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On the onset of long-wavelength
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We study the onset of the three-dimensional mode A instability in the near wake behind a
circular cylinder. We show that long-wavelength perturbations organise in a time-shifting
pattern such that the in-plane velocity in each streamwise slice corresponds to the
base flow solution at shifted times. This observation introduces an additional unifying
characteristic for certain mode A type instabilities. We then analyse the mechanisms
which control the growth or decay of these perturbations and highlight the crucial role
played by the tilting mechanism which operates via non-local interactions in a manner
similar to Biot–Savart induction. We characterise its domain of influence using a Green’s
function-based approach which allows us to rationalise the non-trivial dependence of the
growth rate on the spanwise wavenumber. We connect this behaviour to the subtle balance
between the local growth of the perturbations as they are swept along by the flow and the
feedback on the perturbations that are generated during the next period of the time-periodic
base flow. Finally, we discuss generalisations of our findings to other types of flows.
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1. Introduction

The flow of an incompressible viscous fluid around an infinitely long circular cylinder is
characterised by the Reynolds number, Re = U∞d/ν (defined by the free stream velocity
U∞, the cylinder diameter d and the kinematic viscosity ν). With an increase of Re, the
flow undergoes several stages of stability loss before it becomes turbulent (Williamson
1996c). A key feature of the flow is the von Kármán vortex street which appears soon
after the primary instability of the flow at Re = Re0 when the two-dimensional steady
flow becomes time-periodic via supercritical Hopf bifurcation. Critical Reynolds numbers
observed in experiments and obtained using theoretical analysis agree, Re0 ≈ 46–47
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(Mathis, Provansal & Boyer 1984; Jackson 1987; Dušek, Le Gal & Fraunié 1994). This
instability does not immediately lead to the appearance of the von Kármán vortex street –
the formation of the vortices happens at a slightly larger Reynolds number far in the wake
(approximately 100 diameters downstream) (Heil et al. 2017). As the Reynolds number
is increased further, the two-dimensional time-periodic flow becomes unstable to two
distinct modes (A and B) of three-dimensional instability (Barkley & Henderson 1996),
which are also observed experimentally (Williamson 1988). The modes have different
spatio-temporal structure and length scale (approximately four and one diameter of the
cylinder, respectively).

The mode A instability arises at a critical Reynolds number of ReA = 188.5 ± 1 and a
wavelength of λA = 3.96 ± 0.02 (Barkley & Henderson 1996) via a subcritical bifurcation
(Henderson & Barkley 1996; Behara & Mittal 2010; Akbar, Bouchet & Dušek 2011). These
theoretical predictions agree with experiments, see discussions by Miller & Williamson
(1994), Williamson (1996a), Akbar et al. (2011) and Jiang et al. (2016b). Barkley (2005)
demonstrated that the instability originates in the vortex formation region by applying a
Floquet stability analysis to the various flow subregions. This showed that at Re = 190,
the confined flow in the vortex formation region (0 ≤ x ≤ 3 and |y| ≤ 1.5) still exhibited a
mode A instability (as manifested by the same dependence of the Floquet multiplier on the
spanwise wavenumber as for the entire computational domain), whilst the developed wake
(region 2.25 ≤ x ≤ 25 and |y| ≤ 4) turned out to be stable. This finding is supported by
Giannetti, Camarri & Luchini (2010), who performed a sensitivity analysis of the dominant
Floquet modes to localised structural perturbation and also provided time-resolved details
of the most sensitive subregions of the flow.

A distinctive characteristic of mode A behind a circular cylinder is its degeneration
into the neutral two-dimensional mode in the limit of infinite spanwise wavelength, as
highlighted by Barkley & Henderson (1996). It is well known that, in general, periodic
solutions U(x, t) of autonomous problems admit neutrally stable Floquet modes in the
form of ∂U(x, t)/∂t (Iooss & Joseph 1990, § VII.6.2). Therefore, given that mode A
shares its symmetry with this two-dimensional neutral mode, it inherits the symmetry
of the base flow U(x, t). Three-dimensional instabilities linked to such neutral modes also
occur in other problems, and we show that this general mathematical fact has implications
for the kinematics of long-wavelength three-dimensional instabilities, thus elucidating a
perturbation pattern for a class of instabilities.

Mode A type instabilities are also observed in other flows, e.g. behind elongated bluff
cylinders, oscillating cylinders, rotating cylinders, square and elliptic cylinders, airfoils,
and behind cylinders moving near a wall (Ryan, Thompson & Hourigan 2005; Leontini,
Thompson & Hourigan 2007; Luo, Tong & Khoo 2007; Sheard, Fitzgerald & Ryan 2009;
Lo Jacono et al. 2010; Leontini, Lo Jacono & Thompson 2015; Rao et al. 2015; Agbaglah
& Mavriplis 2017; He et al. 2017; Rao et al. 2017; Thompson, Leweke & Hourigan 2021).
However, it is interesting to note that there is no universally accepted definition that allows
one to classify a particular three-dimensional instability as being mode A. One possible
way to do this is by constructing a continuous transformation between different problems
and tracking the relevant solution branch; see, e.g. Leontini et al. (2015). A less rigorous
but common approach is to compare what are thought to be ‘intrinsic’ attributes of the
mode A pattern, such as its critical wavelength, the local distribution of the perturbations
and the spatio-temporal symmetry of the perturbations. Yet, mode A type perturbations
can emerge on the background of non-symmetric base flow, and their spanwise wavelength
can be of the order of tens of diameters of the cylinder; see, e.g. the flow around an elliptic
and rotating cylinder (Rao et al. 2015, 2017).
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Onset of long-wavelength 3-D instability in the cylinder wake

Over the years, many attempts have been made to explain the physical mechanism
responsible for the onset of the mode A instability, e.g. by analysing simplified flows that
have certain key features observed in the actual, usually much more complicated, flow with
the aim of predicting the pattern and critical parameters of the instability. The best known
attempt of this type exploits the similarity of the perturbed base flow vortices with the
structures that appear in the course of an elliptic instability of a stationary two-dimensional
flow with elliptic streamlines (Lagnado, Phan-Thien & Leal 1984; Landman & Saffman
1987; Waleffe 1990; Kerswell 2002). This similarity was first noted by Williamson
(1996b), who hypothesised that the mode A instability arises via the elliptic instability
of the developing vortices in the vortex formation region. The hypothesis was supported
by Leweke & Williamson (1998b) and Thompson, Leweke & Williamson (2001). In
the latter work, the hypothesis was extended to a cooperative elliptic instability of two
counter-rotating forming vortices (shedding from both sides of the cylinder) based on the
resemblance with data by Leweke & Williamson (1998a) on three-dimensional instability
of a vortex pair. The analysis provides an estimate for the spanwise wavelength of the
mode A instability (of approximately three diameters of the cylinder) which agrees well
with experimental observations. Ryan et al. (2005) and Leontini et al. (2007) found other
correlations with the elliptic instability hypothesis for flows around other bluff bodies.

However, the hypothesis does not take into account the self-excited nature of the
instability, i.e. the fact that the three-dimensional perturbations created in the forming
vortex during a certain phase of the time-periodic base flow not only undergo local growth
(while being advected by the flow), but also provide positive or negative feedback on
the development of the instability during the next period. It is this balance between
local growth and feedback that is at the heart of the instability mechanism – within the
framework of Floquet analysis, it is characterised by the value of the Floquet multiplier.
Furthermore, the flow in the forming vortex core is non-stationary, non-uniform and
interacts with perturbations in other parts of the flow, and is, therefore, significantly more
complex than assumed in the simplified models. This means that the role of the intensive
growth of perturbations outside the vortex core is still not clear. Indeed, it is known that
the growth of perturbations has two distinct phases that occur when the perturbations
grow predominantly in the forming vortex and in the braid shear layer (Williamson 1996b;
Leweke & Williamson 1998b; Thompson et al. 2001; Aleksyuk & Shkadov 2018, 2019).
The elliptic instability hypothesis assumes that the amplification of perturbations during
the second phase only has a secondary effect on the instability. Some support for this
interpretation is provided by Thompson et al. (2001) and Julien, Ortiz & Chomaz (2004).

An alternative view on the local mechanisms for the instability was proposed by
Giannetti et al. (2010) and Giannetti (2015), which takes into account the self-excited
nature of the instability. Giannetti (2015) performed a stability analysis, based on applying
the Lifschitz–Hameiri theory (Lifschitz & Hameiri 1991) in the limits Re → ∞ and
γ → ∞, along the closed periodic orbits found in the vortex formation region. They
demonstrated that the local evolution of perturbations along a specific orbit could
reproduce the instability characteristics of modes A and B. However, the quantitative
agreement of the predictions with experimental observations is poor, presumably because
of the strong assumptions on Re and γ . Indeed, Jethani et al. (2018) carried out a similar
analysis that included finite Re and γ corrections and obtained better agreement with
the critical parameters for mode B and suggested that the mode B instability could be
a manifestation of the local instability on the closed orbits. To our knowledge, there is still
no quantitative agreement on mode A.

For a discussion of other, earlier hypotheses regarding the development of the mode A
instability, based on the Benjamin–Feir instability (Leweke & Provansal 1995) or the
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centrifugal instability (Brede, Eckelmann & Rockwell 1996), say, we refer to Leweke &
Williamson (1998b) and Thompson et al. (2001).

The aim of this paper is to clarify the mechanisms for the onset of mode A instability,
specifically, the paper addresses two questions.

(i) What is the explanation for the pattern of mode A at the early (linear) stage of its
development (§ 5)?

(ii) What physical mechanisms define whether this pattern is unstable at a specific
Reynolds number and spanwise wavelength (§ 6)?

The structure of the paper is as follows. In §§ 2–4, we describe the problem formulation,
the two-dimensional time-periodic base flow and the three-dimensional linear stability
analysis performed to obtain the dominant Floquet modes. In § 5, we answer question
(i) by considering a simplified case of small spanwise wavenumbers. Then, in § 6,
we address question (ii) by describing perturbations in terms of perturbations to the
in-plane vorticity. The results are summarised in § 7. Appendix A provides details of the
numerical simulations. In Appendices B and C, we discuss the action of the basic physical
mechanisms for the change of the in-plane vorticity of a fluid particle and the derivation of
the Green’s function for the screened Poisson equation to describe non-local interactions
of perturbations.

2. Problem formulation

The flow of an incompressible viscous fluid around an infinitely long circular cylinder
is described in the Cartesian coordinate system x = (x, y, z) with the z-axis coinciding
with the axis of the cylinder and the x-axis aligned with the incoming flow velocity. All
quantities are considered in non-dimensional form based on the diameter of the cylinder
d, the free stream velocity U∞ and the fluid density ρ∞:

t = U∞ t̃
d

, x = x̃
d
, p = p̃

ρ∞U2∞
, u = ũ

U∞
. (2.1a–d)

Here, t, p(x, t) and u(x, t) = (u, v, w) are time, pressure and the velocity vector; a tilde is
used to distinguish dimensional variables from their non-dimensional equivalents.

The solution p, u depends on only one parameter – the Reynolds number Re = U∞d/ν

(where ν is the coefficient of kinematic viscosity), and satisfies the Navier–Stokes
equations ⎧⎨

⎩
∇ · u = 0, (2.2a)
∂u
∂t

+ N(u, u) = −∇p + 1
Re

∇2u (2.2b)

subject to no-slip boundary condition u = (0, 0, 0) at the surface of the cylinder and
u → (1, 0, 0) as r = (x, y) → ∞. Here, the nonlinear advection term is expressed using
N(u, v) = [(u · ∇)v + (v · ∇)u]/2. We use the arguments r = (x, y) and x = (x, y, z) to
indicate a function’s dependence on the in-plane and full three-dimensional coordinates,
respectively.

3. Two-dimensional base flow

The base flow velocity vector U(r, t) = (U, V, 0) and pressure P(r, t) satisfy (2.2), which
we solved numerically using a second-order stabilised finite element method on triangular
meshes with a second-order discretisation in time (see Appendix A).
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t = 0.0T

0.1T

0.2T 0.2T 0.2T

0.3T 0.3T0.3T

0.4T 0.4T 0.4T

0.1T 0.1T

0.0T 0.0T

Formed vortex

Braid shear layer

Forming vortex

–4.0 –2.0 0 2.0 4.0 0 0.5 1.0 1.5 2.0 –1.0 –0.5 0 0.5 1.0

(b)(a) (c)

Figure 1. Plots of the base flow at Re = 220 in terms of (a) the vorticity Ω; (b) the positive eigenvalue S of
the strain rate tensor and its principal direction Φ (shown by red line segments); (c) the ratio κ = 2S/|Ω| on a
logarithmic scale. Solid lines correspond to the boundaries between elliptic and hyperbolic regions, κ = 1. The
time t = 0 corresponds to the maximum of the lift coefficient. Panel (a) also identifies the key flow regions:
the forming vortex, the braid shear layer and the fully formed vortex.

In the range of the Reynolds number we consider in this paper (50 ≤ Re ≤ 220), the
base flow in the near wake is T-periodic in time, e.g. U(r, t + T) = U(r, t), and possesses
the following symmetry:⎛

⎝U
V
P

⎞
⎠ (x, y, t + T/2) =

⎛
⎝ U

−V
P

⎞
⎠ (x, −y, t). (3.1)

As an example, figure 1 illustrates the base flow solution at Re = 220. Figure 1(a) shows
the contours of the vorticity, Ω = ∂V/∂x − ∂U/∂y, and highlights where vortices are
created and where they reach their fully formed state; the contours in figure 1(b) show the
positive eigenvalue S of the strain rate tensor and the associated principal directions – the
latter indicate the direction of maximum stretching in the flow; finally, figure 1(c) shows
the ratio κ = 2S/|Ω|, where Ω/2 is the local rate of rotation. Thus, κ is a measure of the
relative importance of stretching and rotation, and the lines κ = 1 define the boundaries
between hyperbolic (stretching-dominated) and elliptic (rotation-dominated) regions.
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4. Dominant Floquet modes of three-dimensional perturbations

To elucidate the mechanisms responsible for the onset of the three-dimensional
instability, we consider the initial stages of its development when the deviation from
the two-dimensional time-periodic base flow is small. The perturbation velocity vector
u′(x, t) = (u′, v′, w′) and pressure p′(x, t) satisfy the linearised Navier–Stokes equations,

⎧⎨
⎩

∇ · u′ = 0, (4.1a)

∂u′

∂t
+ 2N(U, u′) = −∇p′ + 1

Re
∇2u′, (4.1b)

and homogeneous boundary conditions u′ = (0, 0, 0) at the surface of the cylinder and as
r → ∞. We seek perturbations with spanwise wavenumber γ :

⎛
⎜⎝

u′
v′
w′
p′

⎞
⎟⎠ (x, t) =

⎛
⎜⎝

û
v̂

iŵ
p̂

⎞
⎟⎠ (r, t) exp(iγ z) +

⎛
⎜⎝

û∗
v̂∗

−iŵ∗
p̂∗

⎞
⎟⎠ (r, t) exp(−iγ z), (4.2)

which satisfy

⎧⎨
⎩

∇̂∗ · û = 0, (4.3a)
∂û
∂t

+ 2N(U, û) = −∇̂p̂ + 1
Re

(
∇2û − γ 2û

)
, (4.3b)

where û(r, t) = (û, v̂, ŵ), ∇̂ = (∂/∂x, ∂/∂y, γ ) and ∇̂∗ = (∂/∂x, ∂/∂y, −γ ); û∗, v̂∗, ŵ∗
and p̂∗ are complex conjugates of û, v̂, ŵ and p̂.

The system of equations (4.3) is linear and has T-periodic coefficients. Therefore, we
represent each function with a hat, say û(r, t), as exp(σ t)up(r, t), where up(r, t) is a
T-periodic function and σ = σr + iσi is a complex number. These modes are either real
or come in conjugate pairs since the coefficients of the system are real. Perturbations at
a given γ correspond to the combination of waves travelling along the z-axis with speed
±σi/γ , for instance,

u′(x, t) = a(r, t) eσrt [C1 exp
(
i
[
σit + γ z + φ(r, t)

])+ C∗
1 exp

(−i
[
σit + γ z + φ(r, t)

])
+C∗

2 exp
(
i
[
σit − γ z + φ(r, t)

])+ C2 exp
(−i

[
σit − γ z + φ(r, t)

])]
, (4.4)

where the T-periodic part of the solution is expressed using the amplitude a(r, t) and
argument φ(r, t): up(r, t) = a exp(iφ); the constants C1 and C2 appear as coefficients
in a linear combination of complex-conjugate solutions. When σ is real, the solution
degenerates into a standing wave.

If at least one Floquet multiplier μ = exp(σT) lies outside the unit circle (|μ| > 1), the
flow is unstable. Given Re and γ , we seek only the dominant mode with the largest |μ|
using the numerical method described in Appendix A. Figure 2 shows the dependence
of the dominant Floquet multiplier on γ at Re = 220. There are three intervals, which
correspond to modes A (0 < γ ≤ 2.6) and B (γ ≥ 8.5) with real Floquet multipliers, and
quasi-periodic modes with complex μ in the intermediate range of γ . The flow is unstable
(|μ| > 1) to perturbations of mode A for 1.1 < γ < 2.1 (hatched region).
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Mode A Mode BQuasi-periodic modes

1.2

0.8

0.4

|μ|

0 2 4 6 8
γ

10

Present work:

Im(μ) = 0

Im(μ) = 0

Im(μ) = 0

Im(μ) �= 0 (Arnoldi iterations)

Im(μ) �= 0 (Power method)

12 14 16

Im(μ) �= 0

Barkley & Henderson (1996):

Figure 2. Dominant Floquet multiplier at Re = 220 (obtained by two methods, see Appendix A.2) and
comparison with the data of Barkley & Henderson (1996). The hatched yellow area highlights unstable
perturbations.

0.4

1.6 2.2

1.0

0.2γ = 0 (theory)

Vortex formation region

Figure 3. Pattern of mode A perturbations at Re = 220 and 0 ≤ γ ≤ 2.2: perturbation energy e (greyscale
colour contours) and in-plane (z = 0) perturbation velocity (arrows). Solid lines are the base flow vorticity
isolines Ω = ±1. All plots are snapshots at t = 0.5T , corresponding to the minimum of the lift coefficient.
Perturbations at γ = 0 are obtained by time differentiation of the base flow solution, see (5.2). The yellow
shaded regions show the vortex formation region. Note that the greyscale contour levels were adjusted manually
to highlight the similarities and differences of the perturbation patterns.

Figure 3 illustrates the changes in the corresponding eigenfunctions with γ by plotting
the distribution of perturbation kinetic energy

e = 1
L

∫ L

0

1
2

(
u′2 + v′2 + w′2

)
dz = |û|2, (4.5)

and in-plane perturbation velocity vectors; here L = 2π/γ is the wavelength. The
pattern of the perturbations remains qualitatively similar over the range of γ considered.
An increase in γ causes the perturbations inside the formed vortex (x > 3) to shift outside
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of it, but there is little change to the perturbation pattern in the vortex formation region
(highlighted by the yellow shaded region).

5. The pattern of long-wavelength perturbations

Given that the overall features of the flow field, particularly in the vortex formation
region, do not change qualitatively with variations in the wavenumber (see, e.g. figure 3 at
Re = 220 and 0 ≤ γ ≤ 2.2), we analyse the pattern of the three-dimensional perturbations
in the small-γ (i.e. long-wavelength) regime.

We start with the case γ = 0. Taking the time-derivative (denoted by an over-dot) of the
Navier–Stokes equations and boundary conditions for the base flow (U, P) leads to⎧⎨

⎩
∇ · U̇ = 0, (5.1a)

∂U̇
∂t

+ 2N(U, U̇) = −∇Ṗ + 1
Re

∇2U̇, (5.1b)

with homogeneous boundary conditions. Comparison with (4.1), which governs the
small-amplitude perturbations to the base flow, shows that for γ = 0,(

u′, v′, w′, p′) = τ0
(
U̇, V̇, 0, Ṗ

)
(5.2)

is a valid two-dimensional perturbation to the base flow. (The amplitude τ0 
 1 is
introduced to ensure that the perturbations are sufficiently small to justify the linearisation
that leads to (4.1).) Since (U̇, Ṗ) are time-periodic, the perturbations (5.2) are too,
implying that they are neutrally stable, μ = 1, consistent with the numerical results shown
in figure 2.

The perturbations (5.2) correspond to a small temporal shift in the flow field since

u(x, t) = U(r, t) + τ0U̇(r, t) = U(r, t + τ0) + O(τ 2
0 ), (5.3)

where we have used the Taylor expansion of U(r, t + τ0). This reflects the fact that the
two-dimensional time-periodic base flow is only determined up to an arbitrary temporal
phase shift, here represented by τ0.

Given the explicit expression (5.2) for perturbations with zero wavenumber, γ = 0, we
now pose a perturbation expansion in the regime 0 < γ 
 1. We start by noting that in
this regime, the Floquet multiplier μ is real; therefore, the solution has the standing wave
form (see (4.4))

(u′, v′, w′, p′) = τ
[(

up, vp, 0, pp
)

cos(γ z) − (
0, 0, wp, 0

)
sin(γ z)

]
, (5.4)

where τ(t) = τ0 eσ t and the subscript ‘p’ indicates that a function is T-periodic. We
assume that τ0 is sufficiently small to ensure that τ(t) 
 1; this is consistent with the tacit
assumption that the exponential growth of the instability has not increased its amplitude
to a level that would invalidate the linearisation underlying the derivation of (4.1).

Substituting (5.4) into the linearised Navier–Stokes equations (4.1) yields⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · up − γ wp = 0, (5.5a)

∂up

∂t
+ 2N(U, up) = −∇pp + 1

Re

(
∇2up − γ 2up

)
− σup, (5.5b)

Dwp

Dt
= −γ pp + 1

Re

(
∇2wp − γ 2wp

)
− σwp, (5.5c)

where up(r, t) = (up, vp, 0) and D/Dt is the linearised substantial derivative D/Dt =
∂/∂t + (U · ∇).
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0.2

0.1

1.9

1.8

1.7

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

χ 1
[ fit]  = kγ

χ 2
[ fi

t]  =
 c 

+ aγ
2

γ γ

χ1 χ2

(a) (b)

Figure 4. Plot of the ratios χ1 = ∥∥wp
∥∥/∥∥up

∥∥ and χ2 = ∥∥vp
∥∥2

/
∥∥up

∥∥2 at Re = 220. The symbols represent the
values obtained from the numerical simulations; the solid lines are fits based on the functional form (5.8a,b).

Using the explicit solution for two-dimensional perturbations (5.2), we obtain that in
the limit γ → 0, (up, vp, pp) must tend to (U̇, V̇, Ṗ) while σ and wp must both tend to
0. This initially suggests the following expansions for the T-periodic functions up(r, t) =
(up, vp, 0), wp(r, t), pp(r, t), and the growth rate σ :

up(r, t) = U̇(r, t) + γ u1(r, t) + γ 2u2(r, t) + O(γ 3),

wp(r, t) = γ w1(r, t) + γ 2w2(r, t) + O(γ 3),

pp(r, t) = Ṗ(r, t) + γ p1(r, t) + γ 2p2(r, t) + O(γ 3),

σ = γ σ1 + γ 2σ2 + O(γ 3).

(5.6)

We now note that since for both signs of γ the dominant standing-wave mode (5.4) is the
same, up, pp and σ must be even in γ and wp must be odd. Hence,⎛
⎜⎝

u′
v′
w′
p′

⎞
⎟⎠ = τ

⎡
⎢⎢⎣
⎛
⎜⎜⎝

U̇ + γ 2u2 + O(γ 4)

V̇ + γ 2v2 + O(γ 4)
0

Ṗ + γ 2p2 + O(γ 4)

⎞
⎟⎟⎠ cos(γ z) −

⎛
⎜⎝

0
0

γ w1 + O(γ 3)
0

⎞
⎟⎠ sin(γ z)

⎤
⎥⎥⎦ .

(5.7)
To demonstrate the consistency of this expansion with the numerical results, we define the
functions χ1 = ∥∥wp

∥∥/∥∥up
∥∥ and χ2 = ∥∥vp

∥∥2
/
∥∥up

∥∥2. The expansion (5.7) then implies that
for γ 
 1, we have

χ1 = ‖w1‖∥∥U̇
∥∥ γ + O(γ 3), χ2 =

∥∥V̇
∥∥2∥∥U̇
∥∥2

[
1 + 2

(
〈v2, V̇〉∥∥V̇

∥∥2 − 〈u2, U̇〉∥∥U̇
∥∥2

)
γ 2 + O(γ 4)

]
,

(5.8a,b)
where ‖·‖, 〈·, ·〉 are the L2-norm and inner product, respectively (calculated for the yellow
shaded region shown in figure 3).

The symbols in figure 4 show χ1 and χ2 computed from the numerical results; the
continuous lines are the approximations χ

[ fit]
1 = kγ and χ

[ fit]
2 = c + aγ 2, where we fitted

a, c and k using the numerical data for γ = 0, 0.05, 0.1 and 0.15. The numerical data can
be seen to be well described by the predictions from (5.8a,b); the fitted constant c differs
by less than 1.2 % from the value

∥∥V̇
∥∥2

/
∥∥U̇
∥∥2.

Having established that the leading-order terms in the expansion (5.7) provide a good
description of the three-dimensional perturbations, we note that the Taylor expansion
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t = t0

z = L

z = L/2

z = 0

z = L

z = L/2

z = 0

t
0  + τ(t

0)

t
0  + τ(t

0)

t
0  – τ(t

0)

(a) (b)

Figure 5. Illustration of the time-shifting pattern for the three-dimensionally perturbed flow: the flow in each
streamwise slice is given by the two-dimensional flow at a slightly different time; the time shift depends on
the spanwise coordinate z. (a) Two-dimensional base flow within streamwise slices at slightly different times.
(b) Resulting three-dimensional perturbed flow.

employed to derive (5.3) now shows that⎛
⎝ u(x, t)

v(x, t)
p(x, t)

⎞
⎠ =

⎛
⎝ U(r, t) + u′(x, t)

V(r, t) + v′(x, t)
P(r, t) + p′(x, t)

⎞
⎠ =

⎛
⎝ U(r, t + τ cos(γ z)) + O(τ 2, τγ 2)

V(r, t + τ cos(γ z)) + O(τ 2, τγ 2)

P(r, t + τ cos(γ z)) + O(τ 2, τγ 2)

⎞
⎠ .

(5.9)
This implies that, to leading order, long-wavelength perturbations to the two-dimensional
base flow self-organise so that the flow in each streamwise slice corresponds to the base
flow at shifted times, where the amount of shift depends on the spanwise coordinate, z.
This is illustrated in the conceptual sketch in figure 5.

Furthermore, substituting (5.6) into (5.5) shows that the equation for w1 is uncoupled
from the other perturbations,

Dw1

Dt
= −Ṗ + 1

Re
∇2w1, (5.10)

and hence the leading-order spanwise flow is driven exclusively by the pulsations of the
base flow pressure, Ṗ(r, t).

The perturbation to the vorticity is given by⎛
⎝ ω′

x
ω′

y
ω′

z

⎞
⎠ = τ

⎡
⎣
⎛
⎝ 0

0
Ω̇ + O(γ 2)

⎞
⎠ cos(γ z) +

⎛
⎝ γ

(
V̇ − ∂w1/∂y

)+ O(γ 3)

γ
(
∂w1/∂x − U̇

)+ O(γ 3)
0

⎞
⎠ sin(γ z)

⎤
⎦ .

(5.11)
This shows that for small wavenumbers, the perturbations to the vorticity are dominated by
the spanwise component, ω′

z, which is largest in regions where the time derivative of the
base flow vorticity, Ω̇ , is large. This is consistent with the observation that, in the course
of the mode A instability, the vortex cores in the base flow undergo considerable spanwise
wavy deformations (here due to the cos(γ z) term); see, for example, Barkley & Henderson
(1996) and Jiang et al. (2016a).

The comparison of the in-plane perturbation velocity for mode A at γ = 0 (obtained by
time differentiation of the base-flow solution) with cases at γ /= 0 in figure 3 shows that the
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Onset of long-wavelength 3-D instability in the cylinder wake

Re = 100; γ = 0 (theory)(a)

(b)

Re = 100; γ = 0.8 Re = 100; γ = 1.6

Re = 150; γ = 0 (theory) Re = 150; γ = 0.8 Re = 150; γ = 1.6

Figure 6. Pattern of perturbations at Re = 100, 150 and γ = 0, 0.8, and 1.6: perturbation energy e (greyscale
colour contours) and in-plane (z = 0) perturbation velocity (arrows). Solid lines are the base flow vorticity
isolines Ω = ±1. All plots are snapshots at t = 0.5T , corresponding to the minimum of the lift coefficient.
Perturbations at γ = 0 are obtained by time differentiation of the base flow solution, see (5.2). One should
not directly compare the magnitude of perturbations in the different cases; it is defined up to a constant factor
which we adjusted manually to highlight the similarities and differences of the perturbations patterns.

perturbation pattern in the vortex formation region is still qualitatively similar to (U̇, V̇)

even when γ is not small and Re > ReA (at least up to γ = 2.2 and Re = 220 according
to figure 3). Furthermore, figure 6 shows that the pattern of the perturbations remains
unchanged even at lower Re. Although, formally, the leading-order approximation is no
longer valid when γ is not small (e.g. in figure 2, it is evident that the leading order term
does not describe the dependence σ(γ ) for large γ ), the persistence of the time-shifting
pattern in the vortex formation region indicates its significant role in the onset of mode A.
This suggests that the spatial structure of the mode A instability can be explained by the
mechanism for the formation of the time-shifting pattern discussed above.

The symmetry of mode A behind a circular cylinder is inherited from the
two-dimensional base flow. Williamson (1996b) observed it experimentally and gave
a physical explanation based on the suggested self-sustaining process. Barkley &
Henderson (1996) extracted the symmetry relations by examining numerically obtained
eigenfunctions from the linear stability analysis:⎛

⎜⎝
up
vp
wp
pp

⎞
⎟⎠ (x, y, t + T/2) =

⎛
⎜⎝

up
−vp
wp
pp

⎞
⎟⎠ (x, −y, t). (5.12)

For a base flow with the symmetry (3.1), only two types of synchronous bifurcations to
the three-dimensional flow are allowed (Marques, Lopez & Blackburn 2004; Blackburn,
Marques & Lopez 2005): preserving (like mode A) and breaking (like mode B) the
base-flow symmetry. In this context, the instabilities with the Floquet branch connected to
the neutral mode at γ = 0 belong to the former group: the neutral mode has the base-flow
symmetry and, consequently, the time-shifting pattern inherits it as well (e.g. see relation
(5.6)). However, it is not evident whether all the modes that exhibit the symmetry (5.12)
are caused by a common physical mechanism.

We note that none of the above analysis relies on the geometry of the cylinder, implying
that our results are equally applicable to flows past other bluff bodies for which mode A
instabilities are observed. In particular, the time-shifting pattern is observed even when
the base flow is non-symmetric, e.g. in the flow past an elliptic cylinder at an incidence
angle (Rao et al. 2017) and in the flow past a rotating cylinder (Rao et al. 2015).
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Therefore, the time-shifting pattern can serve as an additional unifying characteristic of
certain mode A type three-dimensional instabilities.

6. Physical mechanisms for flow instability

The previous section showed that in the small-wavenumber limit, small-amplitude
three-dimensional perturbations to the two-dimensional time-periodic base flow are
dominated by a simple time shifting of that base flow. Comparison against the numerical
solution of the perturbation equations showed that this pattern persists up to wavenumbers
at which the base flow becomes unstable to the mode A instability. The approach,
therefore, successfully predicts the flow pattern at the onset of the three-dimensional
instability, but it does not explain why these perturbations grow for a specific range of
wavenumbers at fixed Reynolds number (e.g. at Re = 220, it corresponds to 1.1 < γ <

2.1, as illustrated in figure 2).
To address this issue, we now analyse the various physical mechanisms that affect the

growth or decay of such three-dimensional perturbations. For this purpose, we define the
in-plane perturbation velocity v(r, t) = (vx, vy, 0) and vorticity ζ (r, t) = (ζx, ζy, 0) by the
relations

u′ (x, t) = (vx, vy, 0) cos(γ z) + (0, 0, vz) sin(γ z),

ω′ (x, t) = (ζx, ζy, 0) sin(γ z) + (0, 0, ζz) cos(γ z).

}
(6.1)

Using the definition of the three-dimensional vorticity, ω′ = ∇ × u′, and the fact
that the three-dimensional perturbation velocity u′ is divergence-free shows that these
two-dimensional fields are related via

ζ = γ (vy, −vx, 0) + 1
γ

(
−∂∇ · v

∂y
,
∂∇ · v

∂x
, 0
)

. (6.2)

The rate of change of the two-dimensional perturbation vorticity ζ is governed by the
linearised vorticity transport equation

Dζ

Dt
= E · ζ︸︷︷︸

stretching

+1
2
Ω × ζ︸ ︷︷ ︸

rigid rotation

+ 1
Re

⎛
⎜⎝ ∇2ζ︸︷︷︸

in-plane

− γ 2ζ︸︷︷︸
spanwise

⎞
⎟⎠

︸ ︷︷ ︸
viscous diffusion

−γΩv︸ ︷︷ ︸
tilting

, (6.3)

where Ω = (0, 0, Ω). Each term on the right-hand side of (6.3) has a clear physical
interpretation and explains the material rate of change of the perturbation vorticity ζ in
terms of vortex stretching by the base flow rate-of-strain field E; the re-orientation of the
vorticity vector by the rigid body rotation of fluid particles in the base flow; the in-plane
and spanwise viscous diffusion of the perturbation vorticity; and the tilting of the base
flow vortex due to spanwise shear. See Appendix B for more details.

To facilitate the subsequent analysis, we combine (6.2) and (6.3) by exploiting that the
perturbation vorticity, ω′, is divergence-free and that for an incompressible fluid, ∇2u′ =
−∇ × ω′. This implies that

∇2v − γ 2v = γ ζ⊥ + 1
γ

ζ�, (6.4)

where

ζ⊥(r, t) = (
ζy, −ζx, 0

)
, ζ�(r, t) =

(
−∇ · ∂ζ

∂y
, ∇ · ∂ζ

∂x
, 0
)

. (6.5a,b)
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Onset of long-wavelength 3-D instability in the cylinder wake

The screened Poisson equation (6.4) determines the in-plane velocity perturbation v in
terms of the in-plane perturbation to the vorticity, ζ . An explicit relation between the
two fields can therefore be obtained by introducing the Green’s function Gγ (r, r′), which
satisfies

∇2Gγ − γ 2Gγ = δ(r − r′),
Gγ = 0 at r = 0.5,

Gγ → 0 as r → ∞.

⎫⎪⎬
⎪⎭ (6.6)

We show in Appendix C that the solution to (6.6) is given by

Gγ (r, r′) = − 1
2π

K0(γ |r − r′|) + 1
2π

∞∑
m=−∞

Im(γ /2)Km(γ r)Km(γ r′)
Km(γ /2)

cos m(ϕ − ϕ′),

(6.7)
where Im(r) and Km(r) are the modified Bessel functions of the first and second kind;
r = r(cos ϕ, sin ϕ) and r′ = r′(cos ϕ′, sin ϕ′).

Using this expression, the in-plane perturbation velocity v is given by

v(r, t) =
∫

D
γ Gγ (r, r′)ζ⊥

(
r′, t

)+ 1
γ

Gγ (r, r′)ζ�

(
r′, t

)
dr′, (6.8)

where D is the exterior of the cylinder. Substituting this into (6.3) yields

Dζ

Dt
= E · ζ︸︷︷︸

stretching

+ 1
2
Ω × ζ︸ ︷︷ ︸

rigid rotation

+ 1
Re

⎛
⎜⎝ ∇2ζ︸︷︷︸

in-plane

− γ 2ζ︸︷︷︸
spanwise

⎞
⎟⎠

︸ ︷︷ ︸
viscous diffusion

−Ω

∫
D

γ 2Gγ (r, r′)ζ⊥
(
r′, t

)+ Gγ (r, r′)ζ�

(
r′, t

)
dr′

︸ ︷︷ ︸
tilting

, (6.9)

which describes the evolution of perturbations to the flow entirely in terms of the
perturbations to the in-plane vorticity, ζ . The equation shows that the first three physical
mechanisms are local in the sense that their contribution to the rate of change of ζ
depends only on ζ or its spatial derivatives. Conversely, tilting is a global effect – the
rate of change of ζ due to the final term depends on ζ and its derivatives throughout the
domain. Furthermore, (6.9) shows how variations in the two parameters Re and γ affect the
various mechanisms. The wavenumber only affects the spanwise diffusion and the tilting
mechanism. The effect of variations in the Reynolds number is more subtle: it has a direct
effect on the strength of the viscous diffusion but also affects the base flow and, thus, the
stretching, rigid rotation and tilting mechanisms (via E and Ω). We will now analyse the
importance of these mechanisms in detail.

6.1. Effect of the viscous diffusion and the base flow
The Reynolds number simultaneously affects the base flow and the intensity of the in-plane
and spanwise viscous diffusion. To study the contribution of these three effects separately,
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Re = Re′ = Re′′ = 180

Re = Re′  = Re′′  = 200

1.1

1.0

0.9

0.8

1.2 1.4 1.6 1.8 2.0

μ

γ

Variation of in-plane viscous diffusion, Re′ = 200 (Re = Re′′ = 180)

Variation of the base flow, Re = 200 (Re′ = Re′′ = 180)

Variation of spanwise viscous diffusion, Re′′ = 200 (Re = Re′ = 180)

Figure 7. Influence of the Reynolds number on the dominant Floquet multiplier near the onset of instability
(ReA ≈ 190). Two solid black lines correspond to the actual Floquet multiplier μ (Re = Re′ = Re′′), other
lines represent the Floquet multiplier obtained as a result of independent variation of the base flow (Re; blue),
in-plane (Re′; red) and spanwise (Re′′; green) viscous diffusion.

we replace the Reynolds number in front of the diffusion terms in (6.9) by Re′ and Re′′,
and thus write the evolution equation for the in-plane perturbation to the vorticity, ζ , as

Dζ

Dt
= E · ζ︸︷︷︸

stretching

+ 1
2
Ω × ζ︸ ︷︷ ︸

rigid rotation

+ 1
Re′ ∇2ζ︸ ︷︷ ︸
in-plane

− γ 2

Re′′ ζ︸ ︷︷ ︸
spanwise︸ ︷︷ ︸

viscous diffusion

−Ω

∫
D

γ 2Gγ (r, r′)ζ⊥
(
r′, t

)+ Gγ (r, r′)ζ�

(
r′, t

)
dr′

︸ ︷︷ ︸
tilting

. (6.10)

Here the Re-dependent base flow affects the base-flow rate-of-strain tensor, E , and the
base-flow vorticity, Ω .

Figure 7 illustrates the contributions that the mechanisms discussed so far make to
the destabilisation of the flow as the Reynolds number is increased from 180 to 200.
The two solid lines show the Floquet multipliers μ for the actual flow (i.e. when
Re = Re′ = Re′′) at Reynolds numbers Re = 180 and 200. The remaining broken lines
show the destabilising effects of the modification only in the base flow (blue line, Re =
200, Re′ = Re′′ = 180), in-plane viscous diffusion (red line, Re′ = 200, Re = Re′′ = 180)
and spanwise viscous diffusion (green line, Re′′ = 200, Re = Re′ = 180). (We obtained
the curves corresponding to distinct Re and Re′ by modifying the input data, feeding
our stability code with the pre-computed base flow at Re, while using Re′ in the stability
equations; the impact of the spanwise viscous diffusion (Re′′) was assessed explicitly, see
below.) For the wavelengths over which the mode A instability arises, the modification
to the base flow and the in-plane viscous diffusion can be seen to have a considerable
(and comparable) effect on the destabilisation of the flow, whereas the spanwise viscous
diffusion only plays a minor role in this process.
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Onset of long-wavelength 3-D instability in the cylinder wake

The overall effect of the spanwise viscous diffusion can be taken into account explicitly
using the change of variables

ζ̃ (r, t) = ζ (r, t) exp(γ 2t/Re), (6.11)

which transforms (6.9) into an identical equation for ζ̃ , but with the spanwise diffusion
term removed. Equation (6.11), therefore, implies that in the absence of spanwise viscous
diffusion, the Floquet multiplier μ would change to

μ̃ = μ exp(γ 2T/Re) > μ, (6.12)

meaning that spanwise viscous diffusion is always stabilising, and that it does not have
an effect on the spatial pattern of the perturbations. An increase in Reynolds number
or a decrease in wavenumber both reduce the stabilising effect of the spanwise viscous
diffusion. (We note that the period of the vortex shedding, T , also depends on the Reynolds
number; however, for the regime considered here, T decreases with Re and, therefore, does
not affect our statement.)

6.2. Effect of the tilting mechanism
Figure 2 shows that the dependence of the dominant Floquet multiplier, μ, on the
wavenumber γ is non-monotonic: μ(γ = 0) = 1, corresponding to the neutral stability of
the base flow to the time-shifting pattern discussed in § 5. The dominant Floquet multiplier
then decreases with increasing γ before it rises again, ultimately leading to the onset of
the mode A instability for 1.1 < γ < 2.1 at Re = 220.

Only the tilting and spanwise diffusion depend on the wavenumber and, as discussed
above, the latter effect is always stabilising; more so, in fact, as γ is increased. The
destabilisation of the base flow at sufficiently large γ must, therefore, be due to the tilting
of the base flow vorticity due to spanwise shear (v cos(γ z)). Equation (6.8) shows that this
mechanism is a non-local effect: v is induced by the perturbation to the in-plane vorticity,
ζ , everywhere in the flow, in a manner similar to Biot–Savart induction.

The strength of this non-local interaction is defined by two kernel functions Gγ (r, r′)
and γ 2Gγ (r, r′) in (6.9). They are determined by the problem geometry and describe how
much the perturbations at point r are affected by the in-plane vorticity and its second
derivatives at point r′. Both kernel functions are singular at r = r′ and decay with an
increase in |r − r′|. We illustrate the spatial variation of Gγ (r, r′) in figure 8(b) for the
case where r (identified by the red star symbol) is located at the instantaneous local
maximum of the perturbation vorticity in the flow shown in figure 8(a). An increase in
γ makes both kernel functions more localised, as illustrated by the orange isolines, along
which Gγ (r, r′) = −10−1.6. We note that an increase in γ causes Gγ (r, r′) to decrease
throughout the domain; conversely, the magnitude of γ 2Gγ (r, r′) increases in the vicinity
of r, enhancing the influence that the vorticity in the proximity of a given point has on the
growth of the perturbations at that point.

To determine the effect of the tilting mechanism on the actual growth rate of
perturbations in a given flow, we multiply (6.9) by ζ to obtain

1
2
Dζ 2

Dt
= ζ · E · ζ︸ ︷︷ ︸

stretching

+ 1
Re

(
ζ · ∇2ζ − γ 2ζ 2

)
︸ ︷︷ ︸

viscous diffusion

+
∫

D
T (r, r′, t) dr′

︸ ︷︷ ︸
tilting

, (6.13)

where ζ = |ζ | and

T (r, r′, t) = −Gγ (r, r′)Ω(r, t)ζ (r, t) ·
[
γ 2ζ⊥

(
r′, t

)+ ζ�

(
r′, t

)]
. (6.14)
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Figure 8. The contribution of perturbation distribution to their growth or decay at the local maximum of
ζ (marked with the star symbol) through the tilting mechanism at Re = 220, various γ and t = 0.44T .
(a) In-plane perturbation vorticity: log10 ζ . (b) Kernel function log10 |Gγ (r, r′)|. (c) Contribution to the tilting
mechanism at point r (the star symbol): T (r, r′, t). The orange lines highlight the isoline of kernel function
Gγ (r, r′), shown in panel (b). Solid lines in panels (a,c) are isolines κ = 1 (the boundaries of the elliptic
regions). Perturbation vorticity is normalised so that the local maximum of ζ (star symbol) equals 1.

When T (r, r′, t) is positive/negative, the perturbations in the vicinity of point r′ tend to
increase/decrease the magnitude of perturbations ζ at point r.

Let us consider examples of the distribution of T at various γ and fixed Re = 220 at
time t = 0.44T , which corresponds to the early stage of perturbation development in the
forming vortex (cf. the illustration of the entire cycle in figure 9a). The greyscale contours
in figure 8(a) illustrate the magnitude of the perturbation to the in-plane vorticity (on a
logarithmic scale), normalised so that its local maximum at the location indicated by the
star (the local maximum of ζ in the forming vortex) is equal to 1 in all cases. An increase
in γ leads to a strong increase in the magnitude of ζ as the perturbation develops; compare,
e.g. the magnitude of ζ in the braid region for γ = 0.4 and γ = 2.2. This increase of ζ (and
the derived quantities, ζ⊥ and ζ�) is counteracted by the increasing localisation of the
kernel functions, as illustrated by the isolines Gγ (r, r′) = −10−1.6 from figure 8(b). (The
contribution of γ 2Gγ (r, r′)ζ⊥ to the tilting integral in (6.13) turns out to be negligible, so
the isoline of Gγ (r, r′) gives a good indication of the domain of influence for the tilting
mechanism.)

The red/blue colours (representing positive/negative values of T ) in figure 8(c) highlight
which regions in the flow destabilise/stabilise the flow at point r and thus identify the
significant non-local interactions of perturbations in various flow subregions. A key
feature in figure 8(c) is that previously formed perturbations outside the forming vortex
(particularly in the hyperbolic region) have a noticeable effect on the development of
newly created perturbations in the vortex core. This raises questions about the validity
of simplified models that attempt to explain the instability based on isolated flow features.
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Figure 9. Local growth of perturbations at Re = 220 and γ = 1.6: (a) in-plane perturbation vorticity log10 ζ ;
(b) local maximum ζmax(t) (red line), which corresponds to the star symbol in panel (a). In panel (b), we also
show similar curves for stable cases at Re = 220 (dashed black lines) and Re = 50 (dotted blue line). Solid
lines in panel (a) are isolines κ = 1 (the boundaries of the elliptic regions). Perturbation vorticity is normalised
so that at t = 0.44T , the local maximum of ζ (star symbol) equals one.

Figure 8(c) shows that, as expected, when γ increases, the non-local interactions become
more localised: the contribution to the growth of ζ at point r weakens more rapidly
with the distance, even though surrounding perturbations become more intense at higher
γ (cf. figure 8a). Incidentally, another confirmation of more localised interactions of
perturbations can be found in figures 3 and 6, where, with an increase in γ , the induced
in-plane perturbation velocity, v, can be seen to become smaller far from the regions where
the perturbations in ζ concentrate; cf. (6.8).

Thus, the range of wavenumbers, γ , for which three-dimensional perturbations are
unstable is determined by the tilting mechanism (recall that the uniformly stabilising action
of the spanwise diffusion is explicitly taken into account by (6.12)). The tilting mechanism
operates via non-local interactions between perturbations in different parts of the domain.
The strength of these interactions is controlled by the spanwise wavenumber γ through the
kernel functions Gγ and γ 2Gγ , which become more localised with an increase in γ .

6.3. Local growth and feedback
We will now use these results to analyse the subtle balance between the local growth of
perturbations and their feedback on the newly developing perturbations that are generated
during the next period of the time-periodic base flow. As discussed in § 1, our analysis can
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be confined to the vortex formation region, recognised as the origin of three-dimensional
instability (Barkley 2005; Giannetti et al. 2010).

For this purpose, figure 9(a) shows the time evolution of the three-dimensional
perturbations, characterised by logarithmic contours of the perturbation to the in-plane
vorticity, ζ , over one period of the time-periodic base flow for Re = 220 and γ = 1.6.
We note that for these values, the flow is unstable with a Floquet multiplier of μ = 1.25.
The symbols in figure 9(a) indicate the location rM(t) of the local maximum of ζ , which
we follow from its inception in the forming vortex (figure 9ai) as it is swept through
the domain (figure 9aii–viii). We normalised the perturbation so that at t = 0.44T , the
maximum is equal to 1, and show the subsequent evolution of ζmax(t) = ζ(rM(t), t) using
the red line in figure 9(b).

The maximum is initially located in the elliptic region where the flow is dominated
by rotation (figure 9ai–iv). This is the region in which the elliptic instability is commonly
assumed to operate, and the perturbations can be seen to grow rapidly. At t ≈ 0.97T , rM(t)
crosses the boundary of the elliptic region (identified by the white solid lines in figure 9a)
and enters the hyperbolic region, where the flow is dominated by strain. Interestingly,
ζmax(t) can be seen to undergo a second phase of strong growth when it enters this
region, and over one period of the time-periodic base flow (starting at t = 0.44T), ζmax(t)
increases by a factor of 6.

In this particular case, the tilting-induced feedback to the region where the next
maximum is formed is strong enough to result in an overall flow instability with a Floquet
multiplier of μ = 1.25. Hence, at t = 1.44T , when the cycle is about to repeat itself,
the amplitude of the next maximum of the perturbation in the vortex formation region
is μ = 1.25 times bigger than during the previous cycle. This process then repeats itself
with every new cycle (at least until nonlinearities, which are not included in our analysis,
become significant).

The other lines in figure 9(b) illustrate the temporal evolution of the maximum
perturbation for other values of the parameters γ and Re. An increase in γ generally leads
to stronger local growth, but this does not necessarily strengthen the overall instability.
For instance, when γ = 2.2, ζmax(t) increases by a factor of 8 over one period. Yet,
despite this more rapid local growth, the overall flow is actually restabilised (μ = 0.92).
This can be explained by the weakening of the feedback using the analysis presented
in § 6.2. Indeed, the variation of γ primarily affects the flow (and the amount of
feedback in particular) through the tilting mechanism, i.e. through non-local interactions
of perturbations. Figure 8 illustrates that these interactions become more localised as γ

increases. Consequently, although the perturbations become more intense, they are not
sufficiently felt during the formation of the next local maximum, resulting in a weakened
feedback.

Similarly, it is interesting to note that even when the Reynolds number is reduced to Re =
50 < ReA ≈ 190, a regime where the flow is strongly stable, with μ = 0.28, ζmax(t) still
undergoes a noticeable local growth. However, it remains too weak to provide sufficient
positive feedback to the formation of perturbations during the next cycle.

7. Conclusions

We studied the onset of three-dimensional mode A instability in the near wake behind a
circular cylinder. Our analysis showed that long-wavelength perturbations organise in a
time-shifting pattern so that the in-plane part (u, v, p)(x, y, z, t) of the perturbed velocity
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field is connected to the two-dimensional base flow (U, V, P)(x, y, t) by the relation

(u, v, p)(x, y, z, t) ≈ (U, V, P) (x, y, t + τ cos(γ z)) , (7.1)

where τ(t) describes the exponential growth of the instability, here assumed to remain
small enough to justify the use of linearised equations for the perturbations. The
spanwise component of the velocity perturbation is driven by fluctuations in the base flow
pressure, Ṗ.

While these predictions are based on the assumption of a small wavenumber, γ 
 1,
comparisons against the results from a numerical Floquet analysis showed that they
provide a good qualitative description of the three-dimensional flow over a range of
wavenumbers and Reynolds numbers, including the regime where the flow changes from
being stable to being unstable to three-dimensional perturbations.

We therefore analysed the mechanisms which control the growth or decay
of three-dimensional perturbations and established their dependence on the two
non-dimensional parameters (the Reynolds number Re and the wavenumber γ ). It turned
out that near the onset of the instability (Re ∼ ReA), changes in the base flow and
the intensity of in-plane viscous diffusion with Re are essential in flow destabilisation
(having comparable contributions); in contrast, the relative effect of spanwise viscous
diffusion is negligible. The analysis also highlighted the crucial role played by the tilting
mechanism, which operates via non-local interactions, similar to Biot–Savart induction.
We characterised its domain of influence using a Green’s function-based approach, which
allowed us to rationalise the non-trivial dependence of the growth rate on the wavenumber
γ : for γ = 0, the base flow is neutrally stable, corresponding to a Floquet multiplier of
μ = 1; for small positive values of γ , the growth rate of three-dimensional perturbations
becomes negative, μ < 1; it then reaches a minimum before increasing, finally reaching
the onset of the mode A instability when μ > 1. We attributed this behaviour to two
competing effects: an increase in γ leads to a more rapid local growth of the perturbations
as they are swept along by the flow. However, the action of the tilting mechanism becomes
more localised, weakening the feedback from existing perturbations on the perturbations
that are being generated during the next period of the time-periodic base flow.

While our analysis was performed for flows past circular cylinders, none of the technical
details rely on the specific geometry and, therefore, can be useful in studying other
instabilities that transform into the time-shifting mode as the spanwise wavenumber
tends to zero. For example, additional simulations (not shown here) indicate that the
long-wavelength modes Â and G behind an elliptic and rotating cylinder exhibit the same
time-shifting pattern. This is consistent with the Floquet analyses of Rao et al. (2013) and
Leontini et al. (2015).
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u 
=

 (
1
, 
0
, 
0
)

u = (1, 0, 0)

σ
·n

 =
 (

0
, 
0
, 
0
)

Artificial far boundary

u = (1, 0, 0)
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Figure 10. Schematic representation of the problem (dimensionless formulation) with artificial far boundary
and corresponding boundary conditions shown in blue.

Appendix A. Numerical method

We solve the problems for the base flow (§ 3) and perturbations (§ 4) numerically in a
bounded domain D, which is restricted by the surface of the cylinder (x2 + y2 = 0.25)
and an artificial far boundary. The position of the latter is chosen so that the resulting
distortion of the flow in the region of interest is negligible (see § A.3): the input, output and
side boundaries are located at x = −30, x = 50 and y = ±30, respectively. The boundary
conditions are shown in figure 10.

A.1. Discretisation of the problem
We apply the second-order stabilised finite element method for the spatial discretisation
of the corresponding problems on a triangulated domain D (see figure 11). Stabilisation
techniques used in the present work are PSPG (pressure-stabilising/Petrov–Galerkin)
and SUPG (streamline-upwind/Petrov–Galerkin) (Brooks & Hughes 1982; Tezduyar
1991; Tezduyar et al. 1992). They introduce stabilisation terms (in the weak
formulation of the problem) constituting a residual-based technique to overcome
two restrictions of the standard Galerkin method. The first one is that the LBB
(Ladyzhenskaya–Babuška–Brezzi) condition (Brezzi & Fortin 1991) does not allow to
use the same polynomial degree for pressure and velocity interpolation; and the second
one is the instability caused by the nonlinear terms for convection-dominated flows.
Stabilisation terms used in the present work are similar to those used by Mittal & Kumar
(2003) and Kumar & Mittal (2006) to solve the linearised Navier–Stokes equations for
two-dimensional stability analyses. We employ a second-order scheme for the temporal
discretisation, which involves extrapolating the nonlinear advection and stabilisation terms
to obtain a linear system of algebraic equations when seeking the base-flow solution. When
solving the linearised Navier–Stokes equations for perturbations, the stabilisation terms
are linearly dependent on the unknowns.

The resulting system of linear equations for the base flow consists of 3N real-valued
equations, and for the perturbations, it has 4N complex equations, where N is the number
of mesh nodes. At each time step, these systems are solved by the biconjugate gradient
stabilised method (BiCGSTAB) with an algebraic multigrid (AMG) preconditioner,
implemented with the use of the Portable, Extensible Toolkit for Scientific Computation
(PETSc) (Balay et al. 2022a,b). The parallel calculations are MPI-based, with the
distribution of the work among computational nodes based on a mesh partition performed
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Figure 11. Triangulation of computational domain D (mesh M0): (a) the entire domain and (b) the region
near the cylinder.

with ParMETIS (Karypis 2011). The calculations were carried out on the HPC Pool and
Computational Shared Facility at the University of Manchester.

A.2. Finding eigensolutions
The Floquet multipliers coincide with the eigenvalues of the monodromy operator PT,
which maps the perturbations at t = t0 to the one at t = t0 + T . The action of this operator
was found by solving the linearised Navier–Stokes equations for perturbations. For this
purpose, we computed the two-dimensional base flow in advance and stored 80 time
instants within the vortex shedding period. As done by Barkley & Henderson (1996),
we then used the Fourier representation of the base flow to evaluate it at any instant.
Eigenvalues and eigenfunctions of PT were found using Arnoldi iterations, producing
orthonormal vectors q1, q2, . . . , qm that span the Krylov subspace and tridiagonal m × m
Hessenberg matrix. The eigenvalues λ and eigenfunctions q of this matrix give an
approximation for the dominant eigensolutions of PT. In our calculations, we set the
dimension of the Krylov subspace m to values between 15 and 25.

To validate our results (see figure 2), we used an alternative approach to finding the
Floquet multipliers – by directly solving linearised Navier–Stokes equations with random
initial conditions (equivalent to the power method) and tracking how the solution changes
after several periods of vortex shedding. For more details on both approaches, see Barkley
& Henderson (1996), Tuckerman & Barkley (2000), and Blackburn & Lopez (2003).

A.3. Testing
All the results presented in the main part of the paper are obtained using time step Δt =
0.002 and mesh M0 shown in Figure 11 and described in detail in table 1. Figure 12 shows
the comparison of the mean drag coefficient CD and the Strouhal number St (defined by
the oscillation frequency of lift coefficient CL(t)) with the curves obtained by fitting into
the two-dimensional numerical simulations (Henderson 1995; Williamson & Brown 1998)
and experimental data (Fey, König & Eckelmann 1998). In the range 30 ≤ Re ≤ 300, CD
and St differ from these data by less than 1.7 %.

Table 2 shows the sensitivity of the mean drag coefficient CD, amplitude of lift
coefficient ΔCL and Strouhal number St at Re = 300 to:
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Figure 12. Comparison of mean pressure CDp , friction CDf and total CD drag coefficients and Strouhal number
St with the fitting curves by Henderson (1995), Williamson & Brown (1998), and Fey et al. (1998) for the
two-dimensional base flow at 30 ≤ Re ≤ 300.

Domain size Mesh resolution

Mesh title M0 M2Xin M2Xout M2Yside M2h M0 M0.5h
Number of nodes 171 056 171 834 243 850 173 278 43 224 171 056 677 466
Distance from the cylinder centre to

the inflow boundary 30 60 30 30 30
the outflow boundary 50 50 100 50 50
the side boundaries 30 30 30 60 30

Typical mesh resolution in
the boundary layer 0.005 0.01 0.005 0.0025
the vortex formation region (x < 4) 0.02 0.04 0.02 0.01
the near wake (4 < x < 20) 0.05 0.1 0.05 0.025
the middle and far wake (x > 20) 0.1 0.2 0.1 0.05
the other domain 1.5 3.0 1.5 0.75

Table 1. Computational domains and meshes used in the paper.

(i) time resolution – Δt = 2 × 10−3 and 10−3;
(ii) space resolution – twice larger and smaller step compared to mesh M0 (see table 1);

(iii) sizes of the computational domain – twice larger distances to the cylinder from the
inlet, outlet and side boundaries (see table 1).

Values of CD, ΔCL and St given in table 2 are obtained using the data over 83 cycles
of oscillations on the interval 200 < t < 600. The variations in CD, ΔCL and St are less
than 0.7 %. Figure 13(a,b) shows the influence of spatial and temporal resolution on the
distribution of vorticity.

At the transition to the secondary vortex street, one might also expect the emergence of
the additional frequency in the wake (Cimbala, Nagib & Roshko 1988), which could raise
a question of the applicability of the Floquet analysis. However, in our case, it is absent
due to the choice of the domain size (Jiang & Cheng 2019) – figures 13(c) and 13(d) show
visual periodicity checks at Re = 220 and 300.

The Floquet multiplier agrees with the data of Barkley & Henderson (1996) (extracted
by digitising their figure 7), see figure 2. In addition, the figure shows that two approaches
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(a)

(b)

(c)

(d )

Figure 13. (a,b) Sensitivity of vorticity distribution at Re = 300 to the parameters of the numerical method.
(c,d) Flow periodicity in the entire domain at Re = 220 and 300. Solid lines are isolines Ω = ±0.3. The
snapshots correspond to the maximum of the lift coefficient reached as t exceeds 600. (a) Various spatial
resolution (Δt = 10−3): M0, M2h, and M0.5h – black, blue and red lines. (b) Various temporal resolution (M0):
Δt = 2 × 10−3 and 10−3 – black and red lines. (c) Periodicity check at Re = 220: times t and t + T – black
and red lines. (d) Periodicity check at Re = 300: times t and t + T – black and red lines.

Δt Mesh CD ΔCL St

Parameters used 2 × 10−3 M0 1.36752 0.91178 0.21058

Mesh resolution 1 × 10−3 M2h −0.34 % −0.67 % +0.03 %
1 × 10−3 M0 −0.02 % −0.03 % +0.01 %
1 × 10−3 M0.5h +0.22 % +0.34 % +0.01 %

Domain size 2 × 10−3 M2Xin −0.21 % −0.24 % −0.11 %
2 × 10−3 M2Xout +0.01 % +0.01 % +0.02 %
2 × 10−3 M2Yside −0.47 % −0.47 % −0.29 %

Time step 1 × 10−3 M0 −0.02 % −0.03 % +0.01 %

Data of other authors Henderson (1995) +0.69 % — —
Williamson & Brown (1998) — — −0.06 %

Fey et al. (1998) — — −0.94 %

Table 2. Sensitivity of the base flow simulations at Re = 300 to the parameters of the numerical method and
comparison with the data of Henderson (1995), Williamson & Brown (1998) and Fey et al. (1998) (using the
expressions for the fitting curves). The last three columns show the relative difference compared to the reference
data in the first row (corresponds to the parameters chosen for our simulations in the main part of the text):
(c − cref )/cref .

to finding eigensolutions (the Arnoldi iterations and the power method, see § A.2) give
consistent results.
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Appendix B. Growth and decay of perturbation vorticity in fluid particles

This section describes the basic physical mechanisms affecting the growth or decay of
perturbation vorticity in fluid particles (Aleksyuk & Shkadov 2018, 2019). The following
alternative form of (6.3) can be derived using the polar representation of in-plane velocity
v = v(cos θ1, sin θ1) and vorticity ζ = ζ(cos θ, sin θ) vectors,

D ln ζ

Dt
= S cos 2α − γΩv

ζ
cos β + 1

Re

(
ζ · ∇2ζ

ζ 2 − γ 2
)

,

Dθ

Dt
= −S sin 2α − γΩv

ζ
sin β + 1

Re
ζ × ∇2ζ

ζ 2 · e3 + 1
2
Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (B1)

where α(x, y, t) = θ − Φ;β(x, y, t) = θ1 − θ ; and e3 is the unit vector in the spanwise
direction. This form reveals two key quantities of the base flow defining the evolution of
perturbations: the dominant stretching rate (S) and rotation rate (Ω/2).

According to (6.3), the rate of ζ change in a fluid particle (of the base flow) is defined
by the action of the following four basic physical mechanisms.

(i) First term in (6.3): perturbation vortex stretching by the base flow strain field. Let
us illustrate its action by omitting other terms on the right-hand side of (B1) and
assuming that S and Φ are constant in a fluid particle (without the loss of generality,
Φ = 0). The solution of these equations with initial condition ζ = (ζ 0

x , ζ 0
y ) is

ζx = ζ 0
x exp(St), ζy = ζ 0

y exp(−St). The in-plane perturbation vorticity vector in a
fluid particle exponentially tends to align with the stretching direction, tan α =
exp(−2St), while its endpoint continues to belong to hyperbole ζxζy = ζ 0

x ζ 0
y . The

sketch for the action of this mechanism is shown in figure 14(a).
(ii) Second term in (6.3): rotation of a fluid particle as a rigid body. This mechanism

does not change the amplitude of ζ ; it only rotates this vector with angular velocity
Ω/2. Figure 14(b,c) shows examples of the combined action of this mechanism with
stretching in the case of constant S, Ω and Φ = 0 in a fluid particle. In this case, the
solution of (B1) can be written in the form of a conic section: ζ 2

x − 2κζxζy + ζ 2
y +

C = 0, where C is a constant defined by initial conditions.
If κ > 1, the solution (hyperbole) has the following dependence on time:

ζ (t) = A(1, κ − χ) exp(Ωχ t/2) + B(κ − χ, 1) exp(−Ωχ t/2), (B2)

where χ =
√

|κ2 − 1|, and constants A and B are defined by the initial conditions.
With the increase in time, vector ζ tends to the asymptote ζy = (κ − χ)ζx. The
schematic representation of this solution is given in figure 14(b).
If κ < 1, the solution (ellipse) is

ζ (t) = A(1, κ) cos
[
Ωχ(t − t0)/2

]+ A(0, χ) sin
[
Ωχ(t − t0)/2

]
, (B3)

where the initial conditions define constants A and t0. The major axis of the ellipse is
ζy = ζx. The schematic representation of this solution is given in figure 14(c). When
rotation prevails, the stretching mechanism itself (without tilting) cannot provide the
overall growth of perturbations. For example, in the case of elliptic instability, the
role of the tilting is to create parametric resonance by aligning the perturbation with
the base flow strain field so that the perturbation has overall growth due to stretching.
More details are given by Kerswell (2002).

(iii) Third term in (6.3): viscous diffusion of vorticity. In (6.3), this mechanism is
decoupled into two parts: in-plane (Re−1∂2/∂x2 + Re−1∂2/∂y2) and spanwise
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ζy

ζx

ζ
ζ

ζ

ζ
ζ

β
Ω

Ω

α

ζx ζx

S > 0

S > 0

S > 0

y

xz

LL/4

Cylinder

0

v cos γz

–γΩv	t

–γΩv	t

(a)

(d )

(b) (c)

Figure 14. Action of (a–c) stretching and (d) tilting on in-plane perturbation vorticity vector ζ . Panels (a),
(b) and (c) correspond to the cases Ω = 0, 0 < Ω/2 < S and S < Ω/2, respectively. The shaded regions in
panels (a–c) show where ζ grows; in panel (d), it shows where tilting (vector −γΩvΔt) causes growth of ζ .
The shades of the red vector show the evolution of ζ .

(−γ 2/Re) diffusion. Using the change of variables (v, ζ ) = (ṽ, ζ̃ ) exp(−γ 2t/Re),
we eliminate term γ 2ζ/Re. This gives a clear idea on the exponential viscous
stabilisation. In-plane viscous diffusion depends on a local perturbation pattern but
commonly has a stabilising effect.

(iv) Fourth term in (6.3): base flow vortex tilting due to spanwise shear. Without viscous
forces, vortex lines are ‘frozen’ into fluid, and, on a short time interval Δt, the
spanwise shear v cos γ z at γ z = π/2 adds −γΩvΔt to perturbation vorticity ζ (see
figure 14d).

Appendix C. Green’s function for the screened Poisson equation on the disk exterior

The solution of (6.6) in the unbounded domain is −K0(γ |r − r′|)/(2π), where K0(r) is the
modified Bessel function of the second kind. In the bounded domain, the homogeneous
boundary conditions for the Green’s function can be satisfied by introducing function
gγ (r, r′):

Gγ (r, r′) = − 1
2π

[
K0(γ |r − r′|) + gγ (r, r′)

]
, (C1)

defined as a solution of the system

∇2gγ − γ 2gγ = 0,

gγ = −K0(γ |r − r′|), at r = 0.5,

gγ → 0, as r → ∞.

⎫⎪⎬
⎪⎭ (C2)
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Seeking the solution in the form

gγ (r, r′) =
∞∑

m=−∞
gm
γ (r, r′) cos m(ϕ − ϕ′) (C3)

and using (8) of Watson (1952, § 11.3) at r = 0.5 and r′ > r:

K0(γ |r − r′|) =
∞∑

m=−∞
Im(γ /2)Km(γ r′) cos m(ϕ − ϕ′), (C4)

we obtain the following problems for gm
γ (r, r′):

∂2gm
γ

∂r2 + 1
r

∂gm
γ

∂r
−
(

m2

r2 + γ 2
)

gm
γ = 0,

gm
γ = −Im(γ /2)Km(γ r′) at r = 0.5,

gm
γ → 0 as r → ∞.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(C5)

The solution of this system is the modified Bessel function of the second kind:

gm
γ (r, r′) = − Im(γ /2)Km(γ r′)

Km(γ /2)
Km(γ r). (C6)

Thus, by combining (C1), (C3) and (C6), we obtain the expression (6.7).
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