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Abstract

Various initial and boundary value problems for a 2-dimensional reaction-diffusion
equation are studied numerically by an explicit Finite Difference Method (FDM),
a Galerkin and a Petrov-Galerkin Finite Element Method (FEM). The results not
only show the transition processes from different local initial disturbances to quasi-
travelling waves, but also demonstrate the long term behaviour of the solutions,
which is determined by the system itself and does not depend on the details of the
initial disturbances.

1. Introduction

Many complicated natural phenomena, such as the spreading of bushfires and
epidemics, and the nonlinear evolution of a population in a 2-dimensional hab-
itat, (in which the balance of reaction and diffusion are concerned) can be
modelled by a 2-dimensional reaction-diffusion equation

du/dt = V-(DVM) +nf(u). (1)

Herew is a dimensionless temperature or population, du/dt is the rate of increase
of u with time t, V is the gradient operator in 2-dimensional space, D is a
constant second order tensor measuring the diffusivity of the media, and f(u)
is a nonlinear function of u representing the effect of reaction or multiplication.
We place a constant coefficient /z before f(u) for convenience.
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Assuming A.| and k2 are the principal values of D and x and y are coordinates
along the principle axes, (1) can be written as

du d2u d2u
— =Xt — + X2— + ,xf(u). (2)
dt dx2 dy2

If we rescale t, x and y by

(2) becomes
du d2u 82u

Introducing polar coordinates in the (X, Y) plane, (4) can be written as

du 82u 1 du 1 d2u
(5)

From (5) we see that, when r 3> r(), where r0 is the space scale of initial
disturbances, the second and third terms on the right hand side of (5) become
very small and can be neglected. This means that the large scale response
to a local disturbance can be approximately described by a one-dimensional
reaction-diffusion equation, which possesses long term travelling wave solutions
for several choices of / ( « ) , say / (« ) = u"(\ — u), n = 1, 2. With n = 1, the
one-dimensional equation is often known as the Fisher-Kolmogorov equation.
See for example, Aronson and Weinberger [2], Tang and Weber [5] and Tang,
Qin and Weber [4].

Based on this asymptotic analysis, we expect that any local disturbance will
grow fully and after a long period forms a quasi-travelling wave, which has
a circular wave front with a velocity changing with distance r due to the 2-
dimensional effect. Obviously, the circular wave front solution to (4) or (5)
is an elliptic wave front solution to (2) according to the transformation (3).
A theoretical analysis of this "hair trigger" effect is given by Aronson and
Weinberger [2].

In this paper, several numerical schemes for solving the initial-boundary
value problems of a 2-dimensional reaction-diffusion equation are presented.
The numerical schemes from the Galerkin and Petrov-Galerkin FEM usually
have excellent accuracy and stability [4, 5] and have been successfully used to
solve the 2-dimensional nonlinear dispersive wave equations, but they require
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a long CPU time, so they are used to solve transition problems in a small space
and short period. Generally speaking, the numerical schemes from FDM usually
cause pseudo-oscillations, but our numerical experiments show that this is not
the case for our problems, even when an explicit FDM is used. Since the explicit
FDM need not invert a large matrix and do iterations, it is fast and is therefore
suitable for long term studies in large spaces.

In Section 2, after presenting the mathematical models to be solved, their
numerical models, especially the Galerkin FEM model, are shown in some
detail. Various numerical results are shown in Section 3 and some conclusions
are summarized in Section 4.

2. Numerical schemes

We begin by adding some initial and boundary value conditions to (2) to
complete the mathematical models which we wish to consider.

As a fundamental model, we look for u(x, y, t) satisfying

= X l ^ + X 2 ^ + ^ u ( \ u ) , t > 0 , ( x , y ) € Q , ( 6 . 1 )
dt dx2 dy2

u(x,y,0) = M°(x,y), 0 < I I ° < 1 , ( j t , y ) e f i o C Q , (6.2)

n - V w = 0 , t > 0, (x,y)edQ (6.3)

or

u = 0, t > o, (jr, v) G a n , (6.4)

where Q = {(x, y) : |JC| < a, |v| < b], dQ = [{x, v) : \x\ - a or \y\ - b}, n
is a unit normal vector of boundary dQ, fi(> is a local subset of Q, reflecting the
fact that the initial disturbance ul\x, v) has compact support. If £2 is big enough
compared with Qo, and t is not sufficiently large (so that the boundary is not
yet conscious of the existence of the disturbance), then the boundary condition
(6.4) is available. Otherwise, (6.3), the so called natural boundary condition, is
in good agreement with practice.

In all the numerical schemes being shown below, Q. is divided into a regular,
rectangular grid with node points (xn, y,,,)

xn - -a + {n - \)h, n - \,2,...,N
ym = -b + (m - \)k, m = 1,2, ...,M

where h = (2a)/(N - 1) and k = (2b)/(M - 1) are the length and the width
of the grid, see Figure 1.
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FIGURE I. Division of grids, elements and nodes.

Writing tp — pr, p = 1 ,2 , . . . , where r > 0 is the time step, we can then
discretize u(x, y,t) into

UL = u{xn,ym,tp).

2.1. FDM scheme The derivatives of u at the inner node points are approximated
by central finite differences which have an accuracy of second order. Then, using
the Newtonian forward FDM to integrate with respect to t for the inner node
points, we have

M < m ( l - < „ , ) ) ,

n = 2, . . . , / V - l m = 2, . . . , Af — 1. (7)

For the boundary condition (6.4), we should use

"ft' = <'- = 0,
<V - <« = 0,

= \,2 M
(8)

For the boundary condition (6.3), from the approximation for any differentiable
function F(x)

F\x) = [4F(x + h)- F(x + 2h) - 3F(x O(h2)
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and similar approximations to calculate the normal gradients at boundary using
the values near and on the boundary and put them to be zero, we obtain

p+l
\.m

N.m

i . l

P+l

= \

= 3-

= h

4«L

it. 2

4 , , P + I
HUn.M-

3.m m — 1, 2, . . . , M

N-2.m

j
n.3

(9)

— U
P+l
n.M-2 n = 1,2,

All corner points of Q, such as up+\\ are calculated twice by this scheme, so we
take the mean value for further computations and for our final result.

Starting from M°m = u°(x,,, ym), we are able to get u?ljn step by step for any
integer p > 0 using (7) and (8) or (7) and (9). It is obvious that this scheme has
accuracy of O(r, h2 + k2).

2.2. Galerkin FEM scheme for boundary condition (6.3) In this scheme, we
take every rectangular grid as an element, so we have E = (N — 1)(M — 1)
elements and / — N x M node points, both of which are given global numbers
e and / column by column (^-direction). In this way, the 2-dimensional array
unm has been changed to a 1-dimensional array «,-, with the relation

m.

Around every node point i, there are four local elements 1 to 4, counted by their
locations in four quadrants. On the other hand, for every element e, there are
four local node points 1 to 4, see Figure 1.

Introducing the local dimensionless coordinates

(10)

(ID

(12)

r} = 2(y- y,)/k,

we define the sets of interpolation and weighting functions

where

(pa,
0,

(t;,r))e element a, a = 1,2,3,4
otherwise,

03 = ( l +
04 = ( l -
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FIGURE 2. Function <$>,(£, rj).

Obviously, <t>, are piecewise continuous functions which are linear along the
boundaries of the elements, and <t>, (0, 0) = 1, see Figure 2.

Using the coordinate transformations (10), we transfer <!>,(£, r\) into<J>,(x, y),
which are then used to approximate u and u2 by the expansions

x,y), (13)

j j x , y ) . (14)

Hereafter the Einstein summation convention for j = 1 , . . . , / is used. Gener-
ally speaking, the square of (13) is not identical to (14), however, it is equal at
all node points.

Substituting (13) and (14) into (6.1) and taking the weighted residuals to be
zero for every weighting function <t>,, after integrating by parts and considering
the boundary condition (6.3), we have

where S/j = ntj —

r

rriijUj + suUj +

and

jjuj — 0, (15)

hk
m.. —

hk
( 4 2 1 2 \

2 4 2 1
1 2 4 2
2 1 2 4/\
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rniJ = L

6M

17

2(X2h
2+X\k2) -2X2h

2+Xlk
2 -(X2h

2+Xtk
2)

A2/i2-2X,/t2

-2X2h
2+X\k2 -(X2h

2+Xik2) X2h
2-2X\k2 2(X2h

2+Xlk
2)

where the Boolean matrix is defined as

if the local node s coincides with the global node /,
1 " otherwise.

It is easy to see that every M, is related with the values of u at the nine nodes
of the four local elements surrounding point /, but these points are scattered in
a section with 2(M + 1) + 1 = 2M + 3 points in the list of global node points,
so both nijj and n,j are banded matrices with a bandwidth 1M + 3.

Integrating (15) with respect to / by a Crank-Nicolson scheme, we get a system
of nonlinear algebraic equations, which are linearized using Newton-Raphson
iteration to be a system of linear algebraic equations

with

. 7 p+\.r

B, = miJ [«; - ^ ( « ; ) 2 + f « + l r

and where Uj'r is the value of uj at tp = pz and is the iteration at the rth step.
Since Ai} is a banded matrix, (16) is solved by calling a standard subroutine

for a system of linear algebraic equations with a banded matrix. Knowing u°,
we solve (16) step by step until any time tp. This scheme has higher accuracy
both in space and time than the FDM.

2.3. Petrov-Galerkin FEM scheme for boundary condition (6.4) This scheme
is similar to that used to solve the 2-dimensional nonlinear dispersive wave
equation, the RKP equation, by Grimshaw and Tang [3], so we only describe
this scheme briefly.
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First we rewrite (6.1) as

du d2u d2u
— - X\—- ,xu(\ - u) = \2 — (17)
dt dx2 dy2

To get the value of u at tp+l we use its value at t,, and the method of cubic spline
interpolation to calculate d2u/dy2, which satisfies the boundary condition at
y = ±b and is treated as a forcing term in (17). Then we integrate the resultant
1 -dimensional (in space) forced equation considering ym as a parameter with the
boundary condition (6.3) at x = ±a. In doing so, a Petrov-Galerkin FEM is
used. For details, see Grimshaw and Tang [3], Tang and Weber [5].

This scheme also has higher accuracy in space than the FDM, but is only of
first order accuracy in time.

3. Numerical results

In this section we show some examples chosen from our numerical results.

3.1. Initial disturbance with a flat top in a small space: FEM In this example,
w e set A, = 0 . 1 , A.2 = 0 . 0 1 , /x = 0 . 1 , a = 2 , b =\,h=k = 0 . 0 5 , r = 0 . 0 1
a n d

x2+4y2<0.25
exp[-10(jr2+4y2-0.25)], otherwise.

u°(x v)-\ ' ' x+4y<0.25
(x'y)~ \ e x p [ 1 0 ( j r 2 + 4 y 2 0 2 5 ) ] otherwise u ;

Using the Galerkin FEM scheme, we get the results at t — 0, 1, 2, 4 shown by
3-dimensional contour plots of u (z-axis in the figures) in Figure 3(a)-(d).

From this example we see that, even though the initial disturbance has a flat
top in the middle, where diffusion is zero, there is strong diffusion at the edge,
and as time goes on, the top falls at first while the disturbance is spreading.
Since A.| > k2, the spread in the *-direction is faster than that in the y-direction.

3.2. Initial disturbance with a concave top in a small space: FEM In this
example, the parameters kt, X2, IJL, a, b and r are taken to be the same as those
in example 1, but h = k = 0.1 and

\-[0.09-(x2+4y2)]K x2 + 4y2<0.09
exp[-10(x2 + 4y 2 -0 .09) ] , otherwise. K }

Figure 4(a-d) shows the contour plots of u at / = 0, 0.4, 1 and 4.
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FIGURE 3. Contour plots for u due to initial disturbance with a flat top in a small space,
(a) t = 0 and (b) / = 1 (FEM) (for (c) and (d) see overleaf).
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(c)

FIGURE 3. Contour plots for u due to initial disturbance with a flat top in a small space,
(c) / = 2 and (d) / = 3 (FEM) (for (a) and (b) see previous page).
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(a)

(b) 8(39

FIGURE 4. Contour plots for u due to initial disturbance with a concave top in a small space,
(a) t = 0 and (b) / = 0.4 (FEM) (for (c) and (d) see overleaf).
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V .1

FIGURE 4. Contour plots for u due to initial disturbance with a concave top in a small space,
(c) / = 1 and (d) t = 4 (FEM) (for (a) and (b) see previous page).
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It is shown that during the spreading of the disturbance the concave part of
u grows and forms a hump at / = 1. At / = 4, we get a similar picture as in
example 1 at f = 3.

3.3. Initial disturbance with a convex top in a small space: FDM and FEM
All parameters are the same as those in example 2, but the initial disturbance

M°(jc,;y) = exp[-10(jc2 + 4>>2)] (20)

has a convex top. Both the Galerkin FEM and simple FDM were used to solve
this problem. The contour plots at t — 0, 1 and 4 are shown in Figure 5(a)-
(d). Figure 5(c) and Figure 5(d) are the results obtained by FDM and FEM
respectively, from which we see that the schemes produce results which are in
good agreement.

3.4. Initial disturbance with convex and concave distribution and isopleths
in a large space: FDM Having seen that the FDM works well in our problem
and knowing that it saves considerable CPU time, we use it to solve a problem
in a large space with a more complicated initial disturbance; namely,

x2 + 4y2, x2 + 4y2 < 1 and x > 0,
0 1, 1 < x2 + 4y2 < 1.5 and JC > 0,

u (x, y) - < e x p r _ 1 0 ( j c 2 + 4y2 _ 2.25)], x2 + 4y2 > 2.25 and x > 0,
0, x < 0.

(21)
This initial disturbance has a convex part and a concave part. Noting the scaling
relation in (3), and wishing to see the global behaviour of the solution in a
reasonably large space, we take A| = 0.02, X2 = 0.01, \x = 1.0, a = 10, b = 8,
fc = A: = 0.2 and T =0 .01 .

Figures 6(a)-(d) show the contour plots of u at / = 0, 2, 10 and 20. It is
obvious that, as time goes on, the concave part of u and its isopleths are going to
gradually become convex, and a quasi-travelling 2-dimensional wave will result
just as expected from theoretical arguments.

3.5. Long term behaviour: FDM From examples 1 to 4 we can see that various
local initial disturbances will lose their initial complex structure to become a
hump at the first stage and then form quasi-travelling waves at the second stage.
So, to check the long term behaviour, we may choose the initial disturbance to
be as simple as possible. In this example, we set A| = 0.02, A2 = 0.01, \x = 1.0,
a = \0,b = S,h = k = 0.2, r = 0.01 and

w V , y) = exp[- 10(;c2 + 4 / ) ] . (22)
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v-2

FIGURE 5. Contour plots for u due to initial disturbance with convex top in a small space,
(a) t = 0 and (b) t = 1 (FEM) (for (c) and (d) see facing page).
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(d)
v - l

FIGURE 5. Contour plots for u due to initial disturbance with convex top in a small space,
(c) t = 4 (FEM) and (d) r = 4 (FDM) (for (a) and (b) see previous page).
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-\0

FIGURE 6. Contour plots for u due to initial disturbance with convex and concave distribution
and isopleths in a large space, (a) t = 0 and (b) t = 2 (FDM) (for (c) and (d) see facing page).
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-\0

(d)

FIGURE 6. Contour plots for u due to initial disturbance with convex and concave distribution
and isopleths in a large space, (c) / = 10 and (d) / = 20 (FDM) (for (a) and (b) see previous
page).
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Using the scheme from the FDM, we obtain results at t = 0, 10, 30, 50 as
shown in Figure 7(a)-(d). We see that from t — 10 when the quasi-wave front
forms, to / = 30, when the wave front is still far away from the boundary,
we have fully developed wave front solutions, i.e., a flat hump with height 1
travelling outward. From t — 10 to 30, for every tp — 10 + pAt, At = 0.1, we
record u(x, 0, /,,), and using the trapezoidal rule we calculate

_ ' f"
~ 2 /_„

M(X, 0, tp)dx.

This gives the mean location of the wave front at time /,,. From

xf{tp) -xf(tp_i)
v(xf) =

At

(23)

(24)

we get the velocity of the wave front at the position xf. Then using our choice
of A.|, A.2, /x and scaling according to (3) we get the velocity V of the circular
wave front, as a function of distance r, as follows.

r

V

16.09

1.89

19.92

1.92

23.81

1.95

27.75

1.97

31.72

1.99

35.71

2.00

39.73

2.01

43.77

2.02

47.83

2.03

51.80

2.03

55.98

2.04

It is clear that V and the shape of the wave front change slowly with r. That
is why we call it a circular quasi-travelling wave front. Within our range of
accuracy, V(r) —>• 2, i.e., the minimum planar wave front velocity, as proved
theoretically by Aronson and Weinberger [2].

Once we get V(r), using the scaling relation (3), we can calculate the velocity
in the x and the y-direction uv(jc) and vv(y) for the quasi-elliptic wave front
according to

x = l—r, y = /—r, vs{x) = vv(y) = (25)

which are suitable for any choice of A.|, k2 and

4. Conclusions

Let us draw some conclusions on the 2-dimensional reaction-diffusion equa-
tion (4) and (2) with f(u) = u(\ — u) from what we have shown.
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-\0

-\0

FIGURE 7. Contour plots for long term M. (a) / = 0, (b) f = 10 (FDM) (for (c) and (d) see
overleaf)-
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-\0

FIGURE 7. Contour plots for long term u. (c) t = 30 and (d) r = 50 (FDM) (for (a) and (b) see
previous page).
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1. Any local initial disturbance will evolve according to (4) to become a hump
in a larger space at the first stage, and will then form a circular quasi-
travelling wave front. The velocity of the front V increases with distance
r and approaches 2, the minimum planar wave front velocity for the 1-
dimensional equation. This long term behaviour is determined by the reaction
and diffusion of the system itself, but does not depend on the details of the
initial disturbances at all.

2. Once we get V(r) and know the parameters A.|, k2 and \i we can predict
the velocity of the elliptic quasi-travelling wave front for the 2-dimensional
reaction-diffusion equation (2). This could be used to model the spreading
of bushfires, populations and so on.

3. All the numerical schemes shown in section II work quite well for numerical
solutions to the initial-boundary value problem (6) with satisfactory accuracy
and stability. The reason for this is most possibly due to the long term solution
of the equation itself which has stable and organised behaviour. The FDM
is very quick to use and nearly as accurate as the FEM.
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