6)

where K(−d) = ∑∞
n=1( d

n )( 1
n ), (d/n) is the Kronecher symbol.

Further, since −d ≡ 1(mod 4), by the definition of fundamental discriminants (see
Section 12.11 in [6]), −d is a fundamental discriminant, while −4d is not. Therefore,
by Theorem 12.11.2 in [6], we have

K(−4d) =
(

1 −
(−d

2

)
1
2

)
K(−d), (7)

where (−d/2) is the Kronecker symbol. Furthermore, by Theorems 3.6.3 and 12.3.1 in
[6], we get (−d

2

)
=

(
2
d

)
= (−1)(d2−1)/8 =

{
1, if d ≡ 7(mod 8)
−1, if d ≡ 3(mod 8)

, (8)

where (2/d) is the Jacobi symbol. Substitute (8) into (7), we get

K(−4d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

K(−d), if d ≡ 7(mod 8)

3
2

K(−d), if d ≡ 3(mod 8)

. (9)

Thus, by (5), (6) and (9), we obtain (4). The lemma is proved. �
By Lemmas 1 and 2, we get the following lemma immediately.

LEMMA 3.

h(−d) =
⎧⎨
⎩

1
3

H(−4d), if d > 3 and d ≡ 3(mod 8)

H(−4d), otherwise
.
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LEMMA 4. Let D and k be positive integers such that D > 1, k > 1 and gcd(k, 2D) =
1. If equation

X2 + DY 2 = kZ, X, Y, Z ∈ N, gcd(X, Y ) = 1, Z > 0, (10)

has solutions (X, Y, Z), then every solution (X, Y, Z) of (10) can be expressed as

Z = Z1t, t ∈ N,

X + Y
√−D = λ1(X1 + λ2Y1

√−D)t, λ1, λ2 ∈ {±1},
where X1, Y1, and Z1 are positive integers satisfying

X2
1 + DY 2

1 = kZ1 , gcd(X1, Y1) = 1, Z1 | H(4D).

Proof. This is a special case of Theorem 6.2 in [5] for (D1, D2) = (1,−D). We may
assume that the solution (X, Y, Z) belongs to a certain solution class Sl of (10), and
let (X1, Y1, Z1) denote a solution of Sl such that X1 > 0, Y1 > 0 and Z1 ≤ Z for all
solutions (X, Y, Z) ∈ Sl. Then, by Theorem 6.2 in [5], the lemma is proved. �

LEMMA 5. Equation

xm − yn = 1, x, y, m, n ∈ N, min(x, y, m, n) > 1

has only one solution (x, y, m, n) = (3, 2, 2, 3).

LEMMA 6. Equation

22m+2 − 3yn = 1, y, m, n ∈ N, n > 2 (11)

has no solution (y, m, n).

Proof. Let (y, m, n) be a solution of (11). Since (2m+1 + 1, 2m+1 − 1) = 1, we get
from (11) that either

2m+1 + 1 = an, 2m+1 − 1 = 3bn, y = ab, a, b ∈ N, (12)

or

2m+1 + 1 = 3an, 2m+1 − 1 = bn, y = ab, a, b ∈ N. (13)

But, since n > 2, by Lemma 5, (12) and (13) are both impossible. Thus, the lemma is
proved.

Let α, β be algebraic integers. If (α + β)2 and αβ are non-zero coprime integers and
α/β is not a root of unity, then (α, β) is called a Lehmer pair. Further, let a = (α + β)2

and c = αβ. Then, we have

α = 1
2

(
√

a + λ
√

b), β = 1
2

(
√

a − λ
√

b), λ ∈ {±1},

where b = a − 4c. Such (a, b) is called the parameters of Lehmer pair (α, β).
Two Lehmer pairs, (α1, β1) and (α2, β2), are called equivalent if α1/α2 = β1/β2 ∈
{±1,±√−1}. Obviously, if (α1, β1) and (α2, β2) are equivalent Lehmer pairs with
parameters (a1, b1) and (a2, b2) respectively, then (a2, b2) = (λa1, b1), where λ ∈ {±1}.
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For a fixed Lehmer pair (α, β), one defines the corresponding sequence of Lehmer
numbers by

Lr(α, β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αr − βr

α − β
, if r is old

αr − βr

α2 − β2
, if r is even

r ∈ N. (14)

Then, Lehmer numbers Lr(α, β) (r = 1, 2, . . .) are non-zero integers. Further, for
equivalent Lehmer pairs (α1, β1) and (α2, β2), we have Lr(α1, β1) = ±Lr(α2, β2) for any.
A prime p is called a primitive divisor of the Lehmer number Lr(α, β) if p | Lr(α, β)
and p � abL1(α, β) . . . Lr−1(α, β), where (a, b) is the parameters of Lehmer pair (α, β). A
Lehmer pair (α, β) such that Lr(α, β) has no primitive divisor will be called r-defective
Lehmer pair. �

LEMMA 7 [10]. Let r satisfy 6 < r ≤ 30 and r �= 8, 10, 12. Then, up to equivalence,
all parameters (a, b) (a > 0) of r-defective pairs are given as follows:

r = 7, (a, b) = (1,−7), (1,−19), (3,−5), (5,−7), (13,−3), (14,−22).
r = 9, (a, b) = (5,−3), (7,−1), (7,−5).
r = 13, (a, b) = (1,−7).
r = 14, (a, b) = (3,−13), (5,−3), (7,−1), (7,−5), (19,−1), (22,−14).
r = 15, (a, b) = (7,−1), (10,−2).
r = 18, (a, b) = (1,−7), (3,−5), (5,−7).
r = 24, (a, b) = (3,−5), (5,−3).
r = 26, (a, b) = (7,−1).
r = 30, (a, b) = (1,−7), (2,−10).

LEMMA 8 [2]. If r > 30, then no Lehmer pair is r-defective.

3. Proof of the theorem. Since a = 2m and δ = 1, we see from (2) that k is an odd
integer with k > 1. By (1) and (2), equation

X2 − dY 2 = kZ, X, Y, Z ∈ N, gcd(X, Y ) = 1, Z > 0

has a solution (X, Y, Z) = (2m, s, n). Therefore, by Lemma 4 we get

n = Z1t, t ∈ N, (15)

2m + s
√−d = λ1(X1 + λ2Y1

√−d)t, λ1, λ2 ∈ {±1}, (16)

where X1, Y1, and Z1 are positive integers satisfying

X2
1 − dY 2

1 = kZ1 , gcd(X1, Y1) = 1, (17)

Z1 | H(−4d), (18)

where H(−4d) is the class number of binary quadratic primitive forms with
discriminant −4d.
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Since k is odd, we see from (1), (2) and (17) that D, d and s are odd, and (X1Y1) is
even. Therefore, we find from (16) that t must be odd. Then, by (16), we get

2m = λ1X1

(t−1)/2∑
i=0

(
t
2i

)
Xt−2i−1

1

(−dY 2
1

)i
, (19)

s = λ1λ2Y1

(t−1)/2∑
i=0

(
t

2i + 1

)
Xt−2i−1

1

(−dY 2
1

)i
. (20)

Further, since s is odd, we see from (20) that Y1 is odd and X1 is even. Furthermore,
since

(t−1)/2∑
i=0

(
t
2i

)
Xt−2i−1

1

(−dY 2
1

)i

is odd , we get from (19) that

X1 = 2m (21)

and

(t−1)/2∑
i=0

(
t
2i

)
2m(t−2i−1) (−dY 2

1

)i = ±1. (22)

Let

α = Y1
√−d + 2m, β = Y1

√−d − 2m. (23)

Then we have

α + β = 2Y1
√−d, α − β = 2m+1, αβ = −kZ1 , (24)

by (17). We see from (24) that (α + β)2 = −4dY 2
1 and αβ = −kZ1 are coprime non-zero

integers. Further, by (23), (α/β) satisfies

kZ1

(
α

β

)2

− 2(22m − dY 2
1 )

α

β
+ kZ1 = 0. (25)

Since k > 1 and gcd(kZ1 , 2(22m − dY 2
1 )) = gcd(22m + dY 2

1 , 2(22m − dY 2
1 )) = 1, we find

from (25) that α/β is not a root of unity. Therefore, by (23), (α, β) is a Lehmer pair
with parameters (−4dY 2

1 , 22m+2).
Let Lr(α, β) (r = 1, 2, . . .) denote the Lehmer numbers defined by (14). We get

from (14), (22) and (23) that

Lt(α, β) = ±1. (26)

It implies that the Lehmer number Lt(α, β) has no primitive divisor. Therefore, by
Lemma 8, we get t ≤ 30. Further, since t is odd, by Lemma 7, we get t ∈ {1, 3, 5}.

If t = 5, then from (22) we have

24m − 10 · 22mdY 2
1 + 5

(
dY 2

1

)2 = ±1. (27)
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But, since dY 2
1 is odd, we see from (27) that 24m − 10 · 22mdY 2

1 + 5(dY 2
1 )2 ≡ 5 �≡

±1(mod 8), a contradiction.
If t = 3, then we have

22m − 3dY 2
1 = 1, (28)

since 22m ≡ 1(mod 3). The combination of (17), (21) and (28) yields

22m+2 − 3kZ1 = 1. (29)

Since k > 1, by Lemma 6 we see from (29) that Z1 = 1. Therefore, by (15) we get

n = 3, Z1 = 1, k = 1
3

(22m+2 − 1). (30)

By the above analysis we get from (15) that t = 1 and

n = Z1 (31)

except the case (30). Therefore, by (18) and (31), we have

n | H(−4d) (32)

except when (30). Further, by Lemma 3 we deduce from (30) and (32) that (3) is true.
Thus, the theorem is proved.
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