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Fast agglomeration by emulsion binders to capture fine, hydrophobic particles has been
developed in the past few years as an alternative to froth flotation by small air bubbles.
This new method consists of mixing a particle suspension and saltwater-filled droplets
covered with semi-permeable oil layers. These droplets expand due to an osmotic flux
of water caused by the presence of salt inside the droplets. To better understand the
physics underlying this novel particle capture method, we investigate binary interactions
between droplets and particles. The current work examines the dynamics of a rigid
spherical particle and a semi-permeable spherical drop that expands due to osmosis in
an external, pure-extensional flow field. The droplet is governed by an expansion-diffusion
problem, which is coupled to the set of dynamical equations governing the relative particle
trajectory. By performing multiple trajectory simulations, we calculate transient collision
efficiencies, which can be used to determine the collision kernel for population dynamics.
We also use these simulations to better understand the evolution of the microstructure by
determining the transient behaviour of the pair distribution function. Our results indicate
that the presence of drop expansion increases the collision efficiency of the system,
especially for very small particles, which are the most difficult to capture by froth flotation.
Moreover, although the presence of slow salt diffusion inside the drops can mitigate
this improvement, the contribution of expansion to the collision efficiency may still be
considerable, even in the absence of hydrophobic or other attractive forces.

Key words: suspensions, drops

1. Introduction

Froth flotation by small air bubbles has traditionally been used in industry to capture
fine minerals and other hydrophobic particles (Kitchener 1984; Wills & Napier-Munn
2006). However, this method is not efficient for capturing very small particles of
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approximately 10–20 μm in diameter or less (Miettinen, Ralston & Fornasiero 2010; Leja
2012). In such cases, the lubrication resistance between the floating bubbles and particles
hinders collision, making the particles move around the bubble instead of being captured
(Mehrotra, Sastry & Morey 1983; Barnocky & Davis 1989; Loewenberg & Davis 1994;
Miettinen et al. 2010). An alternative to froth flotation is provided by the more efficient
hydrophobic oil-binder techniques (Sirianni, Capes & Puddington 1969; Mehrotra et al.
1983; van Netten, Moreno-Atanasio & Galvin 2014, 2016). These techniques, however,
can be expensive due to large amount of oil required. More recently, an alternative
binder method was proposed using a water-in-oil-in-water (W/O/W) emulsion containing
salt-water droplets covered by semi-permeable, surfactant-stabilized oil layers (Galvin &
van Netten 2017; van Netten, Borrow & Galvin 2017; Sahasrabudhe et al. 2021). In addition
to using much less oil than other oil-binder techniques, this new method has been shown
to be very efficient, as the permeability of the oil layer mitigates the lubrication forces
between particle and droplet, allowing for an increased capture rate (Davis & Zinchenko
2018; Baysinger & Davis 2021). Moreover, the expansion of the droplets, caused by an
osmotic flux of water entering the droplet due to the presence of salt inside the droplets,
also contributes to a higher collision efficiency (Roure & Davis 2021b). However, the
influx of fresh water dilutes the salt water just inside the droplets, which slows down the
drop expansion and reduces the particle engulfment rate, so that the quantitative benefits
of osmotic drop expansion on particle capture are unclear.

To better understand the physics underlying this novel particle-capture method, we
focus on the investigation of binary interactions between droplets and particles. This
type of two-particle analysis has been extensively used in the literature to investigate
particle collision and agglomeration (e.g. Zeichner & Schowalter 1977; Davis 1984;
Rother & Davis 2001; Phan et al. 2003; Roure & Cunha 2018; Reboucas & Loewenberg
2021; Rother, Stark & Davis 2022). More specifically, to model the different aspects
involved in the novel agglomeration method by emulsion binders, the works by Davis
& Zinchenko (2018) and Roure & Davis (2021b) respectively investigated the effects of
permeability and osmotic swelling on particle capture. The work by Davis & Zinchenko
(2018) presents analytical and asymptotic solutions for the hydrodynamic problem of a
rigid particle interacting with a droplet covered with a semi-permeable film, and then
uses the solution to investigate the collision efficiency of particles and non-expanding
droplets. Roure & Davis (2021b) extended the investigation of collision efficiencies to
the case of expanding droplets. In this context, the use of standard collision theory to
calculate the collision efficiency ceases to be valid, and the collision efficiencies (as well
as the collision kernels for the population dynamics) are time dependent. One of the main
assumptions in the prior work is that the diffusion of salt inside the drop occurs instantly,
corresponding to a small Péclet number. However, in most cases, the influx of fresh water
and the non-instantaneous diffusion of salt from the drop centre to its interface diminish
the concentration of salt at the inner drop interface, slowing down subsequent osmosis
and drop expansion considerably. In recent works, this interplay between diffusion and
expansion was investigated theoretically and experimentally (DeIuliis et al. 2021, 2022;
Roure & Davis 2021a). Roure & Davis (2021a) modelled the drop expansion as a diffusion
problem with nonlinear, moving boundary conditions similar to those found in Stefan
problems with kinetic undercooling (Evans & King 2000; McCue et al. 2011; Back et al.
2014). For high Péclet numbers, the theoretical calculations predict a low-concentration
boundary layer near the drop interface, which substantially slows drop expansion. The
results from the expansion-diffusion model have shown good agreement with experimental
results for osmotic swelling of W/O/W emulsion binders (DeIuliis et al. 2021, 2022).
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Salt water

Particle

ap

ad (t)ai

Oil layer

Figure 1. Sketch of the binary interaction model between a spherical particle and a semi-permeable drop in
the presence of an external linear flow. The presence of salt inside the droplet leads to its swelling, which can
be mitigated by a slow diffusion of salt inside the drop. The dashed circle represents the starting configuration
of the droplet, with starting radius ai. The drop radius ad changes with time as the drop expands due to the
water permeation caused by osmosis.

The main goal of this paper is to quantify the effects of slow diffusion on the capture
of particles by swelling droplets, extending the results of Roure & Davis (2021b) to the
case where diffusion limitations slow down drop expansion. To this end, we investigate
the dynamics of a rigid spherical particle near a spherical drop with a semi-permeable
interface that expands due to osmosis in an external, pure-extensional flow field. To model
the diffusion-limited osmotic swelling of the droplet, we use our diffusion-expansion
model presented previously (Roure & Davis 2021a), which is then coupled to the set of
dynamical equations governing the relative particle trajectory. By performing multiple
trajectory simulations, we calculate the transient collision efficiencies, which can be used
to determine the collision kernel for population dynamics. We are especially interested
in determining if, and by how much, the collision efficiency for very small particles is
increased by osmotic expansion of droplets, potentially overcoming the limitations of froth
flotation.

2. Methods

To investigate the capture dynamics of particles, we focus on the binary interactions
between particles and droplets, as done by Davis & Zinchenko (2018) and Roure & Davis
(2021b). The particle and droplet are both spherical and interact in a surrounding linear
flow with conditions of creeping flow (small Reynolds number). A sketch of the problem
is shown in figure 1. For the non-dimensionalization of the problem, we follow the same
procedure used previously (Roure & Davis 2021b). Namely, we use the inverse shear rate
γ̇−1 as the characteristic time scale and the initial drop radius, ai, as the characteristic
length scale.

For modelling the binary interactions between particles and drops, we consider the
particle and drop to be free of net forces and torques (i.e. a mobility problem). Attractive
forces, such as van der Waals or hydrophobic interactions, are neglected, as it is anticipated
that permeation of fluid into the drop will reduce the lubrication resistance to allow for
contact without attractive forces (Davis & Zinchenko 2018). Also, as done previously
(Roure & Davis 2021b), we focus our analysis on the case where the external flow is
given by a uniaxial extensional flow having inflow along the z axis, with u∞ = E∞ · x
and E∞ = γ̇ (êxêx + êyêy − 2êzêz), where x = (x, y, z) ≡ r êr is the position vector with
origin at the centre of the drop. In this context, the non-dimensional governing equations
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for the relative motion of the solid particle, in Cartesian coordinates, are (Batchelor &
Green 1972b)

dx/dt = (1 − B)x + E x,

dy/dt = (1 − B)y + E y and

dz/dt = −2(1 − B)z + E z,

⎫⎪⎬
⎪⎭ (2.1)

where
E = (B − A)(x2 + y2 − 2z2)/r2, (2.2)

and A(r, t) and B(r, t) are the mobility functions, which account for the hydrodynamic
interactions between the particle and drop. These functions depend on the centre-to-centre
separation r and on physical and geometric parameters such as oil-layer permeability K
(more specifically, its non-dimensional counterpart K∗ ≡ Kμ/ai, where K is the ratio
between permeate flux and pressure difference across the oil layer and μ is the dynamic
viscosity of the surrounding fluid, which we consider to be the same as the inner solution)
and the ratio between radii ad/ap, which changes over time as the drop swelling occurs.
As shown previously (Roure & Davis 2021b), although the system of differential equations
in (2.1) is non-autonomous, the only dependence of the mobilities on time comes from a
quasi-steady contribution of the radius change, as the drop expands quiescently, without
changing the boundary conditions, allowing us to use the mobility calculations of Davis
& Zinchenko (2018) for a non-expanding permeable drop. Hence, the system of equations
in (2.1) must be supplemented with an equation for the drop radius evolution.

In our previous work (Roure & Davis 2021b), the assumption that the salt inside the drop
diffused instantly (so that the salt concentration remained uniform throughout the drop
volume but slowly declined with time due to dilution by the influx of fresh water) allowed
us to simplify the problem and to find an explicit equation for the drop radius as a function
of time. However, in practical situations, inner salt-diffusion effects play an important
role in the drop swelling process, as observed experimentally by DeIuliis et al. (2021). To
model the swelling problem, we consider that the diffusion of salt inside the drop occurs
faster than the inner flow. Note that in the fast-agglomeration process, the ‘drop’ is actually
a binder fragment composed of many tiny emulsion drops that damp out inner flow and
exhibit an effective diffusivity that is lower than the molecular diffusivity (van Netten
et al. 2017; DeIuliis et al. 2021). Hence, the diffusion of salt is governed by a standard
diffusion equation, with a boundary condition at the moving boundary r = ad(t) related
to the influx of water due to the jump in osmotic pressure driven by the salt concentration
at the interface. Moreover, we also consider that the diffusion problem retains a spherical
symmetry and that there are no convective currents (i.e. the salt is sufficiently dilute that a
buoyancy-driven flow does not come into play). Hence, we couple the system of (2.1) with
the following diffusion-expansion problem:

∂c
∂t

= Eg
Pe

1
r2
∂

∂r

(
r2 ∂c
∂r

)
, (2.3)

da
dt

= Eg c|r=ad(t), (2.4)

with initial and boundary conditions given by

a(0) = 1, c(r, 0) = 1,

∂c/∂r|r=0 = 0,

∂c/∂r|r=ad(t) = −Pe c2|r=ad(t).

⎫⎪⎬
⎪⎭ (2.5)
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The initial and boundary conditions presented in (2.5) respectively correspond to the
initial drop radius, initially uniform salt concentration inside the droplet, axisymmetry
of the problem, and the osmotic water permeation through the interface (Roure &
Davis 2021a). Note that the salt concentration c is made dimensionless by the initial
uniform concentration ci. The non-dimensional parameters Eg = KRTci/(γ̇ ai) and Pe =
KRTciai/D, are respectively the engulfment parameter and the Péclet number. Note that
an ideal solution is assumed and that the water outside the drop is salt-free, so that
RTce is the osmotic pressure difference across the film, where ce = c|r=ad(t) is the salt
concentration inside the drop adjacent to the inner edge of the film. Here, ci is the
initial salt concentration inside the drop (assumed uniform), D is the inner salt effective
diffusivity, T is the absolute temperature, and R is the ideal gas constant. The engulfment
parameter Eg, first introduced in our previous work (Roure & Davis 2021b), is a ratio
between the characteristic flow time and the initial drop expansion time. The name was
chosen due to an analogy to phase-transition problems, where particles are engulfed by a
solidifying or freezing interface as it advances. The Péclet number defined here is not the
traditional ratio of convection and diffusion, but rather it measures the ratio between the
diffusion and initial drop-expansion characteristic times. Equations (2.3) and (2.4) together
with the boundary conditions (2.5) constitute a moving-boundary problem. The absence
of convective terms in (2.3) indicates that the drop expansion is independent of the particle
dynamics. If that was not the case, the set of differential equations (2.1) and equations (2.3)
and (2.4) would have to be solved simultaneously, even under the consideration of a
quasi-stationary, passive drop expansion. Note that the effect of osmosis alone is for the
interface of the drop to expand passively through the surrounding fluid, without causing
internal flow (Roure & Davis 2021b). Thus, the potential sources of inner flow are from
the motion of a nearby particle, which would be very small for K∗ � 1, or from density
differences due to the salt concentration gradient inside the drop.

2.1. Trajectory simulations
For calculation of relative particle trajectories, we solve the system of (2.1) numerically
using a fourth-order Runge–Kutta scheme with an adaptive time step. The drop expansion,
governed by (2.3) and (2.4), is calculated in advance using the finite-difference scheme
we described previously (Roure & Davis 2021a) and then tabulated and used as an input
in the kinematic calculations. To find the precise time of collision, we perform a linear
extrapolation of the trajectory right before the numerical overlap step or for separations
smaller than a given threshold. This last time increment is given by max{0, δtcol},
with

δtcol =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(r2 − R2)/(2(ȧdR − r · V )) if V = ȧd,

ȧdR − r · V −
√
(ȧdR − r · V )2 − (r2 − R2)(V2 − ȧ2

d)

V2 − ȧ2
d

if V /= ȧd,

(2.6)

where R(t) = ad(t)+ ap, V is the relative particle velocity and V = ‖V‖. If the imaginary
part of δtcol is non-zero, the particle does not collide with the drop.

One of the greatest challenges faced in the simulations performed in our previous work
(Roure & Davis 2021b) was to obtain precise values for the collision volume, which
required a high resolution of the function tcol(x) to be interpolated. However, using the
analytical expressions for the mobilities, which are given in terms of infinite series, leads to
high computational times, which made it hard to achieve such high resolution, considering
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(b)(a)

Figure 2. Numerical results for the relative particle trajectories for K∗ = 10−4, ap = 0.25, y0 = 0, z0 = 4.0
and x0 = 0.2, 0.4, 0.6 and 0.8 (left to right): (a) result for a non-expanding droplet and (b) result for an
expanding drop with Eg = 2.0 and Pe = 0. Although the trajectories all have the same starting position, more
particles are captured in the presence of swelling. The dashed semi-circles in panel (b) are the drop interfaces
at the time of capture.

that the numerical calculation of tcol is of order O(h−2), where h is the space step.
Hence, in that paper, we had to filter the noise of the function Vcol(t) before taking its
time derivative to calculate the collision efficiency, which led to small discrepancies with
theoretical results.

To overcome this issue, we incorporated the near- and far-field asymptotic expressions
of Davis & Zinchenko (2018) for small and large separations, respectively. The constants
present in the expressions for the near-field mobilities had to be tabulated for different
size ratios, as the ratio between the drop and particle radii changes with time during
the simulation. Moreover, we also tabulated the analytical values of the mobilities for
intermediate separations. These tabulations made the code approximately 200× faster,
which allowed us to improve the resolution of the function tcol(x) and to get rid of the
smoothing step, obtaining more precise results.

Figure 2 shows numerical results for the relative particle trajectories for K∗ = 10−4,
ap = 0.5 and different initial conditions. Figure 2(a) shows the results for a non-expanding
droplet. In this case, none of the simulated trajectories leads to a collision with the droplet.
In contrast, as can be seen in figure 2(b), which shows results for an expanding drop with
Eg = 2.0 and Pe = 0, the particles starting at x = 0.2, 0.4 and 0.6 are captured by the
droplet.

The results shown in figure 2 indicate that the main advantage of drop swelling capture
is that it enables the capture of particles that would not be captured otherwise. For
non-expanding droplets in a purely extensional flow, there is a region at the adjacency
of the droplet where particles do not get captured, even when close to the droplet. The
presence of drop swelling, however, can improve the capture of such particles. One way
to quantify this improvement is to investigate the motion of particles in the xy plane.
Figure 3 shows numerical results of the separation gap s(t) = r(t)− R(t), where r is the
centre-to-centre distance and R(t) = ad(t)+ ap is the sum of the drop and particle radii
versus time for particles in the xy plane (i.e. at z = 0) for ap = 0.5, K∗ = 10−4, Pe = 0:
(a) Eg = 0; (b) Eg = 0.25; (c) Eg = 0.5 and (d) Eg = 1.0 for different starting positions.
For small values of the engulfment parameter Eg, particles starting on this plane do not
get captured. However, for values of Eg above a certain threshold, we see the formation
of an annular region with thickness δ where the particles get captured. This capture
layer appears in theoretical studies of the collision efficiency of froth flotation (Yoon &
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Figure 3. Separation gap versus time for particles starting in the xy plane (i.e. at z = 0) for ap = 0.5, K∗ =
10−4, Pe = 0: (a) Eg = 0; (b) Eg = 0.25; (c) Eg = 0.5 and (d) Eg = 1.0 for different starting positions. For
values of Eg above a threshold given by R(0)(1 − A0), there is a bifurcation in the behaviour of the system,
indicated by the formation of the lateral capture layer with thickness δ = (b) 0.04, (c) 0.083 and (d) = 0.163.

Luttrell 1989; Loewenberg & Davis 1994), and it is directly related to the collision
efficiency. For the froth flotation process, this layer appears because of the presence of
attractive forces, as lubrication forces would impede particle collision from these regions
otherwise. For our system, however, the existence of this adjacency layer happens because
of drop expansion, even in the absence of attractive forces. The thickness of the capture
layer, which corresponds to the bifurcation point in the diagrams in figure 3, depends on
the physical parameters of the problem.

2.2. Calculation of collision efficiency
The main goal of our simulations is to calculate the collision efficiency between the
particle and drop. The collision efficiency is defined as the ratio between the pair
collision rate over the ideal pair collision rate (i.e. the collision rate in the absence of
any interparticle interaction, where the particles are brought together by the external
flow field). As discussed previously (Roure & Davis 2021b), for an initially uniform pair
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R(t) = ad (t) + ap

R(t)

Scol (0)

Acol (t)

Vcol

ψt(Acol(t)) = Scol(t)

ψt
–1(Scol(t)) = Acol(t)

ψt
–1

ψt

Figure 4. Sketch of the different geometries involved in the collision volume analysis and the relationship
between them. Here, Vcol is the volume composed of starting points of trajectories that lead to a collision in
a time τ ≤ t, Acol is the surface composed by starting points of trajectories that lead to a collision in a time t,
Scol is the region of the collision sphere that is able to capture particles at a time t and ψt is the time-evolution
operator of the dynamical system.

distribution function, the collision efficiency in an extensional flow can be calculated by

Ecol(t) = 3
√

3
8πR3

0

d|Vcol|
dt

, (2.7)

where R0 = R(0) = ai + ap and |Vcol(t)| is the volume of the region Vcol, which consists
of starting points of trajectories that lead to a collision with the drop in a time less than or
equal to t. Note that the collision efficiency is defined as the ratio of the actual collision
rate to the collision rate due to external flow for no drop expansion and with hydrodynamic
and molecular interactions neglected. We also define the collision area Acol(t) as being the
surface formed by the starting points of trajectories that will lead to a collision in a time t.
The relationship between Acol and Vcol is

Vcol(t) =
⋃
τ≤t

Acol(τ ). (2.8)

In many situations, the collision area Acol(t) coincides with the external boundary of
Vcol, which we call A∗

col. We note that in our previous work (Roure & Davis 2021b), the
surface defined as Acol is the A∗

col defined in this paper. However, the two coincide for all
cases considered in that paper. Another definition of interest is the one of the collision
surfaces Scol(t), which we define as the region of the collision sphere (i.e. the sphere with
radius R(t) = ad(t)+ ap) that is capable of capturing particles (i.e. V · n̂|Scol(t) < ȧ(t)).
This definition is a generalization of Scol, which we defined previously in Roure & Davis
(2021b). Namely, Scol = Scol(0). There is a clear relationship between Scol(t) and Acol(t);
if we consider the time-evolution function ψt related to the dynamical system (2.1), such
that ψt(x(0)) = x(t), we have ψt(Acol) = Scol(t) or, alternatively, ψ−1

t (Scol(t)) = Acol(t).
These geometries, as well as the geometrical relationship between Acol(t) and Scol(t), are
illustrated in figure 4. This geometrical relationship helps us understand why, in some
cases, the surfaces Acol and A∗

col differ from each other, as previously stated. Namely, for
an expanding droplet with sufficiently high Eg, for which A∗

col is path-connected, as the
drop expansion diminishes with time, a no-capture region begins to form at the adjacency
of the collision surface at large times, breaking the path-connectedness of Scol(t) and, by
consequence, Acol(t).

This relationship between Acol and Scol can be used to calculate the collision volume by
reversing the dynamical system (i.e. by solving dr/dt = −V (r, T − t) using the points
in Scol(t) as starting positions) and then using Acol(t) to calculate A∗

col(t) and Vcol(t).
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Such a procedure was used in our previous work (Roure & Davis 2021b) to calculate the
transient collision efficiency for non-expanding droplets, where Acol(t) = A∗

col(t) and the
time evolution operators form a one-parameter subgroup. Another method of calculation
of A∗

col(t), also used previously (Roure & Davis 2021b), was to calculate, via numerical
interpolation, the level sets tcol(x) = t, where tcol(x) is the collision time of a trajectory
starting at x.

An alternative expression for the collision efficiency can be given in terms of a surface
integration over Scol, such that:

Ecol(t) = − 3
√

3
8πR(0)3

∫
Scol(t)

f (x, t)n̂ ·
(

V − V S
)

dS, (2.9)

where f (x, t) is the pair distribution function, n̂ is the outward normal unit vector and
V S is the interface velocity. For a non-expanding drop, where Scol(t) = Scol(0) = Scol
and V S · n̂ = 0, this expression can also be used to calculate the steady-state collision
efficiency, which coincides with the expression obtained by Davis & Zinchenko (2018).
However, for transient systems, this expression requires the knowledge of the pair
distribution function, which is governed by the Liouville equation:

∂f
∂t

+ ∇ · (V f ) = 0, (2.10)

with initial condition f (x, 0) = f0(x). In our previous work (Roure & Davis 2021b), we
provided a semi-analytical, transient solution of (2.10) for the case of non-expanding drops.
For expanding droplets, such a transient solution ceases to be valid, as it is not possible
to re-write the equation in the integrable form presented by Batchelor & Green (1972a).
However, it is still possible to obtain a semi-analytical solution of (2.10). Namely, the pair
distribution function is given by

f (x, t) = f0(x)|dψ−1
t |, (2.11)

where |dψ−1
t | is the Jacobian of the inverse of the time evolution function ψt. This

relationship comes directly from the conservation form of (2.10). Similar relationships
between the pair distribution function and the Jacobian of the time evolution operator
have appeared before in works concerning the statistical mechanics of non-Hamiltonian
systems (Tuckerman, Mundy & Martyna 1999; Ezra 2004). For an initially uniform
pair-distribution function, the relationship reduces to

f (x, t) = |dψ−1
t (x)|. (2.12)

As previously discussed, we can approximate the inverse time-evolution function by
numerically solving the reverse dynamical system. Hence, we can obtain a numerical
approximation for the Jacobian |dψ−1

t (x)| and, thus, the pair distribution function f (x, t)
by considering the deformation of a small square element by the reverse dynamical system.
This method used for the numerical calculation of the Jacobian is somewhat similar to
techniques used in dynamical systems to calculate Lyapunov exponents (Sandri 1996;
Cvitanovic et al. 2005).

Figure 5 shows numerical results for the pair distribution function calculated by the
aforementioned method. For the simulations, we used K∗ = 10−4, Pe = 0, ap = 0.5, and
(a) Eg = 0 and (b) Eg = 1. We also evaluated the results at the surface of a sphere of radius
R(t)+ 0.01 (i.e. close to the collision sphere of radius R(t)). This small shift in radius
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t = 0 t = 0.75 t = 1

t = 0 t = 0.75 t = 1

0 10 20 30 40+

(a)

(b)

Figure 5. Numerical results for the pair distribution function f (x, t) for K = 10−4, Pe = 0, ap = 0.5: (a) Eg =
0 and (b) Eg = 1. The results shown in the figure are evaluated at the surface of a sphere of radius R(t)+ 0.01.
For Eg = 0, there is a zero-probability region corresponding to the wake region. For non-zero values of Eg, the
formation of such a region only occurs at larger times.

is motivated by the fact that the probability distribution at the surface of the collision
sphere can reach very high values, as expected from theoretical calculations, resulting
in a less-detailed visualization. Like the results presented previously for non-expanding
droplets, we observe the formation of a high-probability region at the top of the sphere
(i.e. at the collision region), represented by the bright yellow region in figure 5(a).
In the same figure 5(a), we also notice a dark region, where f (x, t) = 0 for non-zero
times. This region is associated with the wake region predicted by Wilson (2005) and
observed in our previous transient simulations (Roure & Davis 2021b). The increase of
the pair-distribution function at the top of the collision region for non-expanding spheres
explains the transient increasing behaviour of the collision efficiency observed in the
previous numerical simulations.

In contrast, the results shown in figure 5(b) for expanding spheres with Eg = 1 show
lower values of the pair distribution function when compared to the non-expanding
droplets. However, the increase in capture area (as well as surface area) together with a
non-zero surface velocity, adds a positive contribution Ecol(t)|Eg to the collision efficiency,
where

Ecol(t)|Eg = 3
√

3
8πR(0)3

∫
Scol(t)

f (x, t)V S · n̂ dS, (2.13)

resulting in a higher overall collision efficiency when compared to the one of
non-expanding droplets. This contribution, however, decays with time, as the surface
velocity slows down with time due to dilution of the salt water inside the drop. For Pe = 0,
the decrease occurs slowly, whereas for high Péclet numbers, the decrease in expansion
rate can occur fast, resulting in a short-time transition between engulfment-dominated and
flow-dominated capture, as we will show in § 3.2.

The physics behind this sharp decay can be better understood by analysing the short-time
behaviour of the collision efficiency, given by (2.9). Namely, for sufficiently high values
of Eg, such that Scol(0) and Scol(δt) are the whole surfaces of spheres with radii R(0) and
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R(δt), respectively, and considering an initially uniform pair distribution function, we can
obtain an asymptotic expression for (2.9) such that

Ecol(δt) ∼ 3
√

3
2R(0)

[
ȧd(0)+ δt

(
äd(0)− 4R(0)2

5
β + 2ȧd(0)2

R(0)

)]
, (2.14)

where

β = (1 − A0)

(
3

R(0)
(A0 − B0)+ ∂A

∂r

∣∣∣∣
r=R(0),t=0

)
, (2.15)

and A0 and B0 are the values of the mobility functions A and B, respectively, evaluated at
the surface of the sphere of radius R(0) at t = 0. In (2.14), the leading order is equal to the
initial value of the collision efficiency predicted by Roure & Davis (2021b), as expected.
Moreover, if the order O(δt) term related to the flow (i.e. the first-order term containing
β) is zero, this expansion is compatible with the pure-engulfment collision efficiency
obtained in the same paper, indicating that the contributions from the terms äd(0) and
2ȧd(0)2/R(0) are purely due to drop expansion. Note that the flow term at order O(δt)
does not depend on the swelling dynamics of the drop, which indicates that both effects
(flow and expansion) are uncoupled at t = 0. However, as the swelling dynamics influences
the time evolution of the pair-distribution function, the effects of flow and swelling start
to blend as time proceeds. The derivation of (2.14) can be made by performing a change
of variables from R(δt) to R(0), followed by a regular expansion of both the integrand and
the Jacobian in powers of δt. Then, we use the fact that the integrals∫

Scol(0)
Vr|t=0 dS, (2.16)

∫
Scol(0)

∂Vr/∂r|t=0 dS (2.17)

and ∫
Scol(0)

∂Vr/∂t|t=0 dS, (2.18)

all vanish when integrated over the whole sphere (here, Vr ≡ V · êr). In (2.14), the
term äd(0), which is the initial radial acceleration of the drop radius, gives a negative
contribution to the first order of Ecol(δt). For Pe = 0, this term is equal to −3ȧd(0)2 =
−3Eg2, which is larger in magnitude than the last term, resulting in an overall decreasing
behaviour for the collision efficiency from engulfment. For high Péclet numbers, the
absolute value of äd(0) can be very large. In fact, the second derivative of the short-time
expansion in our earlier work (Roure & Davis 2021a) is singular at t = 0, indicating
that although the initial value of the collision efficiency is not affected by the Péclet
number, there is a sharp decay of Ecol for Pe 
 1 at very short times (physically, this
decay occurs because of the sharp reduction in salt concentration and, hence, osmotic
expansion rate when diffusion of salt from the drop interior to its inner edge is slow). For
Pe = 0, we can use this short-time expansion to determine the critical value of engulfment,
Eg∗, for which the particle capture at short times will transition from flow dominated to
engulfment dominated. Namely, this transition happens when the term of order O(δt) (i.e.
the derivative of the collision efficiency at t = 0) changes sign. Hence, if Eg∗ exists, it is
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given by

Eg∗ =
(

4R(0)3β
5 (2 − 3R(0))

)1/2

. (2.19)

When drop expansion happens slowly compared to the imposed flow velocity, it is
also expected that for long times, the pair distribution function f (x, t) will converge to a
quasi-steady-state limit similar to the analytical expression by Batchelor & Green (1972a),
f (x, t) ∼ (1 − At(R(t)))−1φt(R(t)), where At(R(t)) is a shorthand notation for the mobility
at time t evaluated at r = R(t) and we define Bt(R(t)) in the same way. Similarly, φt is the
function φ, defined by

φ(r) = exp
(∫ ∞

r

A(r′)− B(r′)
1 − A(r′)

dr′

r′

)
, (2.20)

evaluated at time t (i.e. using the mobilities At and Bt instead of A and B). Hence, by
plugging the quasi-steady pair distribution into (2.9), we can derive an expression for the
quasi-steady collision efficiency, given by

Ecol(t) ∼ 3
√

3

2 [φt(R(t))]3

(
R(t)
R(0)

)3 [
(cos(α)− cos(α)3)+ ȧ

R(t)
(1 − cos(α))
1 − At(R(t))

]
, (2.21)

where α(t) is the angle determining the collision region at time t. Similarly to in our
previous work (Roure & Davis 2021b), we have

cos(α) =

⎧⎪⎨
⎪⎩

1√
3

(
1 − ȧ(t)

R(t)(1 − At(R(t)))

)1/2

for ȧ(t) ≤ R(t)(1 − At(R(t))),

0 for ȧ(t) ≥ R(t)(1 − At(R(t))).

(2.22)

For non-expanding droplets, where R(t) = R(0) and cos(α) = 1/
√

3, the analysis yields
Ecol = φ(R(0))−3, as expected.

3. Results and discussion

3.1. Drop expansion
Before presenting the results for the collision efficiency, we discuss some of the numerical
results related to the diffusion-limited swelling of droplets. These results for the expansion
kinetics of a drop are tabulated and used as inputs for the mobility simulations.

Figure 6 shows numerical results for the evolution of the salt concentration profile inside
a drop for (a) Pe = 2 and (b) Pe = 200. These results were obtained by the finite-difference
scheme proposed previously (Roure & Davis 2021a). For large Péclet numbers (i.e. slow
salt diffusion), the concentration profile remains unaltered at the central portion of the
droplet and all diffusive effects are confined to a boundary-layer region, as described
previously (Roure & Davis 2021a). The increase in Péclet number leads to a lower
concentration of salt at the drop surface, resulting in a slower drop expansion, as seen
in the results shown in figure 7. Namely, as diffusion occurs slowly, the flux of salt from
the centre to the inner drop surface (where the salt water is diluted by the influx of fresh
water) requires a large concentration gradient and balances a reduced osmotic expansion
rate (due to the lower salt concentration).
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Figure 6. Evolution of the salt concentration profile for (a) Pe = 2 and (b) Pe = 200 and times t = 0.1, 0.2,
0.3, 0.4 and 0.5. For high Péclet numbers, the diffusion effects are constrained to a concentration boundary
layer, as predicted in our previous work (Roure & Davis 2021a). The vertical dashed lines are the drop radii at
the specific time.

a(t)/ai

Eg (t)

Pe = 200

Pe = 50

Pe = 10

Pe = 1

0 0.2 0.4 0.6 0.8 1.0
1.0

1.1

1.2

1.3

1.4

1.5

Figure 7. Radial evolution of a spherical droplet size for different Péclet numbers. As the diffusion becomes
slower, the salt concentration at the drop surface diminishes, reducing the osmotic influx and leading to a slower
expansion.

3.2. Collision efficiency
In addition to the Péclet number and the engulfment parameter, there are other physical
parameters that influence particle capture, such as the non-dimensional permeability K∗
and particle size ap. In practice, a large range of parameter values is possible. Davis &
Zinchenko (2018) estimated K∗ values in the ranges of 10−6 to 10−4 for small drops and
particles with reduced radii of 1–100 μm in water, whereas even smaller values may be
estimated from experiments with larger (millimetre-sized) agglomerates (DeIuliis et al.
2021; Roure & Davis 2021a). These same experiments yielded Pe = O(102 − 103), but
smaller values are expected for smaller drops (Roure & Davis 2021a). The engulfment
parameter can be recast as Eg = K∗RTci/(μγ̇ ) and so can take on a wide range of values
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of O(1) or less. Similarly, since drops (or bubbles) typically capture smaller particles,
a0 < 1 is expected.

Roure & Davis (2021b) determined collision efficiencies for the case of fast inner
diffusion (i.e. Pe = 0) and relatively large particles (0.25 ≤ ap ≤ 1). In this section, we
consider more realistic scenarios of 0 ≤ Pe ≤ 200, K∗ = 10−6 and 10−4, 0 ≤ Eg ≤ 3 and
0.05 ≤ ap ≤ 1. The larger values of Pe allow us to examine the degree to which diffusion
limitations slow the drop expansion and collision efficiency, while the smaller size ratios
allow us to examine the effectiveness of engulfment due to drop expansion in capturing
very fine particles.

Figure 8 shows numerical results for the collision efficiency for ap = 0.5, Eg = 1 and
Pe = 0.1, 5, 25 and 200. The solid curves in figure 8 represent the results for K∗ = 10−4,
whereas the dashed curves are the results for K∗ = 10−6. Though difficult to see, the initial
value of collision efficiency for all cases is the same, Ecol = √

3, as given by the theoretical
expression in (2.14). As in our previous work, where we observed a decreasing collision
efficiency versus time in expansion-dominated capture, a similar trend is observed here.
As expected from the discussion presented in § 3.2, it is noted that an increase in Péclet
number also results in a sharper decay of the collision efficiency at short times due to the
rapid reduction in drop expansion with slow salt diffusion. This initial decay is noticeably
sharp in the cases where the Péclet number is large, as there is a fast depletion of salt at the
drop surface. The short-time region of the curves in figure 8 display a similar behaviour
to our previous results for the evolution of salt concentration at the drop interface (Roure
& Davis 2021a). This result is expected, as the salt concentration at the interface is the
main driver behind the osmotic swelling. However, in contrast to the salt depletion at
the interface, the collision efficiency curves are not necessarily monotonically decreasing.
Namely, for high Péclet numbers, as time increases, it is possible to observe an increasing
behaviour of the collision efficiency, which is characteristic of flow-dominated capture.
This behaviour occurs when the characteristic time of the initial sharp decay of salt
concentration at the interface is much smaller than the characteristic flow time. In the
limit of Pe → ∞, we expect dEcol/dt|t=0 in our model to be singular, with the collision
efficiency presenting an instant decay from the theoretical initial collision efficiency at the
given engulfment parameter to the initial collision efficiency for Eg = 0, as the salt would
not be able to diffuse to the diluted water at the inner edge of the drop and expansion
would cease. Moreover, it is noted that the numerical results for K∗ = 10−6, indicated
by the dashed lines in figure 8, are practically identical to the ones for K∗ = 10−4.
A similar behaviour of the collision efficiency curves coinciding for small values of K∗ was
observed previously (Roure & Davis 2021b) in the absence of inner diffusion for Eg = 1;
under these conditions, the collision efficiency is dominated by engulfment. Hence, the
results in figure 8 indicate that the engulfment dominance of the collision efficiency
can persist for considerably large times, even for large Péclet numbers. Of course, since
Eg = KRTci/(γ̇ ai), a reduction in the permeability K with all else unchanged would lead
to reduced engulfment and a lower collision efficiency.

Figure 9 shows the collision efficiency versus time for ap = 0.5, K∗ = 10−4, Pe = 200
and Eg = 0, 0.25, 1.0, 2.0 and 3.0. As expected, the collision efficiency is greater for
larger values of Eg. The short-time decay of Ecol for high Eg is slower when compared to
lower values of Eg. Moreover, as seen before in figure 8 and in our previously presented
results (Roure & Davis 2021b), the slowing of drop swelling also produces a change
in the curve’s shape. Namely, for high values of Eg, the collision efficiency presents a
decreasing behaviour with time, as expected in expansion-dominated capture, whereas
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Figure 8. Collision efficiency versus time for ap = 0.5, Eg = 1, and K∗ = 10−4 (solid lines) and K∗ = 10−6

(dashed lines) for different Péclet numbers. Although all of the curves start at the same value, the increase in
the Péclet number results in a faster decay in salt concentration at the boundary at short times, which leads to
a slower drop swelling and, thus, lower collision efficiency.

t
0.2 0.4 0.6 0.8 1.21.0
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0.4
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1.0

0
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1.00
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Eg = 3.00

Figure 9. Collision efficiency versus time for ap = 0.5, Pe = 200 and different values of the engulfment
parameter Eg. The solid lines represent the results for K∗ = 10−4, whereas the dashed lines are the results
for K∗ = 10−6. For large values of Eg, the collision efficiency is dominated by engulfment and the results
coincide. For non-expanding droplets, however, the collision efficiency for permeability K∗ = 10−4 at larger
times is approximately twice as large as the one for K∗ = 10−6.

for smaller values of the engulfment parameter, we observe a short-time decay followed
by an increasing collision efficiency and a slow decrease for even larger times. Also, in
contrast to the results shown in figure 8, decreasing the value of Eg also decreases the
initial collision efficiency. Hence, the sharp decay observed at short times in figure 8 for
drops with slower swelling rate is no longer present.

Figure 10 show numerical results for the collision efficiency versus time for K∗ =
10−4 and ap = 0.1, 0.25, 0.5 and 1.0 for (a) Eg = 0 and (b) Eg = 1 and Pe = 200. In
figure 10(a), the collision efficiency without engulfment presents an increasing behaviour
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Figure 10. Collision efficiency versus time for K∗ = 10−4 and ap = 0.1, 0.25, 0.5 and 1.0 for (a) Eg = 0 and
(b) Eg = 1 and Pe = 200. In panel (a), the collision efficiency presents an increasing behaviour until it reaches
the steady state predicted by collision theory, represented by the dashed lines. In panel (b), the behaviour is
initially dominated by engulfment, but transitions to a long-time, quasi-steady behaviour.

until it reaches the steady state predicted by collision theory, represented by the dashed
lines. The agreement between the transient simulations and collision theory is much better
than reported previously (Roure & Davis 2021b), because of the increase in resolution
allowed by the tabulation of the mobility functions described in § 2.1. From figure 10(a),
we see that for smaller particles, the collision efficiency and, thus, the pair-distribution
function, takes a longer time to reach a steady state. Moreover, the collision efficiency
becomes small for small particles, which tend to flow around non-expanding droplets. In
figure 10(b), the behaviour is initially dominated by engulfment. In this regime, smaller
particles have higher collision efficiencies compared to larger particles, as predicted by
the expression for pure expansion. However, at larger times, when the drop expansion
rate decreases, the capture transitions to a more flow-like behaviour. In this regime,
the collision efficiency presents a more quasi-steady behaviour and, as expected from
flow-induced capture, the collision efficiency for finer particles is smaller. Because the
expansion rate decays slowly, the influence of drop expansion is still present in the sense
that the collision rate is still much higher than for flow capture without expansion shown
in figure 10(a).

Although the results in figure 10(b) show an increasing behaviour of collision efficiency
with radius for larger times, this behaviour is non-monotonic, as in the results for
non-expanding permeable droplets reported by Davis & Zinchenko (2018). To better
understand this behaviour, we investigated how different physical parameters, such as
the particle size ap, Péclet number Pe and engulfment parameter Eg, affect the collision
efficiency at moderate times. Figure 11 shows numerical results for the collision efficiency
at time t = 1 versus the non-dimensional particle radius for K∗ = 10−4 and different
values of Eg. Figure 11(a) shows the results for Pe = 5. For this small Péclet number,
we see that, even for moderate values of Eg, the collision efficiency at time t = 1 is still
dominated by engulfment. Namely, for Eg = 1, the collision efficiency decreases with
increasing particle radius ap, which is characteristic of engulfment-dominated capture. For
smaller values of Eg, we see a non-monotonic behaviour characteristic of flow-dominated
capture. In contrast, the results in figure 11(b), which shows numerical results for Pe =
200, present a flow-dominated behaviour even for Eg = 1. However, it is also noted
that the collision efficiencies for larger values of Eg are considerably higher than for
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Figure 11. Collision efficiency at time t = 1 versus non-dimensional particle radius for K∗ = 10−4 and
different values of the engulfment parameter Eg: (a) results for Pe = 5 and (b) results for Pe = 200.

non-expanding droplets, especially for smaller particles. Thus, engulfment due to drop
expansion provides a significant enhancement to the capture of very fine particles.

The preceding figure and discussion suggest a transition from flow-dominated particle
capture to engulfment-dominated particle capture. This concept is further examined in
figure 12, which shows a ‘phase diagram’ for the dominant capture mechanism for ap =
0.5 and K∗ = 10−4. In contrast to the critical engulfment parameter Eg∗ defined by (2.19),
which is related to the behaviour of the collision efficiency at t = 0, the previous results
in this section indicate an alternative way to characterize the transition between flow- and
engulfment-dominated behaviours by noting the presence of a local minimum at short
times for flow-dominated capture, which is followed by a subsequent increase in collision
efficiency. To this end, we performed a series of numerical simulations at various values
of Pe and Eg. By analysing the results for each Péclet number, we can estimate a critical
value of Eg, Egc, for which the collision efficiency ceases to be monotonically decreasing,
indicating a transition in the dominant capture mechanism. The numerically calculated
values of these transition points are shown by the curve in figure 12. Above the curve is
the region of engulfment-dominated particle capture, whereas the shaded area below the
curve is the region of flow-dominated capture. As expected, the value of Egc increases
monotonically with Pe due to the fast depletion of salt at the inner drop interface. From
figure 12, it is also noted that there is a sharp increase in the critical engulfment parameter
from small to moderate Péclet numbers, which transitions to a slower increasing behaviour
that is nearly linear with Pe.

4. Comparison between flotation and agglomeration

One important comparison to make is between our theoretical results for the capture
efficiency of the agglomeration process and previous theoretical results regarding froth
flotation. To this end, in this section, we compare the results from our model with the
theoretical results obtained for froth flotation by Loewenberg & Davis (1994). Following
the discussion at the beginning of § 3.2, we focus our attention to the limits of the
permeability range estimated by Davis & Zinchenko (2018), with K∗ = 10−6 and 10−4,
Pe = 200 and small values of Eg.
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Figure 12. Phase diagram representing the transition between flow- and engulfment-dominated particle
capture for ap = 0.5 and K∗ = 10−4 and Pe = 0.1, 1, 5, 25, 100, 200 and 300. For each Péclet number, we
identify a critical engulfment parameter, Egc, represented by the solid curve, at which there is a transition
between particle-capture mechanisms. The region above the transition curve represents engulfment-dominated
particle capture, whereas the shaded area below is the region of flow-dominated particle capture.

Figure 13 shows numerical results for the collision efficiency evaluated at the
non-dimensional time t = 1 (expanding drops) or steady state (non-expanding drops)
for different particle sizes. The dashed curve is the reference result for the steady-state
collision efficiencies of froth flotation obtained by Loewenberg & Davis (1994) for
different particle radii and H ≡ A/(RT) = 1, where A is a measure of the van der Waals
attraction, as described by Hamaker (1937). The solid curves are the results for the
agglomeration method investigated in this paper with and without engulfment. The inset
shows a closeup of the region for smaller particle sizes. For non-expanding (Eg = 0) drops,
the permeable interfaces for flow-induced capture lead to collision efficiencies without
attractive forces that are comparable to (K∗ = 10−6) or larger than (K∗ = 10−4) the
flotation capture efficiencies with van der Waals attraction but no permeation. However,
both mechanisms yield very low efficiencies for ap < 0.05 (i.e. small particles of radii less
than 5 % of the drop or bubble radius).

Fortunately, even the smallest engulfment examined (Eg = 0.05, K∗ = 10−6) provides
considerable enhancement in the collision efficiency for the new process of fast
agglomeration with emulsion binders, with the enhancement the greatest on a relative
basis for smallest particles. This prediction supports the experimental observations of van
Netten et al. (2017) that the process rapidly captures particles of all sizes. Moreover,
the current analysis of the agglomeration process neglects molecular attractive forces,
which would further increase the collision efficiency for very small permeabilities and
engulfment parameters.

5. Concluding remarks

Particle capture by small, salt-water drops covered with a thin permeable film was analysed
by solving the transient diffusion problem inside the expanding drops and the two-sphere
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Figure 13. Numerical results for the collision efficiency versus particle radius. The dashed curve is the
reference result for the steady-state collision efficiencies of froth flotation obtained by Loewenberg &
Davis (1994) for different particle radii and H ≡ A/(RT) = 1. The solid curves are the results for the fast
agglomeration method where: (i) Eg = 0, K∗ = 10−6; (ii) Eg = 0, K∗ = 10−4; (iii) Eg = 0.05, K∗ = 10−6;
(iv) Eg = 0.1, K∗ = 10−6, Pe = 200; and (v) Eg = 0.25, K∗ = 10−6, Pe = 200. The inset shows a closeup of
the region for smaller particle sizes. The results for non-expanding droplets are at steady state, whereas the
results for expanding droplets are evaluated at t = 1.

mobility equations for the drop–particle interaction in an extensional flow field. Osmotic
flow into the drops is characterized by an engulfment parameter (ratio of permeate
flow to imposed external flow), while salt diffusion inside the drop is characterized by
a Péclet number (ratio of osmotic flow to diffusive flux). As expected, increasing the
engulfment parameter increases the drop–particle collision efficiency, especially for very
small particles, which tend to flow on streamlines around non-expanding drops rather
than collide with them. Increasing the Péclet number decreases the collision efficiency,
however, as the slower diffusion of salt from the drop center to its edge leads to a diffusion
boundary-layer of declining salt concentration near the inner edge of the drop interface,
and a reduced driving force for osmotic flow and drop expansion. Nevertheless, this effect
is relatively weak; figure 8 shows a decline in collision efficiency of less than one-half at
t = 1 as Pe is increased from 0.1 to 25 and less than two-thirds as Pe is increased from
0.1 to 200, for Eg = 1, K∗ = 10−4 and ap = 0.5. Further, for very small particles, even
a small amount of engulfment can provide a substantial relative increase in the collision
efficiency over that without engulfment. For example, figure 13 shows for ap = 0.05, a
12-fold increase in the collision efficiency from 0.005 for froth flotation to 0.06 for fast
agglomeration with Eg = 0.1, K∗ = 10−6 and Pe = 200.

The engulfment parameter is defined as Eg = KRTci/(γ̇ ai). In addition to decreasing
the imposed shear rate γ̇ (which would reduce the base collision rate proportionately)
or increasing the initial salt concentration, ci, Eg can be increased by using drops
with smaller radius ai. Smaller drops have smaller Péclet number, Pe = KRTciai/D,
with less diffusional resistance and, hence, higher collision efficiencies. Moreover, the
particle-to-drop size ratio is increased for smaller drops, which further increases the
collision rate. Thus, smaller drops are recommended where feasible. Regardless, the
simulations show that fast agglomeration is a suitable alternative for froth flotation of even
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very small particles, as long as modest engulfment due to osmotic flow into expanding
drops is present.
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